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Background: The modulation of lipid metabolism has been explored as a 
potential treatment for frailty, yet the association between non-high-density 
lipoprotein-cholesterol (non-HDL-C) and frailty remains unclear.

Methods: This study utilized data from five cycles of the National Health and 
Nutrition Examination Survey (NHANES) and two cycles of the China Health and 
Retirement Longitudinal Study (CHARLS) to investigate this relationship. A 40-
item frailty index scale, encompassing various dimensions of somatic functioning, 
psychological evaluation, and illness, was developed and individually evaluated 
for each participant. The variables underwent screening through Least Absolute 
Shrinkage and Selection Operator (LASSO) regression, univariate logistic 
regression, and Light Gradient Boosting Machine (LightGBM), with models 
developed through multivariate logistic regression and the LightGBM algorithm. 
Subsequently, subgroup analyses and interaction tests were conducted to 
substantiate correlations.

Results: The U-shaped nonlinear association between non-HDL-C and frailty in 
older adults was validated using the LightGBM algorithm. Non-HDL cholesterol 
levels in the range of 117.54–194.64 mg/dL were less likely to be frailty, while the 
likelihood of developing frailty was higher at 47.99–63.87 or 274.01–259.65 mg/
dL. Subgroup analyses and interaction tests confirm these results.

Conclusion: It is plausible that an intricate nonlinear association between non-
HDL-C and frailty in the elderly exists, though further rigorously designed studies 
are imperative to validate this relationship.
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1 Introduction

Frailty is a multifaceted age-related clinical condition marked by diminished physiological 
reserves and heightened susceptibility to internal and external stressors, involving dysfunction 
in the neuromuscular, metabolic, and immune systems (1–3). Various assessment instruments 
are utilized in the identification of frailty, with the Frailty Phenotype and Deficiency 
Accumulation Approach being acknowledged as two credible methodologies. The concept of 
“Frailty Phenotype” was introduced by Fried and his colleagues, encompassing five physical 
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criteria: unintentional weight loss, self-reported fatigue, weakness, 
slow gait speed, and low physical activity, with the presence of three 
or more indicating frailty (4). The cumulative deficits method is 
utilized to calculate a frailty index (FI), which is a continuous score 
representing the number of health deficits present in an individual 
relative to the total number of items evaluated, with values ranging 
from 0 (indicating no deficits) to 1 (indicating the presence of all 
deficits), thus reflecting the individual’s level of frailty (5, 6). 
Interestingly, despite variations in the specific deficits included and the 
number of deficits considered in studies proposing a FI, the results 
obtained from the index consistently demonstrate statistical 
consistency (7, 8).

Accumulating research has increasingly identified a range of 
reliable biomarkers associated with frailty, including oxidative stress 
imbalance and inflammatory markers (9). Teixeira-Gomes et  al. 
demonstrated that levels of inflammatory mediators (CRP and IL-6) 
and oxidized DNA were significantly elevated in adults classified as 
frail according to the Fried criteria, compared to their non-frail 
counterparts (10). Additionally, another research reported that in 
patients with cerebrovascular disease and cognitive frailty, lipid 
peroxidation, indicated by increased MDA levels, was elevated, while 
superoxide dismutase (SOD) activity was reduced, alongside 
heightened levels of inflammatory markers such as CRP, IL-6, and 
TNF-α (11). Moreover, Hammami et  al. identified a positive 
correlation between the frailty index and inflammatory markers CRP, 
IL-6, IL-8, and TNF-α (12). Notably, after adjusting for age, the 
association between CRP and frailty remained robust and significant. 
Furthermore, a meta-analysis conducted by Mailliez et al. revealed 
that, in addition to CRP, four other biomarkers—vitamin D, albumin, 
hemoglobin, and free testosterone—were also significantly associated 
with frailty (13).

