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Objective: To investigate the association between dietary metals intake and the 
risk of diabetic retinopathy (DR) in adults with diabetes.

Methods: Data from 2,822 U. S. adults with diabetes in National Health and 
Nutrition Examination Survey (NHANES) 2007–2016 were analyzed. Associations 
between the intake of six dietary metals and DR risk were assessed using 
multivariable logistic regression, Weighted Quantile Sum (WQS) regression, 
and Bayesian Kernel Machine Regression (BKMR). Restricted Cubic Spline (RCS) 
regression examined the dose–response relationship between intake of dietary 
metal and DR risk. Mediation analysis explored the underlying mechanisms.

Results: Log10-transformed dietary Zinc (Zn) (OR = 0.53, 95% CI 0.35–0.80, 
p = 0.003) were negatively associated with the DR risk. WQS regression 
indicated that the combined effects of dietary metals intake were negatively 
associated with the risk of DR (OR = 0.79, 95% CI 0.61–0.97, p = 0.024), with Zn 
contributing the most to the reduced risk (36.4%). BKMR model suggested the 
negative association between the combined intake of 6 metals and DR risk, with 
Zn receiving the highest posterior inclusion probability (PIP) (0.8574).

Conclusion: In American adults with diabetes, elevated dietary metals intake, 
especially zinc, may be associated with a lower risk of DR.
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1 Introduction

Diabetic microvascular complications significantly threaten the quality of life in 
individuals with diabetes, with retinopathy being the most prevalent manifestation (1). 
Numerous studies have consistently identified smoking, alcohol consumption, physical 
inactivity, and hypertension as major risk factors for diabetic retinopathy (DR) (2, 3). DR is 
pathologically characterized by progressive retinal damage, primarily mediated through 
inflammation and oxidative stress, leading to irreversible structural and functional alterations 
(4, 5). Early-stage DR is generally asymptomatic, making early detection difficult. As DR 
progresses to advanced stages, it can cause irreversible vision loss and impose substantial 
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therapeutic and socioeconomic burdens (6). Therefore, it is necessary 
to identify modifiable factors for preventing DR among people 
with diabetes.

The intake of dietary metals including zinc (Zn), copper (Cu), 
magnesium (Mg), iron (Fe), calcium (Ca), and selenium (Se), is 
biologically essential, as these elements collectively participate in 
enzymatic activation, hemoglobin synthesis, antioxidant defense, 
bone mineralization, and immune regulation (7, 8). Beyond their 
essential physiological functions, growing evidence suggests an 
association between various dietary metals and diabetes risk. In a 
median 9-year follow-up, He  P et  al. demonstrated a U-shaped 
association between dietary Zn intake and incident diabetes, with an 
inflection point at approximately 9.1 mg/day (9). A prospective 
cohort study from China found that adequate Fe intake (>23 mg/
day) may help prevent diabetes, while excessive Fe intake (>46 mg/
day) may increase the risk of diabetes in males (10). Additionally, a 
cross-sectional study of US adults demonstrated an inverse 
relationship between dietary Mg intake and diabetes occurrence 
(OR: 0.56, P trend < 0.001) (11). While these findings clarify the role 
of dietary metals in diabetes onset, their impact on complications, 
particularly retinopathy progression, remains underexplored, 
creating a critical knowledge gap in dietary metals-based 
complication prevention strategies.

To better understand this relationship between dietary metal 
intake and DR, we conducted a cross-sectional study using data from 
the National Health and Nutrition Examination Survey (NHANES) 
2007–2016. We  applied three regression models to assess both 
individual and combined associations of six dietary metals with DR 
risk and to determine the relative importance of each metal. This study 
may provide population-based evidence on the potential protective 
role of dietary metals intake against DR, with a particular emphasis 
on zinc.

2 Materials and methods

2.1 Study participants

The NHANES, conducted by the National Center for Health 
Statistics (NCHS), employs stratified multistage sampling to collect 
nationally representative data on health and nutritional status among 
US civilians (12). The original protocols received NCHS Ethics 
Review Board approval with documented informed consent from all 
participants. As this study involved secondary analysis of the 
NHANES public data (available at https://wwwn.cdc.gov/nchs/
nhanes/default.aspx), no additional ethical review was required.

