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Background: Current diet assessment tools, such as food frequency 
questionnaires, may result in misclassification bias from measurement error and 
misreporting. These limitations can be mitigated by diet-related biomarkers in 
urine specimens, an emerging approach to characterize dietary intake.

Objective: We conducted a systematic review to identify urinary biomarkers with 
utility in accurately assessing dietary intake, including individual foods and food 
groups.

Method: We retrieved studies from 2000 to 2022 from databases including Embase, 
CINAHL, Cochrane, and PubMed. Data extraction from included articles was 
conducted by two independent reviewers for cross validation. Articles identifying 
urinary biomarkers in relation to food groups/items with adult populations were 
included and were evaluated for bias using the Joanna Briggs Institute Critical 
Appraisal.

Results: A total of 65 articles were included and categorized as biomarkers of fruit 
(n = 13), vegetables (n = 5), aromatics (n = 5), fruits and vegetables (n = 3), grains/
fiber (n = 5), dairy (n = 3), soy (n = 10), coffee/cocoa/tea (n = 9), alcohol (n  = 6), 
meat and proteins (n = 6), nuts/seeds (n = 3), and sugar and sweeteners (n = 4). 
Results expanded the context to which metabolites of foods were compared across 
similar and dissimilar food groupings. Plant-based foods were often represented by 
polyphenols, while others were distinguishable by innate food composition, such 
as sulfurous compounds in cruciferous vegetables or galactose derivatives in dairy.

Conclusion: Current evidence suggests urinary biomarkers may have utility 
in describing intake of broad food groups, such as citrus fruits, cruciferous 
vegetables, whole grains, and soy foods, but may lack the ability to clearly 
distinguish individual foods. These findings indicate the potential of urinary 
biomarkers to monitor changes in dietary patterns. The improvement of diet 
assessment methodology is a key step toward strengthening research data 
validity and accurately measuring outcomes in chronic disease management.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42022308255, Prospero CRD42022308255.
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Introduction

Accurate assessment of dietary intake is key in understanding 
diet-disease relationships. Current diet assessment tools, such as 
a food frequency questionnaire (FFQ) or a 24-h recall, have been 
validated and used in producing the preponderance of current 
evidence of the diet and chronic disease relationship (1, 2). 
However, a drawback of these tools lies in their self-reported 
nature, which may result in misclassification bias from 
measurement error and misreporting. This may ultimately 
compromise the efficiency and efficacy of dietary interventions, 
underscoring the need for complementary methodologies for 
improving assessment accuracy in free-living populations (3, 4). 
These limitations can be mitigated by diet-related biomarkers. 
Diet related biomarkers are generally classified as, exposure/
recovery biomarkers, which are directly related to dietary intake 
(e.g., doubly labeled water for energy intake) and outcome/
concentration biomarkers, which can be impacted by a person’s 
individual innate characteristics such as genetics, metabolism or 
existing health conditions, and thus are an indirect assessment of 
diet (5–7). New biomarkers are being discovered that have 
predictive qualities and a more stable dose–response relationship 
to nutrient intake (5). Blood samples have been used to assess 
direct circulating levels of nutrients but are often limited by 
accessibility to lab facilities and invasive collection methods. 
Urine may be a more accessible and less burdensome biological 
fluid, with the capability of characterizing dietary intake while 
having less invasive collection requirements (8, 9).

The 2020–2030 NIH Strategic Plan for Nutrition Research 
outlines several objectives related to the development of new tools 
for precision nutrition research. These include assessing the 
variability of an individual’s diet response through metabolomic 
profiling/phenotyping, where using biomarkers of dietary 
exposure can provide more holistic characterizations of diet and 
mitigate the effects of self-report measurement error (5, 10). 
Nutrition phenotyping, which is the process of identifying the 
integrated set of observable measurements that represents overall 
metabolism of dietary intake (11), can increase the validity and 
scientific rigor of nutritional status assessment. Consequently, 
there is a need for the identification of a quantitative measures of 
dietary intake that can be used to improve dietary assessment. 
While there have been studies evaluating the use of urinary 
metabolites, there has been no consensus on the best markers of 
dietary intake, outside of the widely accepted doubly labeled water 
for energy intake or urinary nitrogen for protein intake (12). This 
leaves a clear gap for the assessment of key food groups and 
dietary patterns. Establishing the efficacy of urinary metabolites 
for the use of dietary assessment will serve to improve 
measurement error and bias in collecting dietary data. The 
objective of this systematic review was to evaluate the urinary 
biomarkers that can be utilized for accurate assessment of dietary 
intake, including individual foods and food groups.

Methods

Protocol and registration

This protocol is registered at PROSPERO (CRD42022308255) 
available at https://www.crd.york.ac.uk/prospero/. This protocol was 
structured according to the items (headings) recommended in the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
for systematic review protocols (PRISMA-P) guidelines (13, 14). The 
PRISMA 2020 checklist is provided in Supplemental materials (15).