Additionally, research has indicated a correlation between frailty 
and long-term dietary habits, indicating a potential connection 
between frailty and metabolomics (14). The study of lipid metabolism 
in older frail or pre-frail individuals has been a significant focus of 
research (15–17). Lipids, particularly low-density lipoprotein 
cholesterol (LDL-C), have been shown to contribute to 
atherosclerosis, oxidative stress, and accelerated senescence of 
endothelial progenitor cells through various modified forms such as 
oxidized LDL, acetylated LDL, ethylated LDL, methylated LDL, and 
glycosylated LDL (18). HDL, on the other hand, is considered the 
‘body protector’ of lipids because of its antioxidant, antithrombotic, 
anti-inflammatory and anti-apoptotic properties (19). Interestingly, 
previous studies have yielded conflicting findings regarding the role 
of lipid compounds as biomarkers in frailty (20–23). For instance, a 
study conducted by Tavares and his colleagues found no correlation 
between high-density lipoprotein (HDL) levels and frailty in the 
elderly (24), while Lina Ma and her team determined that frail older 
adults had lower levels of HDL and hemoglobin compared to their 
non-frail counterparts (21). Such inconsistent results emphasize the 
necessity for additional research. A study evaluating the oxidant-
antioxidant balance in elderly individuals by measuring varying 
concentrations of HDL-C revealed that participants in the high 
HDL-C group exhibited lower triglyceride concentrations, whereas 
those in the low HDL-C group demonstrated elevated levels of 
oxidative stress (22). It is posited that an imbalance in oxidative stress 
may constitute a critical mechanism through which lipid metabolism 
affects the frailty status of individuals.

Recently, the concept of non-HDL-C has been introduced by 
researchers as a comprehensive measure of cholesterol across various 
lipoproteins excluding HDL. Non-HDL-C is calculated based on lipid 
distribution, with its specific value derived by subtracting the HDL-C 
level from the total cholesterol level measured in the body. A growing 
body of evidence corroborates the association of non-HDL-C with 
atherosclerotic dyslipidemia linked to metabolic disorders, type 2 
diabetes mellitus, and obesity, further establishing it as a more robust 
predictor of risk for lipid-related diseases (25–27). The atherogenic 
properties of non-HDL-C indicate its potential utility as a biomarker 
for predicting adverse cardiovascular events that could potentially 
exacerbate the onset of frailty in the elderly through its impact on 
cardiovascular health and other physiological pathways (28). 
Nevertheless, there is currently a lack of research investigating the 
association between non-HDL-C levels and frailty.

To address this research gap, we developed a 40-item frailty index 
(FI) scale following the established development steps (29). 
Subsequently, we utilized datasets from various public databases and 
applied machine learning algorithms to investigate the following 
specific research inquiries (30). Initially, traditional statistical methods 
were utilized to investigate the impact of the FI in conjunction with 
non-HDL-C. Subsequently, an analysis was conducted utilizing the 
sample data to examine the correlation between frailty and 
non-HDL-C. The variables were then prioritized based on their 
significance using the Light Gradient Boosting Machine (LightGBM) 
algorithm, a variant of the GB algorithm created by Microsoft, 
renowned for its exceptional efficacy in handling extensive structured 
datasets and rapid training capabilities (31, 32). Moreover, polynomial 
modeling was conducted with LightGBM to further elucidate the 
intricate association between non-HDL-C and frailty in the elderly. 
The overarching objective is to offer personalized intervention 
strategies based on the levels of non-HDL-C in older frail patients.

2 Methods

2.1 Study design

A research program called the National Health and Nutrition 
Examination Survey (NHANES) is structured to evaluate the health 
and nutritional well-being of both adults and children residing in the 
United States. This program employs a combination of questionnaires 
and physical examinations to target specific demographic groups or 
health-related issues. Another study, the China Health and Retirement 
Longitudinal Study (CHARLS), serves as a longitudinal survey 
representative of individuals aged 45 years and older in mainland 
China (33). The objective is to construct a high-quality public micro-
database encompassing multidimensional data on socioeconomic and 
health status, to fulfill the requirements of scientific research on aging.

This study initially enrolled 82,611 participants from multiple 
survey cycles, including the NHANES surveys from 2009 to 2010, 
2011 to 2012, 2013 to 2014, 2015 to 2016, 2017 to 2018, and the 
CHARLS 2011 and 2015 surveys. According to the standards of the 
World Health Organization and the United Nations, people over 
65 years old are defined as the elderly. Participants with missing or 
potentially anomalous relevant data or below the age of 65 were 
excluded. Additionally, it has been shown in prior research that despite 
potential missing data among participants, frailty can still be identified 
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through a minimum of 75% FI assessments, even if the specific 
correlates of frailty may vary. As a result, individuals with a significant 
amount of missing data and who did not complete at least 75% FI 
assessments were excluded from the study (7, 8). Ultimately, a total of 
8,554 participants were included in the study (Figure 1).