The individuals in this study were included from NHANES 
2007–2016 (n = 50,588). Participants with missing DR assessment 
data were excluded (n = 46,799). The Diabetes Questionnaire (DIQ) 
item DIQ080, administered only to individuals with diabetes to assess 
if diabetes has affected the eyes or caused retinopathy, categorized 
recorded answers as valid (‘Yes’/'No’) or missing (‘Refused’/'Do not 
know’/'Missing’). Furthermore, participants lacking dietary metal 
intake data were excluded from the analysis (n = 399). Additionally, 
participants with no or invalidated data on covariates required for 
subsequent analyses were also excluded (n = 568), including sex, age, 
race, educational level, family poverty-income ratio (FPIR), body 

mass index (BMI), marital status, smoking status, drinking status, 
hypertension, physical activity, and dietary information. Finally, a 
total of 2,822 individuals with diabetes were included in this study 
analysis with 556 individuals with diabetes diagnosed with DR 
(Figure 1).

2.2 Confirmation of DR

In the questionnaire data of NHANES, the diabetes section 
(prefix DIQ) encompasses data obtained through personal 
interviews covering diabetes, prediabetes, insulin/oral hypoglycemic 
drug use, and diabetic retinopathy. It also incorporates self-reported 
accounts of diabetes risk factor awareness along with associated 
medical treatments and personal care routines. In this study, 
participants were determined to have DR if their physicians 
informed them that diabetes had affected their eyes or that they had 
retinopathy (13).

2.3 Assessment of dietary metals

In each NHANES cycle, participants submitted comprehensive 
dietary records across two non-consecutive 24-h periods, enabling 
estimation of energy expenditure, nutrient absorption, and food 
constituent intake. Initial dietary interviews were conducted face-to-
face during examinations, with subsequent telephone-based recalls 
performed 3–10 days thereafter. For these analyses, the average intake 
of food-derived metals (Zn, Cu, Mg, Fe, Ca, and Se) was calculated 
over the two recall periods; if only the first day’s data was available, 
that figure was used instead of an average. Participants were also asked 
about their supplement use during the same two 24-h periods, and the 
intake of metals from supplements was averaged over the 2 days if 
possible. The dietary metals intake was determined by summing both 
supplement and food-derived sources.

FIGURE 1

Identified participants though a flow chart in the study.
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2.4 Covariates and mediators

Various sociodemographic information incorporating sex, age, 
race, educational level, FPIR, and marital status were comprehensively 
documented. The FPIR, derived from the ratio of family income to 
poverty thresholds adjusted for family size, year, and state of residence, 
utilized the Department of Health and Human Services’ poverty 
criteria and was categorized into three groups: low (≤1), middle (>1 
to ≤4), and high (>4) (14). The smoking and drinking status were 
categorized as never, former, and current based on previous study 
(15). BMI (kg/m2) was calculated as weight divided by height squared. 
Hypertension was identified as having a systolic blood pressure of 
>130 mm Hg or diastolic blood pressure of >80 mm Hg from an 
average of 3 measurements or a history of high blood pressure or a 
history of oral antihypertensive medications (16). Physical activity, 
gained by the Global Physical Activity Questionnaire (17), was 
categorized into two groups based on whether participants met the 
2018 physical activity guidelines (18). Detailed records of protein, 
total fat, carbohydrate, dietary fiber, and energy intake derived from 
foods and supplement consumption were obtained using two 24-h 
dietary recall administrations. Bilirubin (BIL), albumin (ALB), and 
γ-glutamyl transferase (GGT) were designated as oxidative stress 
indicators, while C-reactive protein (CRP), white blood cell (WBC), 
lymphocyte count, absolute neutrophil count, and alkaline 
phosphatase (ALP) served as inflammatory markers. These parameters 
have been extensively applied in NHANES research for quantifying 
oxidative stress and inflammatory responses (19–22).

2.5 Statistical analysis

Baseline characteristic data were grouped by diabetic retinopathy 
(DR) status. Continuous variables were presented means with 
standard deviation (SD) and categorical variables as frequencies with 
percentages. Group comparisons were conducted using t-tests for 
continuous variables and chi-squared tests for categorical variables.

