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This report presents the first documented application of fecal microbiota

transplantation (FMT) for the management of extensive multi-food intolerance

involving 52 specific foods in a pediatric patient with autism spectrum disorder

(ASD). A 7 years-old autistic child was diagnosed with food intolerance to 52

items, presenting with generalized rashes, diarrhea, and malnutrition (BMI of

12.9) upon exposure or ingestion of the implicated foods. The child received

oral fecal microbiota capsule treatment, with a daily dose of nine capsules

(a total of 120 capsules per course) for two consecutive treatment courses.

The rashes resolved, the child regained tolerance to previously intolerable

foods, nutritional status improved, and stool consistency normalized. This case

suggests that FMT may hold therapeutic potential for managing food intolerance

in autistic patients.
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1 Introduction

Food intolerance (FI) refers to non-immune-mediated adverse reactions to food or
food components at normal tolerated doses, including metabolic, toxic, pharmacological,
and undefined mechanisms (1–6). It’s prevalence ranges from 15% to 45% (7). The
main mechanisms underlying FI include these following aspects: Firstly, Certain foods
contain pharmacologically active com-pounds (e.g., histamine, monosodium glutamate,
caffeine) that can induce physiological responses like smooth muscle contraction and
inflammation, contributing to FI (8). Secondly, Lactase deficiency is a major cause of
lactose. Similarly, deficiencies in histamine-degrading enzymes, such as diamine oxidase
(DAO) and histamine-N-methyltransferase (HNMT), can lead to histamine accumulation
and FI symptoms (9). What’s more, Food additives and preservatives (e.g., nitrates,
nitrites) may also induce FI reactions (10, 11). The precise mechanisms remain unclear,
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but these components can trigger adverse reactions in susceptible
individuals. Diagnosis of FI requires detailed medical history,
dietary and lifestyle assessments, and laboratory tests (e.g., blood
and stool analyses) or imaging to exclude organic diseases and food
allergies (FA) (12). Currently, the double-blind, placebo-controlled
oral challenge (DBPCFC) is considered the gold standard for FI
diagnosis, involving food elimination and gradual reintroduction to
identify triggers (13). Food-specific IgG or IgG4 serological testing
is widely used in clinical practice (14).

The gut microbiota plays a crucial role in the pathogenesis of
FI. FI is often associated with gut dysbiosis, characterized by the
reduction or increase of specific microbial populations, leading to
impaired gut barrier function, enhanced inflammatory responses
(5, 15), and abnormal metabolic functions. FMT, as a therapeutic
approach to modulate the gut microbiota, may restore microbial
balance and improve FI symptoms by transplanting healthy
donor microbiota into the recipient. Annabel Clancy and Thomas
Borodyhave (16) demonstrated that FMT can significantly alleviate
FI symptoms in patients with irritable bowel syndrome (IBS),
highlighting the potential therapeutic value of gut microbiota in FI.
FMT can also improve both autism symptoms and gastrointestinal
symptoms in patients with ASD (17).

To date, there have been no reports on improvements in food
intolerances in patients with ASD treated with FMT. Therefore, this
case report of improvement in food intolerance and ASD symptoms
after FMT in a male patient constitutes an important insight into a
possible involvement of the gut microbiome in the pathogenesis of
food intolerances.

2 Case report

The patient is a male born in 2017. Family history was negative
for allergies or psychiatric disorders.

This study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangdong Pharmaceutical University
[Approval No. 2923JS (11)]. And the informed consent form for
FMT was signed by the patient’s legal guardian (PDF1).

In October 2019, he was diagnosed with “Autistic
Spectrum Disorder” due to symptoms including poor language
communication skills, irritability, social withdrawal, loose stools,
multiple scattered eczema lesions and sleep disturbances. In
December 2019, a 90-item food-specific IgG antibody test
identified intolerance to 52 foods (Table 1), with severe reactivity
to staples like rice, wheat, and milk. Elimination of these foods
improved language expression, eczema, and sleep quality.
Reintroduction of intolerant foods consistently provoked rashes
and sleep disturbances, confirming provocation test results.
Additionally, allergen-specific IgE antibody testing for inhaled
and ingested allergens showed no significant abnormalities. The
delayed diagnosis of FI in this pediatric patient with ASD and
communication impairments was attributable to its less overt
clinical manifestations compared to food allergy, compounded
by age-related diagnostic challenges. The patient adheres to a
structured food diary with rotation of tolerated foods. The patient
presents with persistent generalized rashes, frequent diarrheal
episodes, and an immunocompromised state, leading to multiple
hospitalizations for recurrent pneumonia.