The variables considered for each case encompassed patient 
demographics such as gender, age, race, and education, indicators 
from pertinent laboratory tests including total cholesterol, HDL data, 
blood urea nitrogen (BUN), serum glucose, participants’ body mass 
index (BMI) calculated as weight divided by the square of height (kg/
m2) (34), and a total of 20 variables were ultimately included.

2.2 Frailty assessment

Based on the foundational criteria and procedures for constructing 
the FI, as well as incorporating data from the NHANES and CHARLS, 
a 40-item assessment scale was devised for evaluating the frailty 
condition of individuals in this research (22). This scale aims to 
comprehensively evaluate multiple dimensions of health, illness, 
physical functioning, and mental well-being to assess the extent of 
frailty in each participant. Utilizing the FI scale and drawing upon 
existing literature, we further categorized three levels of frailty: absence 
of frailty (FI ≤ 0.12), pre-frailty (0.12 < FI < 0.25), and frailty (FI ≥ 0.25) 
(29, 35, 36). A comprehensive account of the item composition and 
scoring criteria for the FI scale is available in Supplementary Table 1.

2.3 Non-HDL-C

Non-HDL-C comprising all plasma lipoproteins exclusive of 
HDL-C, is determined by subtracting HDL-C from total cholesterol. 

Blood test data from the CHARLS database were centrally examined 
by the Youanmen Clinical Laboratory Center of Capital Medical 
University using the enzymatic colormetric test. Two staff members 
from the Chinese Center for Disease Control and Prevention were 
responsible for the storage of blood samples on a full-time basis. 
Quality control samples were used daily in the laboratory during the 
testing process. The coefficient of variation was not more than 1.0% 
for within-assay and 1.7% for between-assay. Serum samples from the 
NHANES database are frozen and stored after collection and then sent 
to CDC/NCEH/DLS for examination. As part of the routine serum 
biochemical analyses, various lipid levels were measured using the 
Beckman Coulter UniCel® DxC800.The coefficients of variation for 
both the within- and between-assay were controlled as well.

Non-HDL-C comprising all plasma lipoproteins exclusive of 
HDL-C, is determined by subtracting HDL-C from total cholesterol. 
Because of the many factors influencing non-HDL-C, in this study 
we  excluded data such as smoking, dietary patterns, alcohol 
consumption, and self-reported hyperlipidemia, which could have a 
significant effect on non-HDL-C and lead to errors. However, data 
such as gender and age, which may also generate errors, were included, 
and we  subsequently performed additional sensitivity analyses by 
adjusting the model for confounders and for patients with 
hypertension, heart disease, diabetes mellitus, and other diseases that 
are closely related to blood lipids.

The European and U.S. Dialysis Patient Guidelines Committee 
recommends maintaining non-HDL-C levels below 130 mg/dL 
(3.4 mmol/L), particularly among individuals with elevated fasting 
triglyceride concentrations. Previous research also suggests that 
keeping adult non-HDL cholesterol levels below 130 mg/dL 
(3.4 mmol/L) is best for lowering the risk of cardiovascular death 
(37–39). Specifically, for every 0.8 mmol/L increase in non-HDL-C, 
there is a 19% higher risk of cardiovascular death in men and an 11% 

FIGURE 1

The participants’ selection process.
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higher risk in women (40). Additionally, individuals with normal 
levels of LDL-C face a 32% increased risk of cardiovascular events 
when their non-HDL-C levels exceed 130 mg/dL (41).

2.4 Statistical analysis

This study conducted an initial analysis of non-HDL-C through 
descriptive statistics, including the calculation of its mean and 
variance, and examined variations between groups of differing 
debilitation grades using the univariate analysis of variance (ANOVA) 
test. Continuous variables were analyzed using ANOVA followed by 
Fisher’s Least Significant Difference (LSD) post hoc test. Categorical 
variables were analyzed using the chi-square test with standardized 
residuals, with a threshold of p < 0.05 to establish statistical 
significance. Subsequently, the impact of non-HDL-C on frailty 
(dichotomous, utilized for all subsequent analyses) was evaluated 
through univariate logistic regression. To address potential 
confounding factors, we  employed a mixed-factor adjustment 
approach that integrated variable inflation factor (VIF), Least Absolute 
Shrinkage and Selection Operator (LASSO) regression, and LightGBM 
techniques to identify essential relative variables that exhibit both 
statistical significance and mutual independence within the model. 
During the modeling process, 70% of the dataset was allocated for 
model training with 5-fold cross-validation, while the remaining 30% 
was reserved for final model testing to evaluate the robustness and 
consistency of the results (24, 25, 35). Furthermore, in order to 
investigate the nonlinear association between non-HDL-C levels and 
severity of frailty, we utilized partial dependency plots (PDP) and 
polynomial regression methodologies within the framework of 
machine learning. Subsequent subgroup analyses were conducted to 
assess variations in the impact of non-HDL-C across different 
subgroups through the creation of interaction terms. To evaluate the 
heterogeneity between different databases and mitigate the influence 
of cardiac and metabolic conditions, we  employed mixed linear 
modeling (MixedLM) in conjunction with the FI index to identify the 
independent relationship between non-HDL-C levels and frailty 
severity, elucidating a significant role in regulating this biomarker in 
individuals with frailty. All analyses were performed using Python 3.8.