The intake of dietary metals was log10-transformed due to skewed 
distributions then divided into quartiles. Multivariable logistic 
regression was utilized to evaluate associations between dietary metal 
intakes and DR prevalence. Three hierarchical models were 
constructed: Model 1 was adjusted for sex, age, race, educational level, 
and marital status; Model 2 further adjusted for FPIR, BMI, smoking 
status, drinking status, and hypertension; Model 3 further adjusted for 
physical activity, protein, total fat, carbohydrate, fiber, and energy 
intake. The first quartile (Q1) was set as the control group.

To assess the combined effects of the six dietary metals on DR 
prevalence, a WQS regression was applied by calculating a weighted 
linear index and assigning corresponding weights. A 1000-time 
bootstrapping procedure was used to construct WQS indices in both 
positive and negative directions. When the WQS index was 
significantly nonzero, corresponding weights were calculated to 
identify the relative contribution of each dietary metal within the index 
to the incidence of DR. The dataset was randomly split into training 
set (40%) and validation set (60%) according to previous research (22).

Additionally, the Bayesian variable selection framework was also 
utilized to explore the overall effects of six dietary metals mixtures on 
the odds of DR. To be specific, the BKMR model assessed the overall 
impact of mixtures levels at specific quartiles compared to the 

medians. All metal intakes were log10-transformed and standardized 
before analysis. The posterior inclusion probability (PIP) was 
calculated to quantify the relative importance of each metal (PIP > 0.5 
indicating strong contribution). Moreover, univariate and bivariate 
exposure-response functions were applied to assess both the individual 
effects and interactions of dietary metals, while simultaneously 
considering the other dietary metals at the 25th, 50th, and 75th 
percentiles. This model conducted 10,000 iterations via the Markov 
Chain Monte Carlo algorithm after accounting for all covariates.

Restricted Cubic Spline (RCS) regression was conducted to 
examine potential dose–response relationships between log10-
transformed dietary Zn intake and DR incidence (23). Subgroup 
analyses were performed stratified by age, sex, race, educational level, 
FPIR, marital status, smoking status, drinking status, BMI, 
hypertension, and physical activity.

Linear regression models were used to assess the associations 
between log10-transformed dietary Zn intake and the biomarkers of 
inflammation and oxidative stress. Mediation analysis was performed 
to estimate direct and indirect effects of dietary Zn on DR risk via 
inflammatory and oxidative stress pathways, with 1,000 bootstraps 
after adjusting all covariates.

In this study, data were not weighted as adjustments for demographic 
factors were already made (24). The statistical significance level was set 
at a p value of < 0.05. R 4.4.2 software was utilized for all statistical analyses.

3 Results

3.1 Characteristics of participants

After excluding ineligible participants, a total of 2,822 individuals 
remained for further analysis. All included participants had diabetes, and 
556 of them were diagnosed with DR. Among the qualified participants, 
As shown in Table 1, there were significant differences in sex, race, 
educational level, family poverty income ratio (FPIR), hypertension, and 
physical activity among the qualified participants (all p < 0.05).

3.2 Dietary metals intake and DR risk in 
logistic regression model

To assess the relationship between six dietary metals intake and the 
odds of DR among individuals with diabetes, we employed univariate 
and multivariate logistic regression. As shown in Table 2, an inverse 
relationship between log10-transformed dietary Zn and Cu intake and 
the risk of DR was consistently observed across the crude model, 
model 1, model 2, and model 3. In model 3, the increase in log10-
transformed dietary Zn (OR = 0.53, 95% CI 0.35–0.80, p = 0.003) and 
Cu (OR = 0.52, 95% CI 0.32–0.82, p = 0.005) intake was significantly 
correlated with a decreased prevalence of DR. Furthermore, when 
participants were categorized by the quartiles of log10-transformed 
dietary metal intake, individuals in the highest quartile group of 
dietary Zn intake (ORQ4 vs. Q1 = 0.62, 95% CI 0.45–0.86, p = 0.004, p for 
trend = 0.005) and dietary Cu intake (ORQ4 vs. Q1 = 0.63, 95% CI 0.45–
0.88, p = 0.007, p for trend = 0.01) had a lower risk of DR compared to 
those in the lowest quartile group through logistic regression model 3. 
The rest of the four dietary metals intake had no significance to the 
occurrence of DR in individuals with diabetes.
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3.3 Dietary metals intake and DR risk in 
WQS model

