
fnut-12-1591341 May 30, 2025 Time: 15:21 # 1

TYPE Review
PUBLISHED 04 June 2025
DOI 10.3389/fnut.2025.1591341

OPEN ACCESS

EDITED BY

Alfonso Benítez-Páez,
Spanish National Research Council (CSIC),
Spain

REVIEWED BY

Chiara Devirgiliis,
CREA (Consiglio per la ricerca in agricoltura e
l’analisi dell’economia agraria), Italy
Kotryna Simonyté Sjödin,
Umeå University, Sweden

*CORRESPONDENCE

Vitor Geniselli da Silva
vgenisel@massey.ac.nz

RECEIVED 11 March 2025
ACCEPTED 12 May 2025
PUBLISHED 04 June 2025

CITATION

Geniselli da Silva V, Roy NC, Smith NW,
Wall C, Mullaney JA and McNabb WC (2025)
Dietary patterns influencing the human
colonic microbiota from infancy
to centenarian age: a narrative review.
Front. Nutr. 12:1591341.
doi: 10.3389/fnut.2025.1591341

COPYRIGHT

© 2025 Geniselli da Silva, Roy, Smith, Wall,
Mullaney and McNabb. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Dietary patterns influencing the
human colonic microbiota from
infancy to centenarian age: a
narrative review
Vitor Geniselli da Silva1,2*, Nicole Clémence Roy1,2,3,
Nick William Smith1, Clare Wall2,4, Jane Adair Mullaney1,2,5 and
Warren Charles McNabb1,2

1Riddet Institute, Massey University, Palmerston North, New Zealand, 2High-Value Nutrition National
Science Challenge, Auckland, New Zealand, 3Department of Human Nutrition, University of Otago,
Dunedin, New Zealand, 4Department of Nutrition and Dietetics, The University of Auckland, Auckland,
New Zealand, 5AgResearch, Palmerston North, New Zealand

Our dietary choices not only affect our body but also shape the microbial

community inhabiting our large intestine. The colonic microbiota strongly

influences our physiology, playing a crucial role in both disease prevention

and development. Hence, dietary strategies to modulate colonic microbes have

gained notable attention. However, most diet-colonic microbiota research has

focused on adults, often neglecting other key life stages, such as infancy and

older adulthood. In this narrative review, we explore the impact of various

dietary patterns on the colonic microbiota from early infancy to centenarian

age, aiming to identify age-specific diets promoting health and well-being

by nourishing the microbiota. Diversified diets rich in fruits, vegetables, and

whole grains, along with daily consumption of fermented foods, and moderate

amounts of fish and lean meats (two to four times a week), increase colonic

microbial diversity, the abundance of saccharolytic taxa, and the production

of beneficial microbial metabolites. Most of the current knowledge of diet-

microbiota interactions is limited to studies using fecal samples as a proxy.

Future directions in colonic microbiota research include personalized in silico

simulations to predict the impact of diets on colonic microbes. Complementary

to traditional methodologies, modeling has the potential to reduce the costs

of colonic microbiota investigations, accelerate our understanding of diet-

microbiota interactions, and contribute to the advancement of personalized

nutrition across various life stages.
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1 Introduction

The human gastrointestinal tract hosts a diverse and dynamic microbial community,
including bacteria, archaea, fungi, and viruses, which play key roles in host health and
wellbeing. Most microbes are found in the large intestine or colon, with an estimated
concentration of 1011 cells/mL (1), although colonic microbial abundance can vary
depending on the sample site, analytical method used, and host physiology. Fecal samples
are non-invasive proxies to study the relationship between colonic microbes and human
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health, particularly microbial composition and function. These
analyses have revealed the impact of colonic commensals on host
nutrition, metabolism, and the immune and neurological systems
(2–8). However, many crucial aspects of this relationship remain
unknown. Defining what constitutes a healthy colonic microbiota
composition and function is an ongoing challenge (9, 10).

One of the major challenges in investigating the colonic
microbiota is its substantial compositional variability, which occurs
both within the same individual over time and between individuals
(11, 12). This variation limits predicting how each individual’s
microbiota may respond to interventions and their subsequent
impact on host health. Colonic microbes interact with one another
and the host, forming a dynamic network influenced by various
individual and environmental factors. These factors mainly include
dietary habits, host health status, genetics, age, gender, geographical
location, lifestyle behaviors, and antibiotic use (13).

Among the factors under host control, diet is key. Dietary
compounds not absorbed by the small intestine reach the colon,
are fermented by colonic microbes, and produce metabolites that
influence host physiology. Dietary interventions can rapidly alter
the composition and function of the colonic microbiota (14). For
instance, non-digestible carbohydrates have prebiotic properties.
Their consumption promotes the growth of saccharolytic
microorganisms and increases the production of beneficial short-
chain fatty acids (SCFAs) (15, 16). In contrast, a diet lacking
non-digestible carbohydrates and with excessive intake of protein
and fat from animal origin increases the abundance of pathogens
and the production of potentially deleterious molecules (17–19).
Recently, phytochemicals, bioactive compounds found in plants,
have attracted attention for their potential prebiotic effect, as well
as antioxidant and anti-inflammatory properties (20).

However, the long-term effect of dietary patterns on colonic
microbes remains unclear, including the persistence of diet-
induced alterations in the colonic microbiota when changing
dietary exposures. Furthermore, diet-colonic microbiota research
has predominantly focused on adults (ages 18-65), limiting our
understanding of how diet influences colonic microbes in other
life stages. Notably, dietary patterns during infancy (under 3
years) and older adulthood (over 65 years) differ from those
in adulthood, likely influencing the composition and function
of the colonic microbiota and highlighting the need for more
investigations specific to these age groups (21, 22). Literature
reviews on the influence of diet on colonic microbiota across the
human lifespan are scarce and often do not fully cover all life stages
(23, 24). Considering these knowledge gaps, this narrative review
examines how different dietary patterns influence the human
colonic microbiota across early infancy, weaning, adulthood, older
adulthood, and centenarian age. This review aims to identify age-
appropriate diets for microbiota modulation, providing insights
into promoting health and wellbeing.