3 Results

3.1 Characteristics of study population

Significant variations in age, gender, education, marital status, and 
race were observed among individuals categorized into non-frail, 
pre-frail, and frail groups (Table 1). The average age of patients in the 
frail group was notably higher compared to those in the pre-frail 
group and the non-frail group (p < 0.001). The weakening of 
physiological reserves brought about by the natural aging process (due 
to the increased risk of adverse outcomes as a result of aging) impinges 
on the individual’s state of frailty and seems to explain this 
phenomenon. In addition, the sex ratio was appropriate in this study 
to avoid the errors that could be generated. Racial disparities among 
the three groups were also statistically significant based on chi-square 
analysis, indicating a need for further investigation (Table  1). 
Meanwhile, the variables including non-HDL-C, BUN, and serum 

glucose were found to have statistically significant associations with 
frailty. Furthermore, the mean BMI of frail participants was notably 
higher compared to the other two participant groups (p < 0.001). 
Additionally, levels of blood glucose, waist circumference, serum 
creatinine, and uric acid were significantly elevated in the frail group 
in comparison to both the pre-frail and non-frail groups (p < 0.001). 
Furthermore, leukocyte counts indicative of inflammatory conditions 
exhibited notable disparities among the three cohorts, with 
significantly elevated levels observed in the frail group compared to 
both the pre-frail and non-frail groups (Table 1).

3.2 Univariate logistic regression analysis

To investigate the association between non-HDL-C levels and 
frailty, the pre-frail group was amalgamated with the non-frail group, 
thereby transforming the frail classification into a dichotomous 
variable. Univariate logistic regression was employed to examine the 
relationship between non-HDL-C levels, additional laboratory 
parameters, gender, age, race, education, BMI, and the onset of frailty. 
The findings indicated that marital status and level of education up to 
secondary school were not significant factors in the onset of frailty. 
Conversely, non-HDL-C levels, mean red blood cell volume, 
erythrocyte pressure volume, hemoglobin levels, total cholesterol 
levels, and attainment of higher education were inversely related to the 
development of frailty. On the other hand, advancing age, waist 
circumference, white blood cell levels, platelets, urea nitrogen, blood 
glucose levels, creatinine levels, glycated hemoglobin, marital status as 
widowed or divorced, race, and BMI levels were positively correlated 
with the onset of frailty (Figure 2).

3.3 Multivariate analysis

As demonstrated in Supplementary Table 1, an analysis of the 
covariance in the regression model led to the exclusion of two 
variables with VIF greater than 10, namely HDL-C and total 
cholesterol. LightGBM exhibited superior capability in capturing 
intricate relationships between categorical and continuous variables 
while adjusting for additional confounding factors when compared to 
logistic regression (31, 42). Consequently, LightGBM was employed 
to model the relationship between frailty and non-HDL-C, 
determining the significance of each variable and establishing their 
order of importance. Subsequently, categorical variables with low 
significance were excluded, and the coefficients of each characteristic 
were obtained through binary logistic regression with LASSO 
regularization. Variables with coefficients of 0 were then removed, 
resulting in a final set of significant variables including BMI, 
non-HDL-C, waist circumference, blood glucose, blood creatinine, 
white blood cells, glycosylated hemoglobin, and hemoglobin for 
further multivariate analysis (Figure 3).

Following the selection of significant variables, a multinomial 
logistic regression model was constructed, and Receiver Operating 
Characteristic (ROC) curves were produced for validation (Figure 4). 
The result revealed an area under the curve (AUC) value of 0.710 for 
the ROC curve of the multinomial logistic regression model. This 
information holds importance in guiding clinical decision-making 
and improving individualized treatment strategies.
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TABLE 1 Variables and baseline characteristics of the participants.