We applied the WQS model to examine the association between 
the combined effects of the six dietary metals intake and the 
prevalence of DR in individuals with diabetes. As shown in Table 3, 

the WQS index indicated that the combined effects of dietary metals 
intake were negatively associated with the prevalence of DR (Crude 
model: OR = 0.83, 95% CI 0.70–0.95, p = 0.005; Model 1: OR = 0.83, 
95% CI 0.70–0.96, p = 0.008; Model 2: OR = 0.82, 95% CI 0.69–0.95, 
p = 0.008; Model 3: OR = 0.79, 95% CI 0.61–0.97, p = 0.024). In the 
fully adjusted covariates WQS regression (Figure  2), dietary Zn 

TABLE 1 Baseline characteristics by diagnosis of DR in the NHANES 2007–2016 diabetic population.

Characteristic Overall Diabetes with DR p value

No (N = 2,266) Yes (N = 556)

Sex 0.009

  Male 1,451 (51.42%) 1,137 (50.18%) 314 (56.47%)

  Female 1,371 (48.58%) 1,129 (49.82%) 242 (43.53%)

Age (years) 61.18 ± 12.97 61.14 ± 13.08 61.34 ± 12.50 0.738

Race 0.037

  Mexican American 498 (17.65%) 407 (17.96%) 91 (16.37%)

  Non-Hispanic Black 758 (26.86%) 599 (26.43%) 159 (28.60%)

  Non-Hispanic White 1,039 (36.82%) 858 (37.86%) 181 (32.55%)

  Other Hispanic 305 (10.81%) 232 (10.24%) 73 (13.13%)

  Other Race 222 (7.87%) 170 (7.50%) 52 (9.35%)

Educational level 0.033

  Less than college 1,620 (57.41%) 1,278 (56.40%) 342 (61.51%)

  Some college or above 1,202 (42.59%) 988 (43.60%) 214 (38.49%)

  FPIR 2.24 ± 1.51 2.28 ± 1.51 2.08 ± 1.51 0.005

Marital status 0.850

  Live alone 1,165 (41.28%) 933 (41.17%) 232 (41.73%)

  Live together 1,657 (58.72%) 1,333 (58.83%) 324 (58.27%)

Smoking status 0.408

  Current 457 (16.19%) 374 (16.50%) 83 (14.93%)

  Former 973 (34.48%) 769 (33.94%) 204 (36.69%)

  Never 1,392 (49.33%) 1,123 (49.56%) 269 (48.38%)

Drinking status 0.671

  Current 1799 (63.75%) 1,453 (64.12%) 346 (62.23%)

  Former 507 (17.97%) 405 (17.87%) 102 (18.35%)

  Never 516 (18.28%) 408 (18.01%) 108 (19.42%)

BMI 32.74 ± 7.60 32.71 ± 7.55 32.88 ± 7.83 0.648

Hypertension 0.001

  No 419 (14.85%) 362 (15.98%) 57 (10.25%)

  Yes 2,403 (85.15%) 1904 (84.02%) 499 (89.75%)

Physical activity reached 0.001

  No 1,601 (56.73%) 1,250 (55.16%) 351 (63.13%)

  Yes 1,221 (43.27%) 1,016 (44.84%) 205 (36.87%)

Energy from Diet (kcal/day) 1804.39 ± 753.66 1801.25 ± 730.02 1817.18 ± 843.79 0.682

Protein from Diet (g/day) 75.62 ± 33.97 75.33 ± 33.25 76.79 ± 36.77 0.395

Total fat from Diet (g/day) 71.96 ± 37.48 72.15 ± 37.09 71.16 ± 39.02 0.588

Carbohydrate from Diet (g/day) 212.01 ± 90.77 211.31 ± 89.09 214.88 ± 97.38 0.431

Dietary fiber from Diet (g/day) 16.03 ± 8.59 16.06 ± 8.49 15.92 ± 8.97 0.746
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TABLE 2 Multivariate logistic regression analysis of Log10-transformed metals intake for the prevalence of DR in diabetic population.