2 Search strategy

A narrative review was conducted to evaluate the impact of
dietary patterns on the human colonic microbiota across infancy
(under 3 years), adulthood (between 18 and 65 years), older
adulthood (between 65 and 100 years), and centenarian age (over
100 years). Articles were primarily identified through searches in

the PubMed and Google Scholar databases using the terms “gut
microbiota”, “diet”, and “infant OR adult OR older adult OR
centenarian”. Additional records evaluating the effect of dietary
patterns on the colonic microbiota were identified by replacing
“diet” with terms referring to specific dietary patterns (e.g., “gut
microbiota” AND “western diet” AND “infant OR adult OR
older adult OR centenarian”). Only studies involving humans and
published in English were identified. No specific inclusion and
exclusion criteria were applied. Articles were prioritized based
on their publication date, giving preference to the most recent
studies. When available, meta-analyses, systematic reviews, and
randomized controlled trials were prioritized.

3 Principal colonic microbes and
produced microbial metabolites

The colonic microbiota is dynamic, and its composition varies
throughout life. Its development is proposed to have an initial
phase until the first 14 months of postnatal life, followed by a
transitional period between 15 and 30 months, reaching stability
after 31 months (25). Multiple factors influence the composition
and function of colonic commensals over life, resulting in a unique
profile of colonic microbes for each individual (13, 25). Despite this
variability, certain taxa and gene functions prevail in healthy adults
based on fecal data, suggesting the existence of core microbial
functional groups (26, 27). The principal microbial taxa in the
colonic microbiota and their associated microbial metabolites are
summarized in Supplementary Tables 1, 2, respectively.

To date, the mechanisms by which colonic microbes influence
host health remain unclear. Under favorable conditions, colonic
microbes may support host homeostasis by competing with
pathogens for resources, producing anti-microbial metabolites,
and modulating host immune responses (28, 29). Conversely,
disruptions in the colonic microbiota can favor the growth of
pathogens and the production of pro-inflammatory metabolites,
compromising the integrity of the colonic epithelial barrier. This
allows luminal molecules and microbes to enter the bloodstream,
potentially triggering excessive host immune responses. Over time,
these responses may lead to a chronic inflammatory state and
increased disease risk. Additionally, it is plausible that certain
diseases may alter the colonic environment, disrupting the colonic
microbiota and creating a vicious cycle that perpetuates disease.

4 Influence of dietary patterns on
colonic microbes

4.1 Infancy

During the first months of postnatal life, the colonic microbiota
composition is mainly affected by the gestational age, mode of
delivery, and type of feeding (human milk versus infant formula)
(25, 30, 31). Systematic literature reviews suggested that full-
term pregnancy, natural birth, and breastfeeding provide greater
opportunities for the infant colonic microbiota to thrive (32,
33). In contrast, pre-term pregnancy, C-section, and formula-
feeding are associated with disruptions of the microbial community
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TABLE 1 Impact of complementary foods on the colonic microbiota of weaning infants.

Food category Food intervention
trials

Observational studies In vitro fecal
fermentations

References

Meats
(e.g., beef, pork)

↑Clostridiales, Clostridium XIVa
↓Enterobacteriaceae

↑alpha diversity (Chao1 and
Shannon indexes)

↓Bacteroides
↑alpha diversity (Shannon index)

Not evaluated (72, 82, 84, 85, 94,
95)

Dairy
(e.g., yogurt, cheese)

Not evaluated ↓Bacteroides, Clostridiaceae
↑alpha diversity (Shannon index)

↑Bifidobacterium,
Lactobacillus, Enterococcaceae

↓Enterobacteriaceae
↑acetate, propionate, butyrate

(72, 84, 88, 96)

Infant cereals
(e.g., whole-grain and refined

cereals)

↑Bacteroidales, Bacteroides
↓Enterobacteriaceae,
Escherichia-Shigella

↑alpha diversity (richness and
Shannon index)

↑Bacteroidaceae,
Prevotellaceae,

Ruminococcaceae
↑acetate

(81–83, 85, 86)

Fruits and vegetables
(e.g., apple, berries, carrot)

Not evaluated ↑alpha diversity (Shannon index) ↑Bifidobacterium,
Lactobacillus, Streptococcus,

Ruminococcus,
Faecalibacterium
↓Clostridium,

Enterobacteriaceae
↑acetate, propionate

(83, 87, 88)

Sweets
(e.g., cakes, desserts, chocolates)

Not evaluated ↓Bifidobacterium, Clostridium
cluster IV

Not evaluated (50)

(25, 31). In regards to feeding in early infancy, breast milk
contains oligosaccharides that promote the growth of the genus
Bifidobacterium and support beneficial microbial cross-feeding
interactions (34, 35). In addition, breast milk is not sterile and
contains microbes that can colonize the infant’s colon, as well as
bioactive compounds like antibodies and lactoferrin, which reduce
pathogen colonization (36, 37).

In contrast, infant formulas are predominantly made
with bovine milk, have higher protein content, and
are often supplemented with fructooligosaccharides and
galactooligosaccharides to provide prebiotic effects. While
infant formulas meet the nutritional requirements for infant
development, they fail to mimic the bifidogenic effect of human
milk. Systematic reviews have found that, compared to breastfed
infants, formula-fed infants exhibit a lower fecal abundance of the
genus Bifidobacterium, an increased abundance of pathogens, and
a higher expression of microbial genes associated with amino acid
metabolism (38, 39).

Exclusive breastfeeding is recommended for the first 6 months
of life (40). Nutrients from complementary foods reaching
the colon unabsorbed mature the infant’s colonic microbiota
toward a more adult-like configuration (Table 1). Non-digestible
carbohydrates are preferentially fermented by colonic microbes,
producing SCFAs and gases (Supplementary Table 2), and
their availability in the colon limits the fermentation of other
dietary compounds (41, 42). In vitro evidence suggests that
carbohydrate fermentation primarily occurs in the proximal
colon, while other macronutrients are metabolized in the
distal colon (43, 44) (Figure 1). Notably, SCFAs are molecules
that exert well-documented health benefits, and their reduced
fecal levels are frequently observed in preterm infants, adults
with autoimmune, metabolic, and gastrointestinal diseases, and
older adults with neurological disorders (15, 45–48). However,
excessive fermentation of rapidly fermented fibers can increase

gas production in individuals with functional gastrointestinal
disorders, leading to bloating, pain, and discomfort (49).