In July 2024, the child received oral fecal microbiota
capsule treatment.

Dosage and administration: three capsules per dose, three times
daily, administered with warm water 30 min prior to meals. Each
treatment course consists of 120 capsules (4.2 × 1013 CFU/course)
(PDF2–Daily Microbial Suspension Logbook), with the therapy
to be continued consecutively for two complete courses. Capsule
specification: No. 3 pediatric-sized capsules are to be utilized
for encapsulation.

The donor microbiota was sourced from a rigorously screened
healthy adult who had no comorbidities or disorders known
to be associated with changes in gut microbiota, were chosen
as donors. Donor stools were screened for enteric pathogens
including parasites (Entamoeba histolytica, Giardia) and bacteria
(Salmonella, Shigella, Escherichia coli, Campylobacter, Yersinia,
and C. difficile). The donors were accepted only if HAV IgM,
HBsAg, anti-HCV antibodies, anti-human immunodeficiency virus
antibodies, IgM antibodies against cytomegalovirus and tests for
syphilis were negative. The stool sample was not accepted if
donors had taken antibiotics or probiotics in previous 3 months.
FMT possesses repeated microfiltration, centrifugation, washing,
discarding resuspension and capsules preparation based on the
automatic microfiltration machine (GenFMTer, Nanjing, China)
in a biosafety level-3 laboratory (18, 19) and prepared by the
Microecology Center of the First Affiliated Hospital of Guangdong
Pharmaceutical University. Viable bacterial counts in all capsule
preparations were validated to meet international standards (18,
20) prior to lyophilization. Furthermore, proactive donor fecal
sample screening was implemented in response to real-time
adverse event monitoring, with no FMT-related adverse events
reported to date.

September 2024: After two courses of FMT capsules, the child’s
symptoms significantly improved. The child tolerated previously
intolerant foods (e.g., rice, wheat, soy, peanuts, and milk). No
new rashes appeared, the existing rashes resolved (Figure 1), stool
consistency normalized (Figure 1), and nutritional status improved
with a gradual in-crease in body mass index (BMI) (Table 2).

During the therapeutic course, the patient exhibited good
tolerability and maintained high adherence to the prescribed
pharmacological regimen. The legal guardian reported significant
improvement in the patient’s rash condition post-capsule
administration, with no pruritus or other adverse symptoms,
demonstrating good acceptance. No adverse reactions were
observed during the treatment.

December 2024: A repeat 90-item food-specific IgG antibody
test showed significant improvement after two courses of fecal
microbiota transplantation (Table 1). Post-FMT reassessment of
food-specific IgG antibodies demonstrated a marked reduction in
both the number and magnitude of food intolerances (Table 3).

The chronological summary of the patient’s previous diagnostic
and therapeutic interventions is systematically outlined in Figure 2.

3 Discussion

This case report demonstrates notable clinical and
methodological advancements in managing severe FI through
FMT. Notably, it represents the first documented application of
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TABLE 1 Positive items of 90-item food-specific IgG antibody test.