Research question

PICOS (population, intervention, comparison, outcomes, study 
design) criteria are shown in Table 1 and were used to frame our 
research question: What are the urinary biomarkers that can 
be  utilized for accurate assessment of dietary intake, including 
individual foods and food groups?

Identification of studies

Information sources
We conducted the literature search across relevant databases, 

including PubMed, EMBASE, Cochrane, and CINAHL. The databases 
were searched from January 2000 through March 2022.

Search strategy
A comprehensive list of search terms was compiled, related to the 

two concepts of the study question: exposure (dietary intake) and 
outcome (urinary biomarkers). Original search terms were gleaned 
from 15 relevant benchmark articles and further refined as search terms 
in Embase, CINAHL, Cochrane, and PubMed. The search terms used 
included, “biomarker,” “nutritional biomarker,” “dietary biomarker,” 
“nutrient biomarker,” “food biomarker,” “metabolite,” or “metabolomics,” 
combined with “diet,” “dietary pattern,” “nutrition phenotyping,” “food,” 
“food group,” “Western diet,” “Mediterranean diet,” “prudent diet,” or 
“dietary intake,” as well as, “urine,” “urinary,” or “urinary marker.” 
Results were limited to English only and human only. All retrieved 
citations from multiple databases were initially imported into an 

TABLE 1 PICOS criteria for inclusion.

Population Adult population with no metabolic diseases (inborn errors of 

metabolism)

Intervention Dietary intake, as individual or grouped food items, excluding 

supplementation and bioavailability studies

Comparison Other dietary intake interventions

Outcome Urinary biomarkers related to diet factors

Study design Interventional Trials, Observational Cohort, Case–Control, 

Quasi-Experimental, and Cross-sectional

https://doi.org/10.3389/fnut.2025.1596543
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.crd.york.ac.uk/prospero/


Jackson et al. 10.3389/fnut.2025.1596543

Frontiers in Nutrition 03 frontiersin.org

electronic reference management program (RefWorks). Deduplication 
was initially performed automatically using an internal function of the 
program, followed by a manual review for further accuracy. The full 
search strategy is presented in Supplementary materials.

Relevance screening
After the initial search was made, the following inclusion and 

exclusion criteria were applied. This review included articles evaluating 
the assessment or identification of urinary biomarkers in relation to 
food groups or food items with adult populations with no metabolic 
diseases (inborn errors of metabolism), that were published in English. 
Only published studies were eligible, including interventional trials, 
observational cohort, case–control, quasi-experimental, and cross-
sectional. Studies were excluded for study populations under the age 
of 18, non-original research (e.g., review article), or assessment of 
biomarkers of a non-diet-related nature (e.g., biomarkers of disease-
risk/health status, oxidative stress; toxin/pollutant markers). Studies 
whose objective was methods development of biomarker assessment, 
validation of a self-report questionnaire, or investigated vitamin/
minerals, including supplementation, were excluded.

The study selection process included initial title-and-abstract 
screening and further full-text assessment, facilitated by Rayyan, using 
the manual sorting and labeling tools, without the prediction 
automation feature (16). For both the abstract screening and full-text 
assessment, reviews were completed by two independent reviewers to 
ensure articles met all inclusion criteria for data extraction. Abstract 
screening excluded articles with no relevance to diet and urinary 
biomarkers, while including those suggestive of meeting inclusion 
criteria, warranted full-text review. Both reviewers had to deem the 
article eligible for inclusion for the article to be  included. If both 
reviewers assessed that the article was not eligible for inclusion, then 
the article was excluded. In the case of discrepancies between 
reviewers on eligibility status, a third independent reviewer decided 
on the inclusion or exclusion.

A decision tree was used to guide reviewers through the inclusion 
and exclusion criteria, based off the following questions, (1) Correct 
study population: Is the study population in adults aged 18 or older and 
does not include those diagnosed with inborn errors of metabolism?; (2) 
Does the study involve urinary biomarkers/metabolites?; and (3) Does 
the study relate the urinary biomarkers/metabolites to dietary intake 
assessment of food/food groups?; or (4) Does the study aim to establish 
a relationship between urinary metabolites/biomarkers and food/food 
groups? Based on these questions, articles were excluded if (1) included 
children less than 18 years old or included inborn errors of 
metabolism; (2) examined only non-urine biomarkers (studies that 
involve both blood/plasma and urinary biomarkers were eligible for 
inclusion, but only urinary biomarkers were evaluated); (3) examined 
biomarkers of disease-risk/health status (e.g., cancer markers, 
cytokines/interleukins, growth factor etc.); biomarkers associated with 
weight status; biomarkers of oxidative stress; toxin/pollutant markers; 
(4) objective of assessing supplementation of specific nutrients, 
non-food derived compounds, or bioavailability; or (5) the study 
purpose was to use urinary biomarkers to validate a food frequency 
questionnaire or other reported intake measurement.