Longitudinal evidence demonstrated that colonic microbial
diversity and stability increase during weaning, and genes
associated with carbohydrate degradation, vitamin biosynthesis,
and production of SCFAs are enriched (50). The abundances
of the genera Bifidobacterium and Lactobacillus decrease, while
the phyla Bacillota and Bacteroidota and the genera Clostridium
and Bacteroides are enriched (50–52). Furthermore, the dominant
fungal species Debaryomyces hansenii is replaced by Saccharomyces
cerevisiae and the viral richness and diversity decrease (53, 54).

Diet-induced microbiota changes during infancy may have
long-lasting effects, influencing susceptibility to diseases later
in life (55–57). Weaning is crucial for the colonic microbiota
development, influencing health and wellbeing later in life.
Although many studies have characterized the influence of feeding
type (breastmilk versus infant formula) on the development
of the infant gut microbiota (25, 31, 38, 39), the impact
of complementary foods on colonic microbes of weaning
infants remains underexplored. A recent systematic review of
interventional trials assessing the effects of complementary foods
on fecal microbiota composition in weaning infants found that
whole-grain cereals and meats increased the fecal abundance of
SCFA-producing bacterial taxa and increased microbial richness
(58). However, the review was limited to only seven clinical trials
characterizing the microbiota using 16S rRNA gene sequencing,
highlighting the scarcity of food interventions in this field.

Another notable knowledge gap is the limited understanding
of how maternal diet influences the infant’s colonic microbiota.
Maternal intake of plant-based dietary compounds during
pregnancy has been reported to influence the neonatal fecal
microbiota (59), while increased maternal dietary diversity and
consumption of fermented foods during pregnancy were associated
with lower fecal alpha diversity in infants (60). Additionally, the
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TABLE 2 Impact of various dietary patterns on the adult colonic microbiota.

Diet Definition Microbial
composition

Microbial
function

Observed effect of diet
on host health

References

Western diet High intake of
protein, fat, and

sugars. Low
consumption of

complex
carbohydrates

↑Bacteroides, Alistipes,
Penicillium

↓Methanobrevibacter

↑Amino acid and bile
acid metabolism and

production of nitrogen
derivatives and BCFAs

Adherence to a Western diet
increased risk factors for

metabolic and cardiovascular
diseases compared to a prudent

dietary pattern

(108–111)

Plant-based diet Exclusive or
predominant

consumption of
plant-based foods

(e.g., vegan or
vegetarian diets)

↑Prevotella,
Faecalibacterium,

Ruminococcus, Candida,
Methanobrevibacter

↑Degradation of
complex carbohydrates
and SCFA production

A meta-analysis of observational
trials found that adherence to
vegetarian or vegan diets was

linked with lower risk of
cardiovascular diseases and

cancer

(108–110, 274,
275)

Mediterranean diet High consumption
of fruits, vegetables,

and olive oil.
Moderate of fish,

dairy, and lean meats

↑Bacteroides, Prevotella,
Faecalibacterium

↑Acetate and propionate A meta-analysis linked adherence
to the Mediterranean diet with a
reduction of all-cause mortality

(125, 126)

Fermented foods diet High consumption
of fermented foods

(e.g., yogurt, kimchi,
cheese, bread)

↑Lactobacillus
↑alpha diversity

↑conjugated linoleic acid Decreased biomarkers of
inflammation in a 10-week

intervention with a fermented
foods diet compared to baseline

values

(127, 128)

Low FODMAP diet Low consumption of
rapidly fermentable
carbohydrates and

polyols

↓Bifidobacterium
No changes in microbial

diversity

No changes in SCFA and
BCFA production

Alleviates pain and discomfort in
patients suffering from irritable

bowel syndrome. May have
negative health outcomes

(130, 131)

Low gluten diet Low consumption of
gluten-containing

foods

↓Bifidobacterium, Dorea,
Veillonellaceae

No changes in microbial
diversity

↓Degradation of
carbohydrates

Alleviates symptoms in patients
with celiac disease or gluten

sensitivity. May have negative
health outcomes

(132, 133, 276)

Ketogenic diet High consumption
of fat and protein,

and restricted
consumption of
carbohydrates

↓Bifidobacterium,
Eubacterium,

Faecalibacterium, Roseburia

↓total SCFAs, acetate,
butyrate

Alleviates symptoms in patients
with epilepsy and induces fat loss.

A systematic review suggested
that adherence to Ketogenic diets

may increase risk for obesity,
type-2 diabetes, and depression

(135)

mother’s diet affects the microbial and nutritional composition of
breastmilk, which may impact colonic microbes of breastfed infants
(61). A scoping review identified associations between maternal
dietary patterns and infant fecal microbiota composition. Maternal
consumption of seafood, fermented dairy, fruits and veggies, and
nuts was linked to an increased abundance of beneficial taxa in
the infant fecal microbiota (33). Conversely, maternal intake of
artificial sweeteners and high-fat diets were associated with negative
alterations in the infant microbiota (33).

Artificial sweeteners, along with emulsifiers, thickeners,
stabilizers, preservatives, and colorants, are chemicals added
during food production to extend shelf-life or modify sensory
properties. Although little is known about the effect of food
additives on colonic microbes, a systematic review of randomized
controlled trials, encompassing participants from infants to older
adults, found that maltodextrin impacts the composition of the
fecal microbiota, notably the abundance of the genera Lactobacillus
and Bifidobacterium (62). Furthermore, another systematic review,
including in vivo and in vitro studies, reported that exposure
to colorants, sweeteners, emulsifiers, and preservatives is linked

with perturbations in the colonic microbiota and adverse health
effects (63). These findings highlight the need for further research
and support recommendations to reduce the consumption of
ultra-processed foods (64).