Variables Categories Total Non-frail Pre-frail Frail p-value p-value* p-value** p-value***
Age 72.413 ± 5.378 71.834 ± 5.319 72.237 ± 5.337 72.910 ± 5.424 <0.001 0.015 <0.001 <0.001

Total cholesterol (mg/dL) 188.588 ± 38.115 195.586 ± 36.567 189.448 ± 37.577 184.429 ± 39.017 <0.001 <0.001 <0.001 <0.001

HDL-C (mg/dL) 53.696 ± 14.993 57.731 ± 16.534 53.943 ± 14.615 51.661 ± 14.495 <0.001 <0.001 <0.001 <0.001

Non-HDL-C (mg/dL) 134.892 ± 36.726 137.855 ± 35.307 135.506 ± 36.277 132.768 ± 37.832 <0.001 0.034 <0.001 0.001

Waist circumference (cm) 94.596 ± 15.637 86.939 ± 11.587 93.348 ± 14.936 99.561 ± 16.470 <0.001 <0.001 <0.001 <0.001

BMI (kg/m2) 26.178 ± 5.757 23.364 ± 3.838 25.691 ± 5.228 28.047 ± 6.516 <0.001 <0.001 <0.001 <0.001

WBC (109/L) 6.636 ± 1.886 6.339 ± 1.738 6.527 ± 1.828 6.919 ± 1.989 <0.001 0.001 <0.001 <0.001

Hemoglobin (g/dL) 13.771 ± 1.580 13.977 ± 1.508 13.853 ± 1.578 13.567 ± 1.592 <0.001 0.010 <0.001 <0.001

MCV (fL) 91.419 ± 6.373 91.733 ± 6.235 91.583 ± 6.322 91.049 ± 6.487 <0.001 0.441 0.001 <0.001

HCT (%) 40.885 ± 4.568 41.344 ± 4.405 41.055 ± 4.510 40.447 ± 4.685 <0.001 0.037 <0.001 <0.001

PLT (109/L) 211.841 ± 61.601 211.354 ± 58.610 211.191 ± 61.044 212.991 ± 63.592 0.426 0.394 <0.001 0.029

BUN (mg/dL) 17.131 ± 5.938 16.314 ± 4.841 16.814 ± 5.571 17.935 ± 6.728 <0.001 0.001 <0.001 <0.001

Glucose, serum (mg/dL) 109.416 ± 32.973 102.879 ± 24.306 107.468 ± 29.843 114.969 ± 39.069 <0.001 <0.001 <0.001 <0.001

Creatinine, serum (mg/dL) 0.937 ± 0.310 0.894 ± 0.244 0.926 ± 0.284 0.971 ± 0.364 <0.001 <0.001 <0.001 <0.001

Glycosylated hemoglobin (%) 5.876 ± 0.912 5.616 ± 0.624 5.829 ± 0.860 6.053 ± 1.043 <0.001 <0.001 <0.001 <0.001

Uric acid (mg/dL) 5.377 ± 1.448 5.159 ± 1.305 5.351 ± 1.413 5.508 ± 1.539 <0.001 <0.001 <0.001 <0.001

SR* SR** SR***

Gender Male 4,589 (50.169%) 743 (56.245%) 2,401 (51.712%) 1,445 (45.397%) <0.001 3.118 1.484 −3.801

Female 4,558 (49.830%) 578 (43.755%) 2,242 (48.288%) 1738 (54.603%) −3.128 −1.489 3.814

Race Asian 4,175 (45.643%) 632 (47.843%) 2,211 (47.620%) 1,332 (41.847%) <0.001 1.183 1.994 −3.170

African-American 921 (10.069%) 120 (9.084%) 461 (9.929%) 340 (10.682%) −1.128 −0.301 1.090

White people 2,871 (31.387%) 433 (32.778%) 1,424 (30.670%) 1,014 (31.857%) 0.902 −0.873 0.473

Latino/Hispanic 1,033 (11.293%) 116 (8.781%) 483 (10.403%) 434 (13.635%) −2.717 −1.806 3.931

Other race 147 (1.607%) 20 (1.514%) 64 (1.378%) 63 (1.979%) −0.267 −1.229 1.656

Education Primary education and below 4,753 (51.962%) 585 (44.285%) 2,356 (50.743%) 1812 (56.927%) <0.001 −3.871 −1.153 3.886