Food Year

2019 2024

Peanuts Grade 3 Grade 3

Milk Grade 3 Grade 2

Soybeans Grade 3 Grade 3

Eggs Grade 3 Grade 3

Rice Grade 3 Grade 2

White soft cheese Grade 3 Grade 1

Wheat Grade 3 Grade 1

Almond Grade 2 Grade 3

Yogurt Grade 2 Grade 0

Sunflower seeds Grade 2 Grade 2

Mustard Grade 2 Grade 2

Pumpkin Grade 2 Grade 1

Barley Grade 2 Grade 1

Millet Grade 2 Grade 1

Broccoli Grade 2 Grade 1

Garlic Grade 2 Grade 1

Black walnuts Grade 2 Grade 1

Goat’s Milk Grade 2 Grade 0

Potatoes Grade 2 Grade 0

Buckwheat Grade 2 Grade 0

Tomatoes Grade 2 Grade 0

Cashew Grade 2 Grade 3

Mixed Peas Grade 1 Grade 1

Onions Grade 1 Grade 1

Cheddar cheese Grade 1 Grade 1

Cinnamon Grade 1 Grade 1

Eggplants Grade 1 Grade 0

Green peppers Grade 1 Grade 0

Parsley Grade 1 Grade 0

Cabbage Grade 1 Grade 0

Carrots Grade 1 Grade 0

Pineapples Grade 1 Grade 0

Green beans Grade 1 Grade 0

Cantaloupe Grade 1 Grade 0

Rye Grade 1 Grade 0

Butter Grade 1 Grade 0

Honey Grade1 Grade 0

Crab Grade 1 Grade 0

Shrimp Grade 1 Grade 0

Cod Grade 1 Grade 0

Clams Grade 1 Grade 0

Sardines Grade 1 Grade 0

Lobster Grade 1 Grade 0

(Continued)

TABLE 1 (Continued)

Food Year

2019 2024

Oysters Grade 1 Grade 0

Scallions Grade 1 Grade 0

Lettuce Grade 1 Grade 0

Cucumbers Grade 1 Grade 0

Watermelon Grade1 Grade 0

Bok choy Grade 1 Grade 0

Pomelos Grade 1 Grade 0

Bananas Grade 1 Grade 0

Oranges Grade 1 Grade 0

Chili pepper Grade 0 Grade 1

Corn Grade 0 Grade 1

Mangetout Grade 0 Grade 1

Mushroom Grade 0 Grade 1

FMT for severe FI (52 items) in pediatric ASD, addressing a critical
therapeutic gap in this complex patient population. Furthermore,
the non-invasive oral capsule administration protocol overcomes
procedural limitations typically encountered in ASD patients,
enhancing clinical feasibility while maintaining therapeutic
efficacy. Importantly, the intervention achieved multidimensional
improvements encompassing cutaneous (rash resolution),
gastrointestinal (stool normalization), immunological (restored
food tolerance), and nutritional (BMI elevation) domains,
suggesting systemic biological effects beyond symptomatic
relief. Additionally, the standardized dosing regimen (nine
capsules/day × 120 capsules/course × 2 courses) establishes a
replicable framework for future trials. This correlation between
microbiota modulation and regained oral tolerance aligns
mechanistically with emerging evidence on gut microbiome-
mediated antigen processing, thereby strengthening the biological
plausibility of FMT as a disease-modifying therapy for FI.

Food intolerance can be caused by a variety of mechanisms,
including enzyme deficiencies (e.g., lactase deficiency),
pharmacological effects, irritant reactions, and toxicological
responses. The gut microbiota plays a pivotal role in the
pathogenesis of food intolerance.

The gut microbiota is involved in the pathogenesis of food
intolerance caused by lactase deficiency. Lactase deficiency leads
to undigested lactose interacting with the intestinal microbiota
then produce short-chain fatty acids (SCFA) (acetate, propionate)
and gases (hydrogen, carbon dioxide). When the amount of
lactose exceeds the fermentation capacity of the colonic microbiota,
or when the absorption capacity for SCFA in the colon is
overwhelmed, diarrhea occurs. Brandao Gois et al. (21) found
that, higher Bifidobacterium abundance in lactose intolerance
individuals (P Wilcox = 4.56 × 10−9).

The gut microbiota participates in the pathogenesis of
FI associated with Non-Celiac Gluten Sensitivity (NCGS):
M. Daulatzai et al. (22) found that NCGS patients exhibit
gut microbiota dysbiosis, characterized by reduced beneficial
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FIGURE 1

Changes in maculopapular rash and fecal characteristics after taking fecal microbiota capsules. (A–D) Maculopapular rash on the trapezius region:
(A) on 2024-07-22; (B) on 2024-08-07; (C) on 2024-08-22; (D) on 2025-03-22. (E–H) Maculopapular rash on both lower legs: (E) on 2024-07-22;
(F) on 2024-08-22; (G) on 2024-09-22; (H) on 2025-03-22. (I–L) Fecal characteristics: (I) on 2024-07-21; (J) on 2024-08-22; (K) on 2024-10-21;
(L) on 2025-3-22.

bacteria (e.g., Bifidobacterium) and increased pro-inflammatory
bacteria (e.g., Enterobacteriaceae, Escherichia coli, and
Firmicutes). This dysbiosis may contribute to bloating through
enhanced fermentation. Molecular studies highlight increased
Claudin-4, a tight junction protein regulating paracellular
permeability, supporting the “leaky gut” hypothesis. Hansen
et al. (23) demonstrated that an 8 weeks low-gluten diet in 60
Danish adults reduced fecal Bifidobacterium, Dorea, Blautia,
Lachnospiraceae, and butyrate-producing bacteria (Anaerostipes
hadrus, Eubacterium hallii), alongside decreased postprandial
hydrogen breath and bloating.