Another topic that requires further research is the interplay
between micronutrients and the infant colonic microbiota.
Vitamins are mostly absorbed in the upper small intestine,
while minerals typically have lower bioavailability and reach
the colon in greater amounts (65). Colonic microbes influence
micronutrient levels by synthesizing vitamins and modulating
mineral absorption (66, 67). In turn, micronutrients affect their
composition and function. For instance, a systematic review
of observational human studies reported that vitamin B12
supplementation may increase the alpha diversity of the fecal
microbiota in adults and older adults but not in infants (68). In
contrast, iron intervention supplementation in infants, commonly
used to combat malnutrition, may increase the fecal abundance of
pathogens, as observed in randomized controlled trials profiling the
microbiota using 16S rRNA gene sequencing (69, 70).
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FIGURE 1

Fermentation of dietary compounds by the colonic microbiota. Metabolites in blue benefit the host, while those in red are potentially deleterious.
A decrease in carbohydrate fermentation is observed from the proximal to the distal colon, mainly producing short-chain fatty acids (SCFAs) and
gases. On the other hand, amino acid, fat, and phytochemical fermentation increase from the proximal to the distal colon. Microbial fermentation of
amino acids produces SCFAs, branched-chain fatty acids (BCFAs), biogenic amines, hydrogen sulfide (H2S), and ammonia. Fermentation of dietary
fats is involved in trimethylamine production, whereas the fermentation of polyphenols leads to the generation of multiple bioactive molecules.

Current nutritional guidelines recommend introducing infants
to a diverse range of complementary foods (64, 71). Consistently,
fecal microbiota observational studies have shown that greater
dietary diversity during weaning is associated with increased
microbial diversity and richness (72, 73). Importantly, dietary
diversity in infancy is essential to prevent nutrient deficiencies
often linked with monotonous diets, which can contribute to
perturbations in the colonic microbiota and subsequent elevated
risk of disease (74). In line with these recommendations, various
fruits, vegetables, and whole grains are recommended for weaning
infants (64, 71, 75). These foods are sources of vitamins, minerals,
complex carbohydrates and phytochemicals, leading to beneficial
alterations in colonic microbes (Table 1). Phytochemicals have
recently attracted attention in colonic microbiota research for
their ability to support the growth of beneficial taxa and inhibit
pathogens (76), in addition to having anti-inflammatory and
antioxidant properties. Polyphenols are the most prominent
phytochemicals, with less than 10% absorbed in the small intestine
and the majority reaching the distal colon, where they may
be converted into more bioactive and bioavailable molecules by
colonic microbes (77, 78). This microbial conversion is associated
with various health benefits to the host, such as cardioprotective
and antimetabolic syndrome effects, as observed in adults (79, 80).

Whole-grain infant cereal interventions in weaning infants
increased the fecal abundance of SCFAs-producing bacteria, such as
the genus Bacteroides, while reducing the abundance of pathogens
belonging to the family Enterobacteriaceae, as determined using
16S rRNA gene sequencing (81, 82). Consistently, observational
trials profiling the fecal microbiota of weaning infants by 16S
rRNA sequencing, positively correlated the intake of complex
carbohydrates with increased fecal alpha diversity and abundance
of Lachnospiraceae and Ruminococcaceae families (83, 84). These
findings were further confirmed by a longitudinal trial that used
shotgun metagenomic sequencing to evaluate the composition of
the infant fecal microbiota during the first year of life. The study
highlighted the key role of complex carbohydrates in supporting
the maturation of the colonic microbiota in weaning infants, as

evidenced by an increased fecal alpha diversity and abundance of
SCFA-producing bacterial genera (85). In vitro fecal fermentations
using inoculum from weaning infants reported that whole grain
cereals and numerous fruits and vegetables promoted the growth of
the Ruminococcaceae and Prevotellaceae families to the detriment
of the Enterobacteriaceae family, leading to acetate production
after 24 h of fermentation (86–88). An in silico investigation
recently identified berries as promising candidates for increasing
the production of acetate and propionate by the infant’s fecal
microbiota when consumed with breastmilk (89). Similarly, a 24-
h in vitro fermentation study using weaning infant inoculum found
that berries increased acetate and propionate production (90).

Nutritional guidelines also recommend moderate consumption
(one serving per day) of lean meats and fermented dairy for
infants to meet protein and micronutrient requirements (64, 71,
75). Introducing protein-rich foods to infants increased their
colonic availability of amino acids, as their protein digestion
and absorption are not yet fully developed (91). In the colon,
the fermentation of unabsorbed amino acids and small peptides
produces SCFAs (30% of protein mass), branched-chain fatty acids
(BCFAs), tryptophan-derivatives, and biogenic amines, but also
pro-inflammatory metabolites, such as hydrogen sulfide (H2S)
and nitrogen-derivatives (92, 93). Consistently, clinical trials
demonstrated that introducing protein-rich foods to weaning
infants increases their fecal abundance of SCFA-producing taxa.
For instance, pureed beef interventions in infants increased fecal
abundance of Clostridium XIVa members, reduced the abundance
of the Enterobacteriaceae family, and increased alpha diversity, as
determined using 16S rRNA sequencing (82, 94, 95). Similarly, an
observational study profiling the infant fecal microbiota using 16S
rRNA amplicon sequencing reported a positive association between
meat intake and increased fecal alpha diversity (72). For dairy
products, their consumption by weaning infants was negatively
associated with the abundance of the Bacteroides genus and the
Clostridiaceae family, according to an observational study that
profiled the fecal microbiota of infants aged 6-24 months using 16S
rRNA gene sequencing (96). In turn, the fermentation of bovine
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milk for 10 h using feces from infants at weaning age increased the
abundance of taxa from the Bifidobacterium genus in vitro (88).