Data extraction
Data extraction was conducted by two independent reviewers for 

cross validation. In the case of discrepancies between reviewers on 

data extracted, a third independent reviewer decided on the correct 
point for extraction. Data extraction was managed through Research 
Electronic Data Capture (REDCap) (17, 18), a secure, web-based 
application designed to support data capture for research studies. For 
the purposes of this review, REDCap facilitated recording extracted 
data and managing data organization. A pilot review was conducted 
by all reviewers on the first ten manuscripts to ensure clarity of the 
extraction process and that the correct extraction points have been 
identified. Data extracted were as follows: country of study; study 
design; author information; sample size; mean age; urine collection 
method (24-h collection, spot urine collection, multi-spot collection, 
other/unspecified); dietary assessment method (provided food/
controlled feeding trial vs. self-reported intake); urinary biomarkers 
tested; urinary biomarkers with significant relationships to food/
nutrients; and major study limitations.

Quality assessment
The Joanna Briggs Institute (JBI) Critical Appraisal Tools were 

used to assess multiple study types (e.g., randomized controlled trial, 
observational study) to assess the methodological quality of a study 
and to determine the extent to which a study has addressed the 
possibility of bias in its design, conduct and analysis (19). A JBI 
assessment was made on an included article twice, by two independent 
reviewers and disagreement on inclusion or exclusion due to 
unacceptable bias (determined by the respective JBI tool scoring 
criteria) was reconciled by consulting a third senior investigator of this 
study. Studies not meeting acceptable JBI criteria were excluded 
from analysis.

Data synthesis
Extracted article data was sorted into the following food groupings 

for synthesis: biomarkers of fruit, vegetables, fruits and vegetables 
combined, aromatics, grains/fiber, nuts/seeds/oils, sugar/sweeteners, 
coffee/cocoa/tea, alcohol, dairy, soy, and meat/proteins. As the level of 
detail presented in the article allowed, articles were additionally sorted 
into subgroups in order to describe similar food items, including 
berries, citrus fruit, and cruciferous vegetables.

Results

Study selection

The complete description of how articles were included and 
excluded is detailed in Figure 1. In short, the literature search retrieved 
5,411 records, where 3,377 duplicates were removed prior to screening, 
leaving 2,034 abstracts screened for inclusion. Of these, 1,890 records 
were excluded, leaving 144 records for full text assessment. From the 
full text review, 68 records underwent bias assessment, where three 
were excluded for high-risk bias. Therefore, 65 articles were included 
in the present review.

Study characteristics

Of the 65 articles identified, there were 39 diet intervention studies, 10 
quasi-experimental design studies, and 16 cross-sectional analyses. 
Publications represented 19 countries, including Australia (1), Austria (1), 
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Canada (1), China (1), Denmark (4), Finland (5), France (1), Germany (6), 
Ireland (1), Italy (2), Japan (1), Macedonia (1), Malaysia (1), Netherlands 
(3), Spain (11), Sweden (1), Switzerland (1), United Kingdom (10), and 
United States (13). The median sample size was 20 participants, where 71% 
(n = 46) of studies had less than 50 participants, 23% (n = 15) of studies 
between 50 and 500 participants, and 6% (n = 4) studies over 500 people. 
The dietary factors investigated were categorized as biomarkers of fruit 
(n = 13), vegetables (n = 5), fruits and vegetables combined (n = 3), 
aromatics (n = 4), grains and fiber (n = 5), nuts/seeds/oils (n = 4), sugar 
and sweeteners (n = 4), coffee/cocoa/tea (n = 10), alcohol (n = 6), dairy 
(n = 3), soy/isoflavones (n = 10), and meat and proteins (n = 6). Of the 65 
studies, the majority used 24-h urine collection methods (n = 35), followed 
by multi-spot collection (n = 20), morning spot urine collection (n = 6), 
and other/unspecified (n = 4). All cross-sectional studies used either food 
records (n = 7), FFQs (n = 6) or 24-h recalls (n = 3), while all the 

interventional/quasi-experimental studies provided food with some 
degree of control (n = 49). Table 2 summarizes the study characteristics.

Fruit, vegetables, and aromatics

Figure  2 summarizes the urinary metabolites proposed as 
biomarkers of dietary intake across studies for fruit, vegetables 
and aromatics.

Fruit
Several studies included berries (20–25). Pelargonidin, an 

anthocyanidin, and its derived forms were found by two studies 
as potential biomarkers of strawberries, including pelargonidin-
3-glucoside (Pg3G) and pelargonidin glucuronide (20, 21). 

FIGURE 1

PRISMA 2020 flow diagram for systematic reviews. Adapted from Page et al. (15), licensed under CC BY 4.0.
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TABLE 2 Study characteristics of included records (N = 65).