Secondary education 1786 (28.512%) 247 (18.698%) 916 (19.729%) 623 (19.573%) −0.681 0.313 0.060

Higher education 2,608 (19.526%) 489 (37.017%) 1,371 (29.528%) 748 (23.500%) 5.789 1.297 −5.296

(Continued)
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3.4 Nonlinear

Given the intricate nature of frailty’s etiology and pathophysiological 
mechanisms, we  also investigated the presence of a nonlinear 
relationship between non-HDL-C levels and frailty. After adjusting for 
confounding factors, the PDP generated by the LightGBM algorithm 
was utilized to examine the role of non-HDL-C in predicting frailty. 
Findings indicated a nonlinear association between non-HDL-C levels 
and frailty, which remained unaffected by other variables (Figure 5A). 
The fluctuating curves observed suggest that the predictive value of the 
model varies with changes in non-HDL-C levels. We further analyzed 
this nonlinear relationship using a polynomial fitting method and 
clarified that a second-order polynomial was the most appropriate 
choice by the Akaike Information Criterion (AIC). Examination of 
second-order polynomial fit plots suggested a potential U-shaped 
correlation between non-HDL-C and frailty. The risk of frailty decreased 
notably until the non-HDL-C levels reached the nadir (156.09 mg/dL), 
after which a positive correlation was observed (Figure  5B). This 
U-shaped non-linear relationship highlights the intricate interaction 
between the variables, underscoring the non-linear nature of the impact 
of non-HDL-C levels on the frail state. Understanding this complexity 
is crucial for informing the development of effective clinical prevention 
and treatment strategies. In addition, we developed reference-worthy 
ranges of non-HDL-C for controlling the risk of frailty based on 
quartiles. The risk of frailty was low at 117.54–194.64 mg/dL and high 
at 47.99–63.87 and 274.01–259.65 mg/dL. Individuals with non-HDL-C 
levels in the latter range should be promptly assessed for frailty in order 
to facilitate reversal of the frailty trajectory.

3.5 Subgroup, heterogeneity and sensitivity

To better interpret the results, subgroup analyses and interaction 
tests were performed (43). This information is valuable for informing 
clinical decision-making and enhancing personalized treatment 
approaches. The study employed stratification by gender, race, 
education, and age to assess the generalizability of the association 
between non-HDL-C levels and frailty across various subgroups 
within the population. The findings indicated a lack of interaction 
among subgroups, except non-HDL-C levels interacting with the risk 
of frailty for race (Figure 6). This result supports the generalizability 
of population-based conclusions across various subgroups, 
underscoring their consistency and dependability.

In this study, the MixedLM was employed for the analysis of 
heterogeneity, a statistical method that incorporates random effects to 
account for variability in the data. The analysis of the model revealed 
a Group Variance value of 0.000161 with a standard error of 0.001. 
This finding suggests that despite originating from disparate 
international databases, namely those of China and the United States, 
the data pertaining to debilitation levels analyzed display a reduced 
level of heterogeneity. This observation indicates a potential high level 
of uniformity in the processing and measurement of debilitation 
ratings across different countries, or a similarity in the underlying 
factors influencing these ratings within these populations.

Moreover, we  employed a cross-validation method to ensure 
consistent sensitivity analysis throughout the modeling process. 
Specifically, the dataset was partitioned into five subsets, with one 
serving as the test set and the remaining subsets as the training set. T
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This iterative process of training and testing models was repeated to 
evaluate the reliability and generalizability of the findings.

Additionally, a further sensitivity analysis was conducted to 
control for potential confounding factors such as heart disease and 
metabolic disorders, to assess the independent relationship between 
non-HDL-C levels and frailty. The findings were in line with previous 
research, demonstrating a consistent nonlinear association between 
non-HDL-C levels and frailty.

4 Discussion

The significant adverse consequences of frailty pose a substantial 
medical burden on both patients and their families (2, 44). Various 
therapeutic strategies have been suggested for addressing frailty. 
Nevertheless, due to incomplete comprehension of its pathophysiological 

mechanisms, only modifications in nutritional interventions and 
exercise rehabilitation have demonstrated some efficacy (2, 45). Despite 
some focus and investigation on the modulation of lipid metabolism in 
the management of frailty, the significance of non-HDL-C and its 
association with frailty has not been adequately acknowledged.