Crude model Model 1 Model 2 Model 3

OR (95% 
CI)

p-value OR (95% 
CI)

p-value OR (95% 
CI)

p-value OR (95% 
CI)

p-value

Log10 Ca 0.80 (0.55, 1.16) 0.240 0.91 (0.62, 1.35) 0.636 0.91 (0.61, 1.34) 0.620 0.91 (0.58, 1.42) 0.667

  Q1 Reference Reference Reference Reference

  Q2 0.96 (0.74, 1.25) 0.772 0.99 (0.76, 1.29) 0.962 1.00 (0.77, 1.30) 0.994 0.99 (0.76, 1.30) 0.957

  Q3 0.93 (0.71, 1.20) 0.568 0.97 (0.74, 1.26) 0.801 0.96 (0.73, 1.25) 0.757 0.97 (0.73, 1.29) 0.847

  Q4 0.88 (0.68, 1.15) 0.356 0.96 (0.73, 1.26) 0.758 0.96 (0.73, 1.26) 0.772 0.97 (0.71, 1.32) 0.845

p for trend 0.335 0.722 0.714 0.822

Log10 Cu 0.60 (0.42, 0.87) 0.007 0.60 (0.40, 0.87) 0.008 0.60 (0.41, 0.89) 0.011 0.52 (0.32, 0.82) 0.005

  Q1 Reference Reference Reference Reference

  Q2 0.85 (0.66, 1.10) 0.220 0.86 (0.66, 1.11) 0.250 0.87 (0.67, 1.13) 0.294 0.81 (0.61, 1.07) 0.139

  Q3 0.87 (0.67, 1.12) 0.274 0.87 (0.66, 1.13) 0.282 0.88 (0.67, 1.14) 0.329 0.78 (0.56, 1.07) 0.123

  Q4 0.70 (0.53, 0.91) 0.007 0.69 (0.53, 0.91) 0.010 0.70 (0.53, 0.93) 0.013 0.63 (0.45, 0.88) 0.007

p for trend 0.012 0.015 0.019 0.010

Log10 Fe 0.94 (0.67, 1.31) 0.706 0.97 (0.69, 1.36) 0.861 0.99 (0.70, 1.39) 0.943 0.99 (0.67, 1.44) 0.958

  Q1 Reference Reference Reference Reference

  Q2 0.82 (0.63, 1.06) 0.129 0.81 (0.62, 1.06) 0.123 0.82 (0.63, 1.07) 0.152 0.82 (0.61, 1.09) 0.167

  Q3 0.89 (0.69, 1.16) 0.393 0.89 (0.68, 1.16) 0.377 0.89 (0.68, 1.16) 0.396 0.85 (0.62, 1.16) 0.293

  Q4 0.87 (0.67, 1.13) 0.297 0.88 (0.68, 1.15) 0.352 0.89 (0.68, 1.16) 0.382 0.85 (0.62, 1.16) 0.316

p for trend 0.441 0.502 0.522 0.388

Log10 Mg 0.71 (0.45, 1.12) 0.140 0.69 (0.42, 1.11) 0.129 0.70 (0.43, 1.14) 0.153 0.60 (0.31, 1.16) 0.131

  Q1 Reference Reference Reference Reference

  Q2 1.15 (0.89, 1.49) 0.274 1.17 (0.90, 1.51) 0.239 1.18 (0.91, 1.53) 0.217 1.11 (0.84, 1.47) 0.465

  Q3 0.86 (0.66, 1.13) 0.283 0.87 (0.66, 1.14) 0.322 0.89 (0.67, 1.17) 0.388 0.80 (0.57, 1.12) 0.188

  Q4 0.88 (0.67, 1.14) 0.336 0.86 (0.65, 1.14) 0.296 0.87 (0.65, 1.15) 0.330 0.78 (0.53, 1.13) 0.191

p for trend 0.113 0.102 0.123 0.082

Log10 Se 1.14 (0.75, 1.74) 0.531 1.08 (0.69, 1.67) 0.746 1.10 (0.70, 1.71) 0.684 1.10 (0.63, 1.94) 0.742

  Q1 Reference Reference Reference Reference

  Q2 0.89 (0.68, 1.16) 0.387 0.89 (0.68, 1.16) 0.389 0.90 (0.69, 1.18) 0.443 0.88 (0.66, 1.17) 0.380

  Q3 0.98 (0.75, 1.27) 0.852 0.96 (0.74, 1.26) 0.777 0.97 (0.74, 1.27) 0.842 0.91 (0.65, 1.27) 0.589

  Q4 1.04 (0.80, 1.34) 0.792 0.99 (0.75, 1.31) 0.958 0.99 (0.75, 1.31) 0.957 0.94 (0.66, 1.35) 0.754

p for trend 0.638 0.899 0.903 0.822

Log10 Zn 0.61 (0.44, 0.85) 0.003 0.61 (0.43, 0.86) 0.005 0.62 (0.43, 0.87) 0.006 0.53 (0.35, 0.80) 0.003