Author Year Study design N Country Food 
category

Metabolomics 
methods

Urine collection methods Diet collection methods

Altorf-van der Kuil 2013 Intervention Study 30 Netherlands Meat/Protein Targeted 24-h collection Provided food/controlled feeding trial

Anesi 2019 Quasi-Experimental 11 Germany Fruit Targeted; Untargeted Multi-spot collection Provided food/controlled feeding trial

Arai 2000 Cross-sectional 106 Japan Soy Targeted 24-h collection Food records/diary

Atkinson 2002 Cross-sectional 363 USA Soy Targeted 24-h collection Food frequency questionnaire

Aubertin-Leheudre 2008 Cross-sectional 56 Finland Grains/Fiber Targeted 24-h collection Food records/diary

Bresciani 2020 Intervention Study 21 Italy Cocoa/Coffee/Tea Targeted Multi-spot collection Provided food/controlled feeding trial

Cho 2016 Intervention Study 40 USA Meat/Protein Targeted Multi-spot collection Provided food/controlled feeding trial

Cross 2011 Intervention Study 17 USA Meat/Protein Targeted 24-h collection Provided food/controlled feeding trial

Cuparencu 2019 Intervention Study 12 Denmark Meat/Protein Untargeted Multi-spot collection Provided food/controlled feeding trial

Cupareneu 2016 Intervention Study 18 Denmark Fruit Untargeted Multi-spot collection Provided food/controlled feeding trial

Daykin 2005 Intervention Study 3 Netherlands Cocoa/Coffee/Tea Untargeted 24-h collection Provided food/controlled feeding trial

Edmands 2011 Intervention Study 12 UK Vegetable Untargeted Multi-spot collection Provided food/controlled feeding trial

Erlund 2001 Quasi-Experimental 13 Finland Fruit Targeted 24-h collection Provided food/controlled feeding trial

Franke 2006 Intervention Study 20 USA Soy Targeted Morning spot collection Provided food/controlled feeding trial

Frankenfeld 2011 Cross-sectional 3,115 USA Soy Targeted Other/Unspecified 24-h recall

Fraser 2010 Cross-sectional 26 USA Soy Targeted Other/Unspecified 24-h recall

Freedman 2022 Cross-sectional 126 UK, USA Sugar Targeted 24-h collection Food records/diary

Garcia-Aloy 2015 Cross-sectional 155 Spain Grains/Fiber Untargeted Morning spot collection Food frequency questionnaire

Garg 2016 Intervention Study 14 UK Grains/Fiber Untargeted Multi-spot collection Provided food/controlled feeding trial

Grace 2004 Cross-sectional 333 UK Soy Targeted Other/Unspecified Food records/diary

Grainger 2019 Quasi-Experimental 55 USA Soy Targeted 24-h collection Provided food/controlled feeding trial

Haron 2011 Intervention Study 20 Malaysia Soy Targeted Multi-spot collection Provided food/controlled feeding trial

Harsha 2018 Intervention Study 11 Ireland Vegetable Untargeted Morning spot collection Provided food/controlled feeding trial

Heinonen 2003 Intervention Study 6 Finland Soy Targeted 24-h collection Provided food/controlled feeding trial

Helander 2005 Quasi-Experimental 9 Sweden Alcohol Targeted Multi-spot collection Provided food/controlled feeding trial

Hodgson 2004 Cross-sectional 455 Australia Cocoa/Coffee/Tea Targeted 24-h collection 24-h recall

Hollands 2008 Quasi-Experimental 10 UK Fruit Targeted Multi-spot collection Provided food/controlled feeding trial

Hong 2004 Intervention Study 6 USA Aromatics Untargeted Multi-spot collection Provided food/controlled feeding trial

Hutchins 2000 Intervention Study 34 USA Nut/Seed/Oil Targeted 24-h collection Provided food/controlled feeding trial

Ito 2005 Intervention Study 18 France Cocoa/Coffee/Tea; 

Fruit

Targeted 24-h collection Provided food/controlled feeding trial

(Continued)
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TABLE 2 (Continued)

Author Year Study design N Country Food 
category

Metabolomics 
methods

Urine collection methods Diet collection methods

Krogholm 2004 Intervention Study 12 Denmark Fruit;Vegetable Targeted 24-h collection Provided food/controlled feeding trial

Kruger 2017 Cross-sectional 297 Germany Meat/Protein Targeted 24-h collection Food records/diary

Lang 2011 Intervention Study 9 Germany Cocoa/Coffee/Tea Targeted Morning spot collection Provided food/controlled feeding trial

Li 2021 Cross-sectional 246 Netherlands 

and 

Switzerland

Dairy Targeted; Untargeted 24-h collection Food frequency questionnaire

Lloyd 2011 Cross-sectional 23 UK Fruit Untargeted Multi-spot collection Food frequency questionnaire