The gut microbiota is involved in the pathogenesis of FI
induced by FODMAPs. FODMAPs, short-chain carbohydrates
including lactose, fructose, sugar alcohols, fructans, and galacto-
oligosaccharides (GOS), are naturally present in fruits, vegetables,
grains, and dairy products. Their malabsorption results from
deficiencies in brush border enzymes (e.g., lactase, sucrase) in the
small intestine, leading to osmotic water retention and diarrhea.
Dysregulated gut microbiota further exacerbates this condition, as
pathogenic bacteria ferment undigested FODMAPs in the colon,
producing excessive hydrogen, methane, and acidic by-products.
This accumulation of gas, liquid, and acids stimulates the intestinal
wall, causing FI symptoms such as bloating, abdominal pain, and
diarrhea. The gut microbiota is implicated in the pathogenesis of
histamine intolerance.

Histamine intolerance arises from impaired histamine
degradation due to reduced activity or levels of histamine-
metabolizing enzymes. Consumption of histamine-rich foods, or
DAO-inhibiting medications elevates exogenous histamine. In
these patients, gut dysbiosis is characterized by increased Proteus
bacteria, damaging epithelial cells and DAO production. Such

dysregulation exacerbates endogenous histamine levels, worsening
FI symptom (24). Histamine-intolerant individuals also exhibit
reduced beneficial bacteria (e.g., Prevotellaceae, Ruminococcus,
Faecalibacterium prausnitzii) and increased histamine-secreting
bacteria (e.g., Staphylococcus, Proteus, Clostridium perfringens,
Enterococcus faecium) (25).

The association between gut microbiota dysbiosis and FI is
increasingly recognized, highlighting the potential of microbiota-
targeted therapies in managing FI. Probiotics and prebiotics have
been explored as treatments since 2001 (26), with recent studies
supporting probiotic supplementation for lactose intolerance (27).
Animal studies further validate their efficacy. Ardizzone et al.
(28) demonstrated that a novel therapeutic formulation (NTN)
containing Lactobacillus acidophilus and Lactobacillus reuteri
restored intestinal barrier integrity and permeability in mice
with diet-induced FI, alleviating related symptoms. Ferrari et al.
(29) highlighted probiotics’ role in modulating gut microbiota,
reducing ER stress, mitigating inflammation, and enhancing barrier
function, collectively improving FI. Additionally, Besseling-van
der Vaart et al. (30) showed that the multi-strain probiotic
Ecologic R© Tolerance (SyngutTM) enhanced β-galactosidase activity,
strengthened epithelial barriers, and improved resistance to
digestive enzymes and bile salts in vitro.

These findings collectively underscore the therapeutic
potential of probiotics in addressing gut microbiota dysbiosis
and alleviating FI symptoms, providing a foundation for further
clinical investigations.

After two consecutive treatment of oral fecal microbiota
capsule, retesting of 90-food-specific IgG antibodies revealed
decreased intolerance levels to most dietary antigens. Paradoxically,
cashews and almonds progressed from moderate to severe
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TABLE 2 Changes in body mass index (BMI) after taking in the fecal
microbiota capsules.

Time Height Weight BMI

22-07-2024 115 17 12.9

07-08-2024 115 17.7 13.4

22-08-2024 115 18.3 13.8

22-09-2024 116 18.75 13.9

22-10-2024 116 19 14.1

22-11-2024 116 20 14.9

22-12-2024 117 20.5 15

22-01-2025 118 21 15.1

22-02-2025 120 22 15.3

22-03-2025 120 22.2 15.4

TABLE 3 The alterations in the 90-item food-specific IgG antibody
panel were analyzed before and after the administration of fecal
microbiota capsules.

Grade Year

2019 2024

Grade 0 38 65

Grade 1 30 16

Grade 2 15 4

Grade 3 7 5

intolerance, while corn, mushrooms, and capsaicin transitioned
from tolerable to mild intolerance. We hereby propose the
following discussion points.