It is widely accepted that elevated non-HDL-C levels may 
contribute to the onset and progression of frailty. Several potential 
mechanisms could account for this theory. One such mechanism is 
that non-HDL-C may impact normal physiological processes through 
various regulatory pathways that influence cardiovascular well-being 
(27, 46). Furthermore, an increase in non-HDL-C levels is likely to 
result in stroke, which can impair cognitive function, reduce self-care 
abilities, and ultimately diminish quality of life while also increasing 
economic burden and disease risk (47, 48). In addition, non-HDL-C, 
encompassing LDL, lipoprotein (a), triglyceride-rich lipoproteins 
(TRLs), and TRL residues, can infiltrate the arterial wall through the 

FIGURE 2

The univariate logistic regression results. BMI, body mass index; WBC, white blood cell count; MCV, mean erythrocyte volume; HCT, erythrocyte 
pressure volume; PLT, platelet count; BUN, urea nitrogen. 1*, this group was used as a reference for intergroup control.
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cytosol, leading to damage to the vascular endothelium. This process 
stimulates the release of proinflammatory factors by nearby cells and 
interacts with extracellular matrix components, such as proteoglycans, 
within the endothelium, initiating metabolic and immunoinflammatory 
responses. This cascade of events attracts monocytes to the site of 
lesion initiation, promoting their differentiation into macrophages and 
ultimately resulting in the formation of foam cells. These events 
contribute to the development of a localized, chronic inflammatory 
infiltrate over the long term (28, 49, 50), which will disrupt normal 
bodily functions, potentially leading to decreased muscle mass and 
function, ultimately resulting in sarcopenia and frailty. Moreover, the 
association between oxidative stress and increased non-HDL-C is 
particularly significant. Research indicates that under conditions of 
heightened oxidative stress, such as those observed in metabolic 
syndrome, HDL can undergo oxidative modification (22, 51). This 
modification results in elevated non-HDL levels, which subsequently 
contribute to the destabilization of vascular endothelial cells. 
Additionally, oxidative stress impairs the antioxidant function of HDL, 
primarily mediated by the presence of SOD-1 (22). A clinical study 
involving 66 elderly individuals without acute or severe chronic 
illnesses demonstrated a notable reduction in HDL-C levels among 
participants with frailty and metabolic syndrome (51). Furthermore, 
within the frailty cohort, SOD-1 exhibited a negative correlation with 
both total cholesterol and HDL levels. In addition, it is important to 

consider the potential indirect impact of non-HDL-C on frailty 
development through its influence on patients’ circadian rhythms as 
well. A metabolomics investigation revealed that the plasma 
metabolites exhibiting circadian oscillations were 80% lipid-based (52). 
Subsequent research delved deeper into lipid metabolites within the 
human bloodstream, indicating that heightened levels of total 
cholesterol and total lipids could potentially disrupt circadian rhythms, 
resulting in increased glucose, insulin, and triglyceride concentrations, 
hastened lipid storage, and ultimately contributing to the onset of 
obesity, muscle atrophy, reduced physical activity levels, and heightened 
susceptibility to frailty (53). Hence, it is imperative to underscore the 
predictive significance of non-HDL cholesterol and the necessity of 
controlling its concentrations in the assessment and treatment of frailty 
to facilitate timely identification and mitigation of frailty.

Nevertheless, our study identified a non-linear U-shaped 
association between non-HDL-C levels and the risk of frailty. Before 
reaching the nadir (156.09 mg/dL), higher non-HDL-C levels were 
inversely related to frailty risk. Within this range, elevated non-HDL-C 
levels were found to be beneficial for older adults. However, beyond 
this point, a positive correlation was observed between non-HDL-C 
levels and frailty, with non-HDL-C becoming a detrimental factor in 
the progression of frailty in patients. Indeed, previous research on the 
correlation between cholesterol levels and frailty has also found that 
dyslipidemia may have the potential to mitigate or even reverse the 

FIGURE 3

Relative importance of selected variables and corresponding variable importance scores.
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decline associated with aging. Abnormal lipid levels in middle-aged 
individuals may transition from being a risk factor to a protective 
factor in later life (54). Moreover, further studies have indicated that 
total cholesterol and LDL levels, as markers of metabolic changes and 
reversal of metabolism, are inversely related to mortality (55, 56). The 
underlying mechanisms responsible for the paradoxical relationships 
in older adults have not been fully elucidated to date. Some theories 
propose that traditional lipid risk factors may exhibit a protective 
influence, potentially stemming from the inherent physiology of the 
aging process and the occurrence of metabolic changes or transitions 

during specific stages of advanced age (55). This concept of reverse 
metabolism offers insight into the etiology of malnutrition and 
inflammation in elderly individuals and guides for exploring the 
underlying biological mechanisms contributing to the onset of frailty.