An observational trial profiling the microbiota of weaning
infants by 16S rRNA amplicon sequencing reported that dietary
patterns characterized by the consumption of foods rich in protein
and in fiber-rich foods, such as meats, cheese, and wholegrain
bread, have been positively correlated with the increased fecal
abundance of taxa from the Lachnospiraceae family, decreased
abundance of taxa from the Bifidobacteriaceae family, and
increased microbial alpha diversity (72). On the other hand, the
consumption of diets rich in fat but low in carbohydrates has
been associated with reduced fecal levels of SCFAs and increased
abundance of pathogens in post-weaning infants (97). Dietary fats
are normally well-digested and absorbed, with less than 5% of
ingested fat reaching the colon (98). Importantly, their influence
on colonic microbes depends on their type: as concluded by
a systematic review of adult studies, saturated fatty acids are
associated with reduced colonic microbiota richness and diversity,
whereas polyunsaturated fatty acids do not exhibit this effect (99).
Furthermore, certain fatty acids have anti-microbial activity and
can reduce the abundance of pathogenic taxa (100). In this context,
the Mediterranean diet, rich in polyunsaturated fatty acids from
olive oil, was recently adapted to children (aged 3 and older) to help
prevent obesity and cardiometabolic diseases in infancy and later
life. The adapted diet emphasizes the daily consumption of fruits,
vegetables, legumes, nuts, whole grains, olive oil, and dairy, along
with weekly consumption of fish, eggs, and meats (101).

4.2 Adulthood

The complete maturation of the colonic microbiota is believed
to occur around 3 years old (102). Nevertheless, evidence suggests
its continued functional and compositional development during
childhood and adolescence (103, 104). Compared to other life
stages, more is known about the influence of dietary patterns on
the colonic microbiota of adults. This topic has been extensively
reviewed in recent publications (105–107). Therefore, only the
impact of common diets on the colonic microbes of adults is briefly
discussed here (Table 2).

Observational trials reported that Western diets (rich in fat,
protein of animal origin, and simple sugars, and low in complex
carbohydrates) were associated with increased fecal abundance
of the genera Alistipes, Bacteroides, and Penicillium, and less
methanogenic archaea, resulting in higher expression of microbial
genes related to bile acid metabolism, amino acid fermentation, and
production of BCFAs (108–110). Adherence to this dietary pattern
is linked with increased susceptibility to chronic inflammatory,
and intestinal, metabolic, neurological, and cardiovascular diseases
(111). Consistently, diets high in protein but low in carbohydrates
(30% protein, 35% carbohydrate, and 35% fat as calories) and high-
fat diets (40% fat as calories) have been linked with perturbations
in the colonic microbiota and adverse health outcomes in adults
(18, 112, 113). These findings are supported by a systematic
review concluding that increased intake of saturated fatty acids,
predominantly found in animal-based foods, is associated with
reduced colonic microbiota richness and diversity in adults (99).
Recently, diets rich in high industrially processed food and

low in fiber from plants have been associated with colonic
microbiota perturbations, altered profile of plasma metabolites,
and an increased risk of disease development, including metabolic
disorders and colorectal cancer (19, 114).

On the other hand, diets predominantly based on plants, like
vegan and vegetarian diets, are associated with a higher fecal
abundance of saccharolytic taxa and enrichment of microbial genes
involved in complex carbohydrates degradation and production
of SCFAs (108, 110). Notably, colonic microbiota alterations in
adults due to adherence to plant-based diets have been linked
to protective effects against metabolic and cardiovascular diseases
(115). Recently, adherence to a plant-based African heritage
diet and consumption of a traditional fermented beverage were
associated with lower levels of circulating inflammatory biomarkers
in healthy adults (116). These effects may be explained by the
high content of non-digestible carbohydrates and polyunsaturated
fatty acids in these diets. A meta-analysis concluded that non-
digestible carbohydrates support the growth of saccharolytic
commensals and stimulate beneficial microbial cross-feeding
interactions in adults, producing SCFAs (117). Additionally, the
consumption of polyunsaturated fatty acids has been linked with
beneficial alterations in colonic microbiota composition in both
observational and interventional trials (118, 119).

However, a cross-sectional study found no differences in the
fecal concentration of SCFAs and BCFAs between vegans and
omnivores (who consumed at least three servings of meat per
week) (120). Furthermore, omnivores had higher fecal alpha
diversity measured by the Shannon index (120). Consistent
with these findings, flexitarian diets (primarily plant-based but
including occasional meat, fish, and dairy) have been associated
with increased fecal alpha diversity and abundance of beneficial
taxa in adults (121–123). These findings suggest that moderate
consumption of animal products (e.g., three times per week)
alongside a plant-rich diet may offer additional benefits to the
colonic microbiota.

In this context, the Mediterranean diet is a prime example
of a healthy dietary pattern. This diet is typical of countries
around the Mediterranean basin, varying according to the region.
It traditionally consists of a high consumption of fruits, vegetables,
and olive oil (at least two servings per day), along with a moderate
intake of seafood, fish, and dairy (two or more servings per
week), and occasional consumption of lean meats (no more than
two servings per week) (124). A recent systematic review of
observational and interventional trials found that following the
Mediterranean diet increased the alpha diversity of the colonic
microbiota in adults (125). It also increased the abundance of
the genera Faecalibacterium, Prevotella, and Bacteroides and the
production of SCFAs, particularly acetate and propionate (125).
Additionally, adherence to the Mediterranean diet has been
associated with lower mortality rates (126). Similarly, consuming
fermented foods, including yogurt, kefir, kimchi, and sourdough
bread is encouraged to provide health benefits. Adults consuming
diets enriched in fermented foods (at least three servings per
week) showed an increased fecal abundance of various Lactobacillus
species, as well as increased production of conjugated linoleic
acid (127). Furthermore, the intake of fermented foods has been
associated with increased fecal alpha diversity and lower levels of
circulating cytokines (128).
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These observations highlight the importance of a balanced and
diversified diet to nourish the adult colonic microbiota, aligning
with current nutritional recommendations (64). Conversely,
restrictions on macronutrients, notably carbohydrates, are
associated with perturbations in the colonic microbiota, raising
concerns about the potential long-term deleterious effects of such
restrictions (129). Restricted diets are typically recommended
for managing pre-existing medical conditions. For instance, the
low FODMAP diet, characterized by low consumption of rapidly
fermentable carbohydrates, is recommended for individuals with
disorders of gut-brain interaction (also known as functional
gastrointestinal disorders) to alleviate discomfort (130). However,
a systematic review and a meta-analysis of interventional studies
concluded that this diet reduces the fecal abundance of the genus
Bifidobacterium in adults with irritable bowel syndrome (131).
Similarly, gluten-free or low-gluten diets are recommended for
individuals with Celiac Disease or gluten sensitivity. In healthy
adults, adherence to these diets has been associated with the
decreased fecal abundance of the genera Bifidobacterium and
Dorea and the family Veillonellaceae, and decreased expression of
microbial genes involved in carbohydrate degradation (132, 133).
The ketogenic diet is characterized by high fat intake (70-80%
of total energy), moderate protein consumption (10-20% of total
energy), and restriction of carbohydrates (less than 10% of total
energy). Variants of this diet are recommended for individuals
with epilepsy (for example, the medium-chain triglyceride diet) or
following a rapid weight-loss strategy (134). A systematic review
concluded that this diet decreases the fecal abundance of the
Bifidobacterium genus and potentially reduces the abundance of
butyrate-producing genera, leading to reduced levels of acetate
and butyrate (135). These alterations in the colonic microbiota
may contribute to an increased risk of obesity, type-2 diabetes,
and depression (135). Further evidence supports these adverse
outcomes, as adherence to the ketogenic diet reduced glucose
tolerance in healthy adults (136).