  Q1 Reference Reference Reference Reference

  Q2 0.80 (0.62, 1.04) 0.093 0.80 (0.62, 1.04) 0.097 0.81 (0.63, 1.05) 0.119 0.74 (0.55, 0.98) 0.035

  Q3 0.81 (0.63, 1.05) 0.107 0.80 (0.61, 1.04) 0.098 0.80 (0.61, 1.04) 0.098 0.69 (0.50, 0.95) 0.022

  Q4 0.69 (0.53, 0.90) 0.007 0.70 (0.53, 0.92) 0.010 0.70 (0.53, 0.93) 0.013 0.62 (0.45, 0.86) 0.004

p for trend 0.011 0.015 0.017 0.005

Bold indicates p < 0.05.

TABLE 3 Comprehensive impact of multi-metal intake on DR risk in diabetic population by WQS model.

WQS index Crude model Model 1 Model 2 Model 3

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Positive direction 0.95 (0.83, 1.06) 0.379 0.93 (0.79, 1.06) 0.263 0.92 (0.78, 1.05) 0.224 0.93 (0.75, 1.12) 0.499

negative direction 0.83 (0.70, 0.95) 0.005 0.83 (0.70, 0.96) 0.008 0.82 (0.69, 0.95) 0.008 0.79 (0.61, 0.97) 0.024
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intake received the highest weight of 0.364 for DR risk in the negative 
direction, compared to weights of 0.209, 0.203, 0.109, 0.062, and 
0.052 for Cu, Mg, Fe, Ca, and Se, respectively. In the positive 
direction, the combined effects of dietary metals intake showed no 
significant association with the odds of DR after fully adjusting for 
covariates (Crude model: OR = 0.95, 95% CI 0.83–1.06, p = 0.379; 
Model 1: OR = 0.93, 95% CI 0.79–1.06, p = 0.263; Model 2: OR = 0.92, 
95% CI 0.78–1.05, p = 0.224; Model 3: OR = 0.93, 95% CI 0.75–1.12, 
p = 0.499), with dietary Zn intake receiving the lowest weight of 0.009 
for DR risk, as shown in Table 3 and Supplementary Figure 1.

3.4 Dietary metals intake and DR risk in 
BKMR model

In the BKMR model, the risk of DR among individuals with 
diabetes was decreased for the combined intake of six dietary metals 
mixtures above the 50th percentile compared to the medians 
(Figure  3A). Figure  3B illustrated an inverse association between 
dietary Zn intake and the risk of DR, with the intake levels of all other 
dietary metals held constant at the median. Supplementary Table 1 
presented a summary of the PIPs from the BKMR model. Among the 
dietary metals, Zn intake displayed the highest PIP (0.8574) in relation 

to the prevalence of DR in individuals with diabetes. Additionally, 
Supplementary Figure  2 possibly indicated a negative association 
between dietary Zn intake and DR prevalence compared to other 
dietary metals, when controlling for the 25th, 50th, and 75th 
percentiles of other dietary metals, although this association did not 
reach statistical significance. Furthermore, Supplementary Figure 3 
indicated that there were no potential interactions among dietary 
metals intake.

3.5 Further analysis of the relationship 
between dietary Zn intake and DR

In the RCS regression model, the log10-transformed dietary Zn 
intake was found to have an inverse association with the risk of DR 
in a linear dose–response manner (p for non-linear = 0.2063, p for 
overall = 0.0041), as shown in Figure 4. The subgroup analysis results 
are presented in Figure  5, indicating that the inverse correlation 
between dietary Zn intake and DR was not modified by various 
factors such as age, sex, race, educational level, marital status, FPIR, 
smoking status, drinking status, BMI, hypertension and physical 
activity (all p for interaction > 0.05). As shown in 
Supplementary Table 2, the results of the linear analysis suggested 