Logue 2017 Intervention Study 12 Italy Sugar Targeted 24-h collection Provided food/controlled feeding trial

Miró-Casas 2003 Intervention Study 7 Spain Nut/Seed/Oil Targeted 24-h collection Provided food/controlled feeding trial

Mullen 2006 Intervention Study 6 UK Aromatics Targeted Multi-spot collection Provided food/controlled feeding trial

Nielsen 2002 Intervention Study 94 Finland Fruit;Vegetable Targeted 24-h collection Provided food/controlled feeding trial

Pimentel 2020 Intervention Study 11 Switzerland Dairy Untargeted Multi-spot collection Provided food/controlled feeding trial

Rechner 2002 Quasi-Experimental 10 UK Fruit Targeted 24-h collection Provided food/controlled feeding trial

Rechner 2001 Quasi-Experimental 5 UK Cocoa/Coffee/Tea Targeted 24-h collection Provided food/controlled feeding trial

Roura 2008 Intervention Study 21 Spain Cocoa/Coffee/Tea Targeted Multi-spot collection Provided food/controlled feeding trial

Saenger 2017 Quasi-Experimental 30 Germany Fruit Targeted Multi-spot collection Provided food/controlled feeding trial

Saenger 2021 Quasi-Experimental 32 Germany Fruit Targeted Multi-spot collection Provided food/controlled feeding trial

Scheffler 2016 Intervention Study 12 Germany Aromatics Targeted Multi-spot collection Provided food/controlled feeding trial

Söderholm 2011 Quasi-Experimental 15 Finland Grains/Fiber Targeted Multi-spot collection Provided food/controlled feeding trial

Song 2013 Intervention Study 82 USA Sugar Targeted 24-h collection Provided food/controlled feeding trial

Stanoeva 2013 Intervention Study 10 Macedonia Cocoa/Coffee/Tea Targeted 24-h collection Provided food/controlled feeding trial

Sun 2020 Intervention Study 6 USA Vegetable Targeted; Untargeted Multi-spot collection Provided food/controlled feeding trial

Tasevska 2004 Intervention Study 12 UK Sugar Targeted 24-h collection Provided food/controlled feeding trial

Tomás-Navarro 2021 Intervention Study 18 Spain Fruit Untargeted 24-h collection Provided food/controlled feeding trial

Toren 2005 Cross-sectional 68 Canada Dairy Targeted 24-h collection Food records/diary

Toromanović 2008 Intervention Study 10 Austria Fruit Targeted 24-h collection Provided food/controlled feeding trial

Tulipani 2011 Intervention Study 42 Spain Nut/Seed/Oil Untargeted 24-h collection Provided food/controlled feeding trial

Tulipani 2012 Intervention Study 41 Spain Nut/Seed/Oil Targeted 24-h collection Provided food/controlled feeding trial

Ulaszewska 2016 Intervention Study 126 USA Fruit;Vegetable Untargeted 24-h collection Provided food/controlled feeding trial

Upi-Sarda 2009 Intervention Study 42 Spain Cocoa/Coffee/Tea Targeted 24-h collection Provided food/controlled feeding trial

Urpi-Sarda 2015 Intervention Study 36 Spain Alcohol Targeted 24-h collection Provided food/controlled feeding trial

(Continued)
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Hollands et  al. (21) found a significant linear dose–response 
relationship of the consumption of strawberries to urinary 
excretion of strawberry anthocyanins, where pelargonidin-3-
glucoside (Pg3G) made up 93% of total anthocyanins found in 
strawberries. Berry consumption biomarkers, of assorted varieties, 
include many polyphenols, including catechin sulphate (20, 25), 
pyrocatechol sulphate (20), 4-allylphenol sulfate (25), as well as 
the related polyphenol metabolite, hippuric acid (20, 22). Of these, 
Toromanovic et al. found consumption of blueberries and cherries 
produced the highest urinary excretion of hippuric acid, which 
was significantly higher as compared to a mixed food control (22). 
Rechner et al. (24) investigated ingestion of black currant juice, 
which is rich in anthocyanins, and urinary metabolites as 
biomarkers. After following a polyphenol-free diet for 2 days, four 
anthocyanins related to delphinidin and cyanidin, as well as 
hydroxycinnamates, flavonols, and urinary hippuric acid 
were detected.