Cashew and almond intolerance progressed from moderate
to severe. These nuts are rich in lectins, which are resistant
to high temperatures and enzymatic digestion in both rodents
and humans (31). Emerging evidence highlights that children
with ASD frequently exhibit depletion of butyrate-producing
commensals, particularly Faecalibacterium prausnitzii (32). Post-
FMT fluctuations in SCFA concentrations, notably butyrate,
may activate GPR41/GPR43 receptors to modulate host energy
metabolism and anti-inflammatory responses (33). However,
altered intestinal transit time secondary to SCFA shifts could
paradoxically prolong luminal exposure to undegraded dietary
lectins. Lectins can translocate across the intestinal barrier into
the bloodstream, where they deposit on blood and lymphatic
vessel walls, stimulating the immune system (34), ultimately
leading to elevated IgG levels. Lectins, through binding to glycans
on the intestinal mucosa, may disrupt mucin polysaccharide
architecture, impairing bacterial adhesion and proliferation (35),
while concurrently inhibiting brush-border enzyme activity
(e.g., disaccharidases), thereby exacerbating maldigestion and
nutrient malabsorption (36, 37). Furthermore, lectin-mediated
agglutination of beneficial symbionts may reduce their ecological
fitness (38, 39), creating niches for opportunistic pathogens such
as Escherichia coli and Lactobacillus spp. to proliferate. This
dysbiosis disrupts microbial equilibrium, thereby contributing to
fluctuations in IgG levels (40).

What’s more, New-onset mild intolerance to mushroom,
corn, and capsaicin was observed. Notably, chitin—a fungal

polysaccharide abundant in mushrooms—alters microbial
community structure (41), and incomplete engraftment of donor-
derived chitinolytic taxa could manifest as transient reactivity to
mushroom components. The metabolism of resistant starch (e.g.,
maize-derived) relies on Clostridium butyricum-encoded amylases
(42), whereas capsaicin a TRPV1 receptor agonist, demonstrates
tolerability closely linked to gut microbiota composition.(43).
FMT-induced dysbiosis may disrupt these specialized metabolic
pathways, potentially explaining transient post-FMT intolerances.

Current understanding of post-FMT microbiota engraftment
remains incomplete. Analogous to organ transplantation, FMT
faces inherent challenges of “microbiota rejection,” wherein host
immune and ecological factors limit donor strain persistence (44).
Chen et al. demonstrated that donor strain engraftment rates
rarely exceed 65%, with most clinical cohorts achieving < 30%
colonization (45). While microbial network topology may attain
dynamic equilibrium within weeks to 3 months post-FMT,
functional stabilization (e.g., metabolic cross-feeding networks)
likely requires extended timelines (46), paralleling gradual host
physiological recovery. Delayed colonization of keystone taxa (e.g.,
F. prausnitzii) may thus underpin de novo food reactivity during
this transitional phase.

Above all, these findings indicate that dysbiosis of the gut
microbiota plays a significant role in the development of various
types of FI. The mechanisms of FI in this case suggest a
multifactorial origin of FI. FMT may be an effective intervention to
restore microbial balance, reduce fermentation, repair the intestinal
barrier, and reduce the levels of pro-inflammatory markers such
as IFN-γ and histamine. This treatment likely contributed to
the significant improvement in the child’s symptoms, including
the resolution of rashes, normalization of stool consistency, and
improvement in BMI. The successful clinical response supports the
role of microbiota modulation in the treatment of complex FIs.

Fecal microbiota transplantation is a promising therapy for
chronic diseases associated with gut microbiota alterations (47).
Comparative analysis of FMT across distinct disease entities is
necessary. Key mechanistic insights are summarized below: The
therapeutic mechanism of FMT in IBS emphasizes gut dysbiosis-
driven visceral hypersensitivity, characterized by overproliferation
of Gram-negative bacteria such as Proteus mirabilis and depletion
of probiotics including Lactobacillus rhamnosus GG. Dysregulated
microbial metabolites, such as LPS, suppress resolvin D1 synthesis
in colonic tuft cells via TLR4/MyD88 signaling, perpetuating
inflammatory cascades and nociception (48).

In the management of FI,FMT primarily enhances intestinal
barrier function and energy metabolism through probiotic
engraftment to cure FI. For instance, lactose intolerance
improvement correlates with increased Bifidobacterium
abundance, whose β-galactosidase activity facilitates lactose
digestion without generating gas byproducts (e.g., hydrogen,
carbon dioxide, methane) that drive bloating.