4.3 Older adulthood

The colonic microbiota remains stable during adulthood until
it undergoes modifications in its composition and function at
around 65 years old, when changes in lifestyle and physiology
occur with aging. The metabolism and physical activity levels
decrease, antibiotics are used more frequently, the diet becomes
less diversified, colon motility decreases, and fecal retention time
increases (137). Observational evidence suggests that older adults
have high inter-individual variation in the colonic microbiota,
which is strongly influenced by their health status (138).

Healthy older adults have fecal microbiota similar to that
of healthy young adults, although observational studies suggest
increased diversity of methanogenic archaea and lower viral
richness (139–141). On the other hand, unhealthy aging (e.g., frailty
or chronic diseases) is associated with a reduced abundance of the
genera Bifidobacterium, Faecalibacterium, and Eubacterium, and an
increased abundance of the family Enterobacteriaceae and genera
Streptococcus, Clostridium, Penicillium, Candida, and Aspergillus
(142–144). In addition, the expression of genes synthesizing
vitamins and fatty acids is reduced (143). These alterations in the

colonic microbiota are associated with chronic inflammation and
an increased risk of morbidity and mortality (145).

A recent systematic review evaluated the effect of different
dietary patterns on the fecal microbiota of older adults, including
a total of 38 intervention trials, most of which profiled the
microbiota using 16S rRNA sequencing (146). Diets rich in plant
foods and including animal products in moderation (such as daily
consumption of dairy and lean meats or fish two to four times
per week) increased the fecal abundance of saccharolytic taxa
and the production of SCFAs (146). Similarly, an observational
study that evaluated the fecal microbiota of older adults using
shotgun metagenomic sequencing found that adherence to the
healthy plant-based diet index was associated with a greater
fecal abundance of bacterial saccharolytic species, along with
enriched pathways for the biosynthesis of branched-chain amino
acids (147). These results may be explained by the high content
of non-digestible carbohydrates and phytochemicals in these
diets. For instance, greater consumption of dietary fiber among
older adults was associated with an increased fecal abundance
of the order Clostridiales, which includes butyrate-producing
bacteria, and increased expression of pathways involved in
polysaccharide degradation, according to an observational study
employing shotgun metagenomic sequencing (148). Furthermore,
an intervention trial reported that adherence to a polyphenol-rich
diet (total polyphenols around 1,300 mg/day) increased the fecal
abundance of butyrate-producing bacteria, as profiled by 16S rRNA
sequencing, and reduced blood pressure in older adults (149).

In contrast, the systematic review of intervention trials
found that high intakes of fat, protein, and simple sugars
but low consumptions of complex carbohydrates are associated
with the growth of opportunistic pathogens, production of
pro-inflammatory toxins, and frailty (146). Furthermore, an
intervention study that profiled the fecal microbiota of older adults
using 16S rRNA sequencing found that diets rich in fat but low in
carbohydrates have been associated with decreased abundance of
the genus Bifidobacterium (150). Consistently, a longitudinal study
in older adults linked higher red meat intake to increased plasma
concentration of trimethylamine N-oxide, a microbial metabolite
associated with cardiovascular risk (151). These observations are
consistent with results observed for young adults, highlighting
the importance of a diversified diet primarily composed of fruits,
vegetables, and whole cereals to nourish beneficial colonic microbes
(Table 3). In line with these findings, a longitudinal study of over
100,000 participants followed for 30 years assessed the impact
of long-term dietary patterns on aging. Diets rich in plant-based
foods, such as fruits, vegetables, whole grains, and nuts, and
including animal-based foods in moderation, like low-fat dairy,
were associated with healthy aging, defined as survival to the age
of 70 years with intact cognitive, physical, and mental functions,
and without chronic diseases (152).

However, increased protein consumption appears to be
beneficial in older adults, who typically have slower protein
digestion and absorption compared to younger individuals (153).
For instance, a cross-sectional analysis of the fecal microbiota
of older men, characterized using 16S rRNA gene sequencing,
revealed that higher protein intake was associated with increased
fecal alpha diversity (154). Additionally, a meta-analysis of
observational trials concluded that protein intake was negatively
associated with frailty in older individuals (155). Therefore,
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TABLE 3 Impact of various dietary patterns on the colonic microbiota of older adults.