Citrus fruits were also commonly examined, including 
orange and grapefruit (23, 25–30). Proline betaine (also called 
stachydrine) (25, 27–30), hesperetin (23, 26, 28, 29), naringenin 
(23, 26, 28, 29), and N-methylglutamate (25) were found to 
be urinary biomarkers of orange/orange juice intake. Similarly, 
grapefruit intake was significantly associated with urinary 
proline betaine (27), naringenin (23) and, N-methylglutamate 
(25). Only proline betaine was able to distinguish between 
consumption amounts and be  detectable for at least 72 h, 
whereas hesperetin, and naringenin were determined to be only 
short-term qualitative biomarkers of orange juice (28). Short 
term urinary excretion of hesperetin and naringenin was also 
found by Elrund et al. after consumption of 8 mL/kg of orange 
juice (26). Furthermore, proline betaine was found to be  a 
distinguishable urinary biomarker from both reported habitual 
intake and acute provision of citrus foods (orange and grapefruit) 
(27) and was dose-dependent (30). Tomás-Navarro et al. (29) 
described distinguishable biomarkers that exist between orange 
juice processing methods, including higher levels of sinapic acid 
derivatives in processed juices, likely from higher exposure to 
peel oils. However, high levels of hesperetin and naringenin were 
present across all fresh and processed orange juices (29).

Two studies investigated urinary biomarkers of apple 
consumption. Saenger et  al. examined the urinary biomarkers 
associated with low (1 apple; ~200 g), medium (2 apples; ~400 g) or 
high (4 apples; ~800 g) apple consumption following a three-day 
wash out period of no apple product intake (31). Levels of phloretin, 
epicatechin, and procyanidin B2 significantly increased following 
apple consumption and could distinguish between high and low 
apple intake but could only be detected up to 12–24 h (31). As apples 
are a source of flavan-3-ols, Anesi et al. (32) investigated the use of 
phenyl-γ-valerolactones as a biomarker of flavan-3-ols from apples. 
Phenyl-γ-valerolactones were able to be  detected after apple 
consumption, most notably between 6 and 12 h post-intake. Like 
oranges, proline betaine was also a predictive metabolite for apple 
intake (25). Wang et al. established predictive metabolites for 79 
food groups/individual food items based off of FFQs and 24 h 
recalls. For fruits, naringenin 7-glucuronide was a predictive 
biomarker for grape intake, vanillactate for prunes, ethyl pyruvate 
and 3-methyladipate for banana, and 4-allylphenol sulfate for apples 
or pears (25).T
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Vegetables
Various vegetables including peas (33), spinach (34), and several 

cruciferous vegetables, as a group (25) and individually, including kale 
(35), daikon radish (35), broccoli (36) and Brussels sprouts (36) 
were examined.

Biomarkers of pea intake were assessed through a dose–
response randomized cross-over trial comparing 4 days of low 
(40 g), medium (75 g) and high (165 g) pea intake to a couscous 
control meal (33). Additionally, results were verified in an 
independent confirmation study of a pea-protein burger 
compared to meat. From the dose–response trial, 
2-Isopropylmalic acid, asparaginyl valine and N-carbamoyl-2-
amino-2-(4-hydroxyphenyl) acetic acid were significantly 
different after pea consumption and increased in a dose–response 
manner (33). These three biomarkers were also confirmed after 
ingestion of a pea-protein burger compared to a meat-based 
burger (33).

Both whole leaf and minced spinach consumption was 
investigated through a randomized cross-over design (34). After 
ingesting 178 g of whole spinach or 200 g of minced spinach, 
three biomarkers were identified as increasing post-consumption: 
des-amino arginine pentenol ester, D/L-malic acid ester of cis-p-
coumarate, and D/L-malic acid ester of trans-p-coumarate. 
Results were similar for both spinach preparations (34).

Sun et al. examined urinary biomarkers of kale and daikon radish 
as representative Brassica cruciferous vegetables (35). Six participants 
were provided 250 g of steamed baby kale and 25 g of raw daikon 
radish and 24-h urine was collected. Post consumption, 18 metabolites 
were identified, including four phenolic compounds and 14 
glucosinolates. Kale exhibited higher phenolic compound levels than 
daikon radish and daikon radish showed higher total glucosinolate 
levels (35). Excretion rates often peaked within 6 h and thus may 
be  reflective of short-term intake versus habitual. Edmands et  al. 
investigated two other cruciferous vegetables, broccoli and Brussels 
sprouts, with urine collection over 48 h (36). Twelve participants 
participated in a controlled diet intervention study, with phases of 
high (250 g broccoli and Brussels sprouts) and low cruciferous 
vegetable intake (excluded cruciferous vegetables and alliums). From 
the intervention, S-methyl-L-cysteine sulphoxide (SMCSO) and 
N-acetyl-S-methyl-L-cysteine sulphoxide (NAc-SMCSO) were 
identified as stable urinary biomarkers of cruciferous vegetables (36). 
Wang et al. (25) similarly confirmed S-methylcysteine sulfoxide as a 
predictive metabolite for cruciferous vegetables.