In the management of ASD,FMT reshapes gut microbiota
by enriching beneficial taxa (Bacteroides fragilis, Lactobacillus
reuteri) while suppressing pathobionts (Clostridiales, Eubacterium
coprostanoligenes). This modulates neuroactive metabolites (4-EPS,
SCFAs) and neurotransmitters (serotonin, dopamine), restoring
gut barrier integrity and suppressing inflammation. These effects
synergistically ameliorate ASD core symptoms and gastrointestinal
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FIGURE 2

Timeline of clinical findings and nutritional intervention.

comorbidities via vagal nerve and hypothalamic-pituitary-adrenal
(HPA) axis cross-talk.

Emerging evidence highlights that increased abundance of
Bifidobacterium (49–51) in the gut microbiota is associated
with clinical improvement in FI, IBS, and ASD. Notably,
reduced Faecalibacterium (52–54) levels have been consistently
reported across these three conditions, while ASD-specific
dysbiosis is further characterized by overproliferation of Sutterella
(55). Current research confirms the therapeutic efficacy of
Bacteroides fragilis strain BF839 in ASD intervention; however,
no specific microbial strains have yet been identified for targeted
management of IBS or FI.

However, this study has several limitations. First, this study’s
sample size was small, and studies with larger sizes and control
group are needed for further exploration. Second, 8 months’
observations can’t fully reflect the effects of FMT on devel-
oping FI symptoms. Studies with longer follow-up are needed to
characterize the long-term efficacy and safety of FMT for pediatric
patients. Finally, This case lacked pretreatment assessment of DAO,
zonulin, endotoxin, serum histamine, SCFAs, and gut microbiota
composition, The absence of zonulin and LPS measurements
in this study may limit comprehensive evaluation of intestinal
barrier integrity and systemic inflammation. For instance, Fasano
et al. (56) demonstrated that zonulin serves as a sensitive
biomarker of intestinal permeability, with dynamic changes
reflecting FMT-induced mucosal repair. LPS, a key driver of gut
hyperpermeability, inhibits tight junction proteins (e.g., occludin,
claudin-1) via the TLR4/MyD88 pathway, directly compromising
barrier function (45). The lack of LPS quantification precludes
definitive conclusions regarding FMT-mediated LPS reduction and
tight junction restoration.

Similarly, SCFA levels—critical mediators of microbiota-
driven immune and barrier regulation (57) were not assayed.
While clinical improvements (e.g., reduced diarrhea, enhanced
behavioral scores) may correlate with SCFA restoration (e.g.,
butyrate, propionate), the absence of direct SCFA data impedes
mechanistic validation. Histamine levels were also unmeasured.
Histamine intolerance mechanisms include exogenous intake

(high-histamine foods), dysbiosis, intestinal hyperpermeability,
gastrointestinal bleeding, or mastocytosis. This omission constrains
deeper mechanistic exploration (13).

Diamine oxidase levels hold significant reference value in
diagnosing HIT, yet their clinical utility necessitates comprehensive
multidisciplinary evaluation. Studies demonstrate that HIT
patients exhibit markedly lower serum DAO levels compared
to healthy controls, and strict dietary intervention correlates
with DAO elevation alongside symptom remission, suggesting
DAO as a biomarker for monitoring dietary compliance and
therapeutic efficacy (58, 59). However, DAO’s diagnostic sensitivity
remains constrained: only 50%–71% of HIT patients present
DAO < 10 U/mL, while subnormal DAO levels are also
observed in asymptomatic populations, resulting in a low
positive predictive value for standalone testing (59, 60). Thus,
DAO testing should serve as a complementary tool, integrated
with clinical symptomatology, dietary provocation trials, and
exclusion diagnostics to enhance diagnostic precision (58, 59, 61).
These limitations mirror broader technical challenges in FMT
research and underscore the necessity of standardized multi-omics
platforms for mechanistic elucidation.

Due to the resource constraints and the patient’s outpatient
clinical follow-up protocol, which precluded comprehensive
analysis of fecal gut microbiota composition. The absence of
microbiota profiling hinders mechanistic exploration of microbial
metabolites in symptom amelioration. However, the single-
case design inherently limits the statistical power required for
microbiota-symptom correlation analyses. Future multicenter trials
with serial metagenomic and metabolomic profiling will elucidate
microbial drivers of therapeutic responses.
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