Diet Definition Microbial
composition

Microbial
function

Observed effect of diet
on host health

Reference

Western diet High consumption
of processed meats
and refined grains

↑Alistipes, Desulfovibrio,
Ruminococcus

↓Faecalibacterium, Prevotella

↑Amino acid metabolism
↓SCFA production

Adherence to a Western diet was
associated with increased body

mass index compared to a
Prudent diet

(17)

High-protein diet Consumption of
protein higher than
the recommended

dietary intake
(> 0.8 g protein/kg
bodyweight/day)

No changes in taxa
abundance or microbial

diversity

No changes in the
production of organic

acids

No changes in appetite after
6-moth intervention compared to

control (habitual diet)

(158, 159)

Prudent diet High consumption
of fruits, vegetables,

nuts, fish, and
chicken

↑Clostridium,
Faecalibacterium,

Lachnospira
↓Desulfovibrio,
Ruminococcus

↑Complex carbohydrate
degradation and SCFA

production

Adherence to a Prudent diet was
associated with reduced body

mass index compared to a
Western diet

(17)

Mediterranean diet High consumption
of fruits, vegetables,

and olive oil.
Moderate of fish,

dairy, and lean meats

↑Roseburia, Eubacterium,
Faecalibacterium

↓Ruminococcus torques

↑SCFA and BCFA
production

↓Secondary bile acids,
p-cresol, ethanol

Reduced frailty and chronic
inflammation, and improved

cognitive function after 1-year
intervention compared to control

(habitual diet)

(277)

Polyphenol-rich diet High consumption
of polyphenol-rich
foods (e.g., berries,
pomegranate, green
tea, dark chocolate)

↑Faecalibacterium,
Butyricicoccus,

Ruminococcaceae
↓Streptococcus,

Enterobacteriaceae

Not evaluated Increased serum concentration of
indole 3-propionic acid and

decreased of zonulin after 8-week
intervention compared to the

control diet (low-polyphenol diet)

(149, 278)

FIGURE 2

Favorable diets for nourishing the colonic microbiota in different life stages. In early infancy (A), breastfeeding is the optimal dietary strategy, but
mother’s milk does not meet all the necessary nutritional requirements once the infant reaches the weaning period. In this stage (B), diets should
combine breastfeeding with complementary foods, mainly fruits, vegetables, whole cereals, and animal products in moderation. The colonic
microbiota matures as the introduction of solid foods increases and breastmilk or infant-formula decreases, achieving an adult state in which breast
milk is no longer consumed. Children, adolescents, and adults have similar diets for promoting a balanced microbiota (C). These are rich in
non-digestible carbohydrates, phytochemicals, and polyunsaturated fatty acids found in fruits, vegetables, nuts, pulses and whole grains, also
containing moderate amounts of fish, fermented dairy products, and lean meats. A higher intake of protein is recommended for older adults,
particularly from dairy and lean meats (D). Centenarians have a similar dietary pattern to that of older adults (E).

a daily intake of 1.2 g protein/kg bodyweight, compared to
the standard recommendations of 0.66-0.8, has been proposed
to support good health and maintain functionality in older
populations (156). In line with this recommendation, a narrative
review suggested that high-fiber diets enriched with protein from
legumes, dairy, and lean meats could promote a balanced colonic
microbiota (eubiosis), also contributing to muscle synthesis and
overall metabolic health in older adults (157). In this context,

complex carbohydrates are important to mitigate excessive protein
fermentation in the colon and the consequent production of
deleterious metabolites, such as hydrogen sulfide and nitrogen-
derivatives (92, 93). As demonstrated by intervention trials, protein
intakes exceeding the recommended dietary allowance did not
alter fecal microbiota composition, characterized using 16S rRNA
sequencing, or function in older adults when accompanied by a
prudent diet (158, 159).
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4.4 Centenarian age

Recently, colonic microbiota investigations have focused on
centenarians (individuals aged 100 or older) as models for
healthy aging. Compared to younger controls, observational studies
demonstrated that centenarians exhibit higher fecal bacterial and
viral diversity (160–162). A systematic review of 27 observational
studies suggests that their high fecal microbial diversity and
abundance of health-promoting taxa contribute to healthy aging
and longevity (163).

In terms of microbial composition, the genera Alistipes,
Parabacteroides, Clostridium, and Methanobrevibacter are enriched
in the feces of healthy centenarians, while the butyrate-
producing species Faecalibacterium prausnitzii and Eubacterium
rectale are depleted (160, 162, 164). However, no age-related
changes have been observed in the fecal fungal microbiota
(165). Concerning functionality, centenarians have lower fecal
butyrate concentrations but higher levels of BCFAs, ammonium,
and secondary bile acids compared to younger controls (160).
Furthermore, their fecal microbiome is enriched in genes associated
with SCFA production from amino acids, secondary bile acid
metabolism, and the degradation of xenobiotics, plant-based fats,
and tryptophan (166–168). In contrast, they have fewer genes
involved in carbohydrate and animal fat metabolism (166–168).

Few investigations have assessed the interaction between diet
and colonic microbes in centenarians, with current knowledge
primarily derived from longitudinal and cross-over studies.
Overall, adherence to a diverse, plant-rich diet has been associated
with a higher abundance of microbial taxa linked to longevity,
as observed in Italian, Chinese, and South Korean centenarians
(166, 169–172). Additionally, the consumption of fermented
soybean paste was positively associated with the distinct fecal
microbiota composition of South Korean centenarians, according
to an observational study that profiled the microbiota using 16S
rRNA gene sequencing (172). A cross-sectional study of Estonian
centenarians found that cereal consumption and lower adherence
to Western dietary patterns were linked to longevity (162). These
observations highlight the importance of a prudent, plant-rich diet
for healthy aging, aligning with dietary patterns that support a
balanced colonic microbiota across life stages.

Interestingly, Estonian centenarians were also more exposed
to animals and experienced lower sanitary conditions during their
childhood (162). Similarly, early-life exposure to animals has been
shown to contribute to the development of the fecal microbiota
in infancy (25). Taken together, these findings suggest that early
exposure to environmental microbes may play a crucial role in
supporting the long-term balance of colonic microbiota throughout
life.