Fruit and vegetable intake
The use of flavonoids as a biomarker of fruit and vegetable 

intake were investigated by three studies (30, 37, 38). Neilsen 
et al. and Krogholm et al. both conducted controlled intake trials, 

FIGURE 2

Summary of urinary metabolites as biomarkers of fruits, vegetables, and aromatics. Created with BioRender.com. Jackson, M. (2025) https://BioRender.
com/w44s987.
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providing diets of low and high fruit and vegetable intake (37, 
38). Similar findings from these two studies demonstrated total 
urinary flavonoids and kaempferol have dose-dependent 
relationships with fruit and vegetable intake (37, 38). However, 
while Nielsen et al. (38) additionally found significant differences 
between highest and lowest quartiles of diet intake and urinary 
excretion of naringenin and phloretin, Krogholm et al. (37) did 
not find phloretin were to be significantly associated with the 
exposure of high vs. low fruit and vegetable intake. Hesperetin 
(38), quercetin (37), and isorhamnetin (37) may additionally 
show dose-dependent relationships with fruit and vegetable 
intake, while two valerolactones and six benzoic acid derivatives, 
including ferulic acid, vanillic acid sulfate, phenylacetic acid, 
hydroxyphenylacetic acid, and proline-betaine were found to 
be markers of long-term exposure to high flavonoid intake from 
fruits and vegetables (30).

Aromatics
Four studies investigated aromatics of onion (25, 39, 40) and garlic 

(25, 41). Quercetin metabolites were significantly associated with 
onion intake (39, 40). Additionally, four isomers of kaempferol 
monoglucuronides were found, with kaempferol being the second 
most abundant flavonoid after quercetin in onions (39). Wang et al. 
(25) also identified N-methyltaurine, 2,3-dimethylsuccinate, 
N-acetylalliin as predictive metabolites of onion intake.

Scheffler et al. recruited twelve volunteers to provide 24-h urine 
samples after the ingestion of 3 g (1–2 cloves) of raw garlic, where one 
volunteer ate 30 g (approximately one bulb) of raw garlic (41). After 
garlic consumption, three primary metabolites were found: allyl 
methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl 
sulfone (AMSO2). These metabolites may be reflective of short-term 
intake, with decreasing concentrations generally after 3–6 h post-
consumption (41). Wang et al. (25) also identified N-methyltaurine, 
N-acetyl-S-allyl-L-cysteine, and S-allylcysteine as predictive 
metabolites of garlic intake.

Grains and fiber

A summary of the metabolites for whole grains and fiber is 
presented in Figure  3. Alkylresorcinols, and their metabolites, 
3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA) and 
3,5-dihydroxybenzoic acid (DHBA), found in wheat and rye products, 
have been identified as biomarkers of whole grain intake by three 
studies (42–44). Söderholm et al. (44) investigated the consumption 
of 198 g of rye bread, containing 100 mg of alkylresorcinols, in 15 
healthy volunteers and subsequent urinary biomarkers after 25 h of 
urine collection. Metabolites of alkylresorcinols, DHPPA and DHBA, 
were present after consumption of rye bread. Maximum excretion of 
these metabolites was approximately 5–6 h, with low levels still 
detectable at 25 h (44). Aubertin-Leheudre et al. also investigated the 
metabolites of alkylresorcinols as biomarkers of whole grain wheat 
and rye cereal intake in 56 Finnish women (42). Three-days of diet 
records and urine collection were collected and analyzed for urinary 
concentrations of DHPPA and DHBA in relation to fiber and fiber-
rich food intake. Total fiber intake was correlated with urinary DHBA, 
and cereal fiber intake was correlated with both DHBA and DHPPA, 
including adjustment for age and BMI. Furthermore, DHPPA was an 
independent predictor of cereal fiber intake after adjustment (42). 
Garcia-Aloy et al. (43) was able to distinguish the presence of several 
metabolites, including alkylresorcinol derivatives, by comparing 
non-bread consumers (n = 56), white bread consumers (n = 48), and 
whole-grain bread consumers (n = 51) in a free-living sub-population 
enrolled in the PREDIMED Study. Stratified by typical consumption, 
as reported by FFQ, subjects provided a fasting morning spot urine 
sample. Alkylresorcinol metabolites DHPPA glucuronide and 
5-(3,5-dihydroxyphenyl) pentanoic acid (DHPPTA) sulphate were 
found to be  significantly higher in whole-grain bread consumers 
compared to white bread consumers and non-bread consumers. 
Additionally, microbial-derived compounds such as hydroxybenzoic 
acid glucuronide, as well as benzoxazinoid-related compounds (N-(2-
hydroxyphenyl) acetamide (HPAA) glucuronide; 

FIGURE 3

Summary of urinary metabolites as biomarkers of whole grains, nuts, seeds, oils, and sugar. Created with BioRender.com. Jackson, M. (2025) https://
BioRender.com/t08g470.
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2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (HMBOA)) were 
excreted in higher amounts by both types of bread consumers 
compared to non-bread consumers (43). Similarly, DHBA and 
2,6-dihydroxybenzoic acid were also able to predict whole grain intake 
(25). Lastly, Garg et  al. investigated the urinary metabolites post-
consumption of wheat bran or the isolated component of bran, 
aleurone (45). Fourteen people were included in this randomized 
cross-over study, providing either 50 g of minimally processed wheat 
bran, 50 g of minimally processed wheat aleurone, or a control meal, 
separated by week-long washout periods. Urine was collected prior to 
consumption, and again analyzed at hours 1 and 2 post-consumption. 
There were distinguishable higher levels of lactate, alanine, 
N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) 
after bran and aleurone consumption, but not with the control. 
Metabolites were not distinguishable between bran and aleurone (45).