Subgroup and interaction analyses confirmed of the robustness 
and reliability of our findings. Specifically, the subgroup analyses 
revealed that individuals of African-American, White, and Latino/
Hispanic descent exhibited lower likelihoods of frailty compared to 
individuals of Asian descent. This disparity may be  attributed to 
potential biases stemming from the relatively low personal income 

FIGURE 4

Micro-averaged receiver operating characteristic curves plotted according to multivariate logistic regression.

FIGURE 5

(A) The partial dependency plot (PDP) generated by the LightGBM algorithm. (B) Second-order polynomial fit curves show a nonlinear trend and 
curvilinear relationship between non-HDL cholesterol and frailty. Quartiles were used to qualify the range of values, with 25% near the threshold being 
the ideal range (lower risk of frailty) and 12.5% on either side being the range that would need to be assessed for frailty.
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levels among Chinese individuals in 2011 and 2015, as well as the 
predominantly rural composition of the data within the CHARLS 
database. Consequently, further in-depth clinical investigations are 
warranted to elucidate these findings.

In contrast to prior research, the current study demonstrates unique 
strengths and innovations. Firstly, the study utilized real population data 
from the United States and China, encompassing a substantial sample 
size of 8,554 individuals aged 65 years or older, thus constituting a large-
scale cross-sectional study. Secondly, the study employed the LightGBM 
algorithm and LASSO regression, recognized as highly effective 
statistical techniques for variable screening and validation. Furthermore, 
in order to more accurately represent the intricate association between 
non-HDL-C and frailty, a second-order polynomial was employed for 
curve fitting, revealing a U-shaped non-linear relationship between 
attenuation and non-HDL-C levels. When non-HDL-C levels are below 
156.09 mg/dL, there is a protective association between non-HDL-C 
and frailty, transitioning to a detrimental relationship above this level. 
Notably, our findings also suggest that the risk of frailty is low at 117.54–
194.64 mg/dL and high at 47.99–63.87 as well as 274.01–259.65 mg/dL, 
and that such populations should be assessed for frailty in a timely 
manner to facilitate the development of individualized intervention 
programs to ultimately reverse the trajectory of frailty. Subsequently, 
subgroup analyses and interaction tests were conducted to confirm the 
validity of the findings and broaden their generalizability.

5 Limitations

Despite the promising and dependable results, our study still has 
several limitations. Firstly, the cross-sectional design of this study made 
it difficult to determine a possible causal relationship between 
non-HDL-C and frailty. We suggest that more adequate prospective 

cohort studies should be conducted in the future to improve the reliability 
of our conclusions. Furthermore, it is recommended that future research 
investigate longitudinal relationships between fluctuations in non-HDL-C 
levels and individual frailty status to enhance the development of 
personalized intervention approaches. Secondly, the samples used in this 
study were drawn from population survey data in the United States and 
China, raising questions about the generalizability of our findings to other 
countries and regions. In addition, the reliance on self-reported data in 
this study may introduce subjective bias and recall bias. Lastly, it is worth 
noting that older adults frequently experience chronic diseases such as 
chronic liver disease and chronic kidney disease. Our study incorporated 
hypertension, diabetes, stroke, and heart disease in the evaluation of 
frailty. However, there remain certain disease biomarkers that have not 
been accounted for and adjusted. In addition, it is important to 
acknowledge that the frailty assessment in this study relies on a 
proprietary frailty scale, potentially introducing bias.

6 Conclusion

Overall, the findings of this cross-sectional study utilizing data 
from the NHANES and CHARLS databases indicate a nuanced, 
nonlinear association between non-HDL-C and frailty. Elevated 
non-HDL cholesterol levels, which are considered harmful in middle-
aged adults, may serve as protective factors against frailty in older 
adults when the levels are in the range of 117.54–194.64 mg/
dL. Whereas, when non-HDL-C levels are in the range of 47.99–63.87 
as well as 274.01–259.65 mg/dL, it is timely to carry out a frailty 
assessment in order to enable individualized clinical interventions to 
ameliorate or reverse the state of frailty. The elucidation of this 
intricate nonlinear association holds significant implications for 
clinical practice and the care of frail patients.

FIGURE 6

Subgroup analysis and interaction test. 1*, this group was used as a reference for intergroup control.
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