FIGURE 2

The WQS model weights of dietary metals on DR odds in negative direction with all covariates adjusted.
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that dietary Zn intake was significantly correlated with the 
concentration of serum ALB with all covariates controlled (Model 3: 
β = 2.25, 95% CI 1.33–3.82, p = 0.003). Additionally, the increase of 
serum ALB could reduce the incidence of DR in individuals with 
diabetes (Model 3: OR = 0.95, 95% CI 0.92–0.97, p < 0.001) 
(Supplementary Table 3). According to Table 4, the results of the 

mediation analysis showed that serum ALB level mediated the 
negative association between dietary Zn intake and DR prevalence 
after fully adjusting for covariates (Total effect = −0.128321, 95% CI 
-0.232569--0.047959, p = 0.002; Indirect effect = −0.008067, 95% CI 
-0.015724--0.002561, p = 0.002; Mediation proportions = 0.062866, 
95% CI 0.018701–0.163004, p = 0.004).

FIGURE 3

The comprehensive analysis of BKMR model on dietary metals and DR risk. (A) Overall effect of the six dietary metals mixture on DR risk. (B) Univariate 
exposure-response function between each dietary metal intake and DR risk when the other metal intake was simultaneously fixed at 50th percentile.
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FIGURE 5

Subgroup analyses on the association of the log10-transformed dietary Zn intake with the risk of DR.

FIGURE 4

Thorough description of DR risk across the log10-transformed dietary Zn intake by RCS model.
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4 Discussion

This study examined the association between dietary metals 
intake and the risk of diabetic retinopathy (DR) in the diabetic 
population aged 20 from NHANES 2007–2016. We found that higher 
intake of multiple dietary metals, especially zinc (Zn), was associated 
with lower DR risk across multiple statistical models including logistic 
regression, WQS regression, and BKMR. Notably, Zn was identified 
as the most protective metal, with a dose-dependent inverse 
association observed in RCS regression. Mediation analysis further 
revealed that serum albumin (ALB) partially mediates the negative 
association, suggesting a potential biological pathway.

Our findings align with prior studies reporting lower serum Zn 
levels in individuals with diabetes (25–28). A randomized controlled 
trial has confirmed that Zn supplementation can improve glycemic 
control in individuals with diabetes (26). Meanwhile lower serum zinc 
levels are associated with an increased risk of diabetic complications, 
suggesting a potential link between zinc status and retinal health (25, 
29, 30). Additionally, a randomized controlled trial demonstrated that 
Zn supplementation can decelerate the progression of vision loss in 
individuals with macular degeneration (31). Our study further 
demonstrated that Zn intake is negatively associated with the 
risk of DR.

Zn deficiency may contribute to DR via several mechanisms, 
including impaired antioxidant defenses, enhanced inflammation, 
endothelial dysfunction, and dysregulated apoptosis—all of which are 
critical in DR pathogenesis (32–39). Serum ALB, the main plasma 
transporter of Zn (40, 41), also plays a protective role through its 
antioxidant and anti-inflammatory properties (42). Previous study 
has suggested that low serum albumin levels may increase the 
permeability of the optic disc and surrounding blood vessels, leading 
to subclinical disc edema (43). Our findings highlight the significant 
mediating role of albumin in the association between Zn intake and 
DR. The mediation effect accounted for a considerable proportion of 
the total effect (6.29, 95% CI 1.87–16.30%). These results suggest that 
albumin may be  a key mechanism through which Zn deficiency 
contributes to the development of DR.

To the best of our knowledge, this is the first population-based 
study to assess the joint effects of multiple dietary metals on DR risk. 
By integrating multiple analytical approaches, we  validated the 
robustness of our findings and identified Zn as a key protective 
component. These results may provide population-level evidence for 
considering Zn intake in DR prevention strategies.

However, several limitations should be  acknowledged. The 
retrospective design precludes causal inference, and the predominantly 
White American sample limits generalizability. Future prospective 
studies in more diverse populations are needed to confirm our 
findings. In clinical practice, Zn supplementation could be explored 
as a potential preventive strategy against DR, particularly in 
individuals with low Zn or ALB levels.

5 Conclusion

Among American adults with diabetes from NHANES 2007–
2016, higher dietary intake of certain metals, particularly zinc, was 
associated with a lower risk of diabetic retinopathy. Serum albumin 
may serve as a potential mediator of this protective effect.T
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