Nuts, seeds and oils

Nuts, seeds and oils are high in polyphenols therefore, these 
metabolites were tested as biomarkers across several studies. Tulipani 
et al. designed a randomized controlled trial of a control and nut 
intervention group (30 g/day of raw unpeeled mixed nuts: 15 g of 
walnuts, 7.5 g of almonds, and 7.5 g of hazelnuts) (46, 47). Three 
classes of biomarkers candidates were identified, including fatty acid 
metabolites, phenolic compound metabolites, and tryptophan/
serotonin pathway metabolites (46). Upon further analysis, the 
phenolic compounds group, specifically the ellagitannin-derived 
urolithins A and B, were found to significantly increase after nut 
consumption and urolithins C, and D were also detected (47).

Flaxseed is a lignan-rich food, therefore Hutchins et  al. 
investigated the relationship between dietary intake of flaxseed and 
urinary metabolites of lignan (48). Healthy post-menopausal women 
participated in a randomized cross-over study testing 5 and 10 g of 
ground flaxseed versus a control period, collecting 24-h urine. Both 
doses increasing lignan metabolite excretion, and was able to 
demonstrate a dose–response relationship (48).

Miro-Casas et  al. examined polyphenols of tyrosol and 
hydroxytyrosol as urinary biomarkers of olive oil intake (49). Olive oil 
was given at doses of 50 mL for day 1 and 25 mL for 1 week to test 
single versus sustained intake. Single and sustained intake of olive oil 
increased excretion of tyrosol and hydroxytyrosol, with authors 
recommending tyrosol as a better biomarker due to the dose-effect 
relationship (49). A summary of the metabolites for nuts, seeds, and 
oils is presented in Figure 3.

Sugar and artificial sweeteners

Urinary sugar biomarkers, as well as artificial sweeteners, have been 
explored within US and UK populations. One of the first sugar biomarker 
studies, by Tasveka et al., (50) conducted a randomized controlled cross-
over trial for 30 days, examining the relationship between intake of sugar 
at three levels (9.5, 21.8 and 40.2% of energy intake) and urinary sucrose 
and fructose, as well as a habitual diet verification study. Sugar intake was 
highly correlated with urinary the combination of urinary sucrose and 
fructose in both the dose response study and the habitual intake study, 

with correlation coefficients greater than 0.84 in both analyses. The sum 
of urinary fructose and sucrose explained 74% of regression model 
variability from the dose response study and 72% in the habitual intake 
study. Similarly, Song et al. (51) utilized the CARB (Carbohydrates and 
Related Biomarkers) randomized cross-over study of 53 participants after 
following both high and low glycemic-index diets, measuring sucrose and 
fructose in 24-h urine. While urinary sucrose and fructose were associated 
with total sugar consumption, only 44.3% of urinary fructose variation 
and 41.7% of both urinary sucrose and fructose variation were explained 
by the models adjusted for age, gender, and percent body fat. Freedman 
et al. utilized an UK-based feeding trial and an Arizona, US-based feeding 
trial to examine sugar intake and urinary sugar (fructose and sucrose). 
This study was able to confirm the relationship between urinary sugar and 
total sugar intake across different populations, generating similar 
predictive models in both cohorts (52). Urinary biomarkers of artificial 
sugar intake, including acesulfame-K, saccharin, sucralose, cyclamate, and 
steviol glycosides, was assessed by Logue et al. via a randomized cross-
over dose–response study in 21 adults. Mean urinary concentrations of 
each artificial sweetener were significantly correlated to provided intake 
amounts, with correlation coefficients at 0.89 or greater. Regression 
modeling of the 24-h urinary excretions revealed that a high percent of 
the variations were explained for acesulfame-K (99%), saccharin (87%), 
cyclamate (91%) and steviol glycosides (75%), while only accounting for 
35% of the variability of sucralose (53).

Cocoa, coffee, tea

Cocoa, coffee, and tea are high in polyphenols and flavonoids, 
which was the similar aim among many studies, however specific 
findings varied greatly, as summarized in Figure 4.

Cocoa
Cocoa is a flavonoid-rich food, with epicatechin identified as a 

biomarker in