5 Dietary recommendations for
nourishing a balanced colonic
microbiota

The evidence gathered in this review suggests that diets
promoting a balanced colonic microbiota in infants post-weaning,
adults, older adults, and centenarians share similar compositions

(Figure 2). These diets are diverse and primarily based on plant
foods, such as fruits, vegetables, and whole grains. These foods
are rich in complex carbohydrates, polyunsaturated fatty acids,
and polyphenols, which support the growth of saccharolytic
microbes, for example, taxa from the genera Bifidobacterium,
Faecalibacterium, Prevotella, Eubacterium, and Ruminococcus,
and the production of beneficial metabolites, such as SCFAs and
conjugated fatty acids (76, 117, 119). Additionally, polyunsaturated
fatty acids and polyphenols have anti-inflammatory and
antioxidant properties, and their metabolism by colonic microbes
may confer further benefits to the host (76, 173). For instance,
a 2-month intervention in adults consuming cereals enriched
with polyphenols, dietary fiber, and omega-3 fatty acids increased
the fecal abundance of Bacteroides species while reducing fecal
calprotectin levels, a biomarker for intestinal inflammation
(174).

In addition to plant-based foods, favorable diets also include
moderate consumption of animal-based foods, such as fish and
lean meats (two to four servings per week). These foods are rich
sources of essential amino acids and micronutrients, supporting
colonic microbial diversity and contributing to meeting nutritional
needs (120). Their consumption is particularly important for
infants and older adults to promote physiological development
and reduce disease risk (155). Daily consumption of fermented
foods, such as fermented dairy, is also encouraged, as they
contain lactic acid bacteria, supporting colonic eubiosis (127).
Importantly, the intake of animal foods should be paired with
the consumption of complex carbohydrates to mitigate excessive
microbial fermentation of animal protein and fat. Notably, these
recommendations for nourishing the colonic microbiota align with
current dietary guidelines (64).

6 Limitations and future
perspectives in diet-colonic
microbiota research

Most of the knowledge on diet-colonic microbiota interaction
in humans comes from studies using fecal samples as proxies.
Compared to biopsies, fecal sampling is a non-invasive and cost-
effective approach (175). However, they predominantly represent
microbial communities from the distal colon, providing limited
information about microbes attached to the colon’s mucosa
or inhabiting other parts of the gastrointestinal tract (176).
As a result, diet-induced changes observed in fecal microbial
function and composition may not accurately reflect microbial
alterations throughout the entire large intestine. Furthermore,
current culture and sequencing techniques are unable to fully
characterize the human colonic microbiota (177). Ultimately,
due to technical limitations, our current understanding of how
dietary patterns influence colonic commensals remains largely
inferred and may not fully capture the complexity of host-
microbe interactions.

Diet-colonic microbiota research has traditionally focused
on adults. Hence, there is an opportunity for further research
to expand our knowledge on diet-microbiota interactions
in other life stages, such as infancy and older adulthood.
Notably, weaning plays a critical role in colonic microbiota
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development (72). Investigating the impact of complementary
feeding on host-microbiota associations early in life is a promising
field to promote health and wellbeing and prevent diseases.
Similarly, the continuous rise in human life expectancy
urges more comprehension of the relationship between
colonic microbiota and aging. The confounding effects of
diseases on colonic microbes often challenge research on
older populations. Therefore, studies involving both healthy
and unhealthy older adults are necessary to deepen our
understanding of how diet-microbiota modulations can support
functionality during aging.

Among dietary compounds, the effects of complex
carbohydrates on colonic microbes are well-characterized,
whereas less is known about protein, fatty acids, polyphenols,
micronutrients, and food additives. Notably, polyphenols and
polyunsaturated fatty acids have been associated with health
benefits, in which colonic microbes seem to play a critical role
(76, 119). A better understanding of the impact of these nutrients
on the colonic microbiota is needed, including in the long term.
Future research should also investigate how dietary compounds
interact with each other and their combined effects on the
microbiota. Increased knowledge of the role of various nutrients
in shaping colonic microbes, alongside individual factors (e.g.,
age, health status, activity level), will help researchers and medical
professionals to tailor nutritional recommendations based on
individual needs.

These challenges highlight the need for complementary
methods to study the influence of dietary patterns on the colonic
microbiota. Randomized clinical trials are the gold standard
approach to measure the effect of food interventions on colonic
microbes and resulting host health outcomes. They are also useful
for validating findings from animal models and in vitro studies.
However, clinical trials are time and resource-consuming, are prone
to confounding factors, and rely on participant compliance and
the accuracy of food questionnaires, limiting their feasibility (178).
Furthermore, dietary assessment tools vary across microbiome
studies, highlighting the need for standardized methods to improve
comparability between studies targeting different age groups.

A promising strategy to address these limitations is to
combine traditional methodologies with mathematical modeling.
Mathematical models can investigate hypotheses that cannot be
efficiently evaluated in vitro or in vivo, using a fraction of
the time and cost of traditional approaches. In silico pipelines
for predicting the effect of diets on personalized microbial
communities have already been proposed (179, 180). Ongoing
development and validation of these models could expand
colonic microbiota research to traditionally underrepresented
populations. For instance, in silico approaches were used to
predict compositional and functional changes in the colonic
microbiota of infants, children with different clinical conditions,
healthy adults, and adults with Crohn’s disease according
to the diet (89, 181–184). Moreover, models are flexible
and can create personalized simulations based on input data,
contributing toward personalized nutrition. Ultimately, integrating
mathematical models with traditional approaches can reduce
the costs of colonic microbiota research and accelerate our
understanding of the relationship between diet, colonic microbes,
and host health.

7 Conclusion

Colonic microbes ferment non-absorbed dietary compounds
producing bioactive metabolites that influence host physiology.
Therefore, identifying dietary patterns that support colonic
eubiosis across different life stages is crucial for promoting host
health and well-being. The evidence gathered in this review
suggests that diets nourishing the colonic microbiota throughout
human life are primarily composed of plant-based foods and
include daily consumption of fermented foods, such as dairy
products, and moderate amounts of fish and lean meats (two
to four times a week). However, most diet-colonic microbiota
investigations have focused on adults, neglecting weaning infants
and older adults. Notably, weaning is a critical period for
colonic microbiota development, setting the foundation for later
life. In older adulthood, colonic microbes have a crucial role
in maintaining functionality and promoting healthy aging. The
limited understanding of how diets influence colonic microbes of
infants and older adults is a significant barrier to using colonic
microbiota modulation strategies to promote health. Further
investigation of the long-term effects of dietary patterns on colonic
microbes across different life stages is necessary to overcome some
of the current limitations in diet-colonic microbiota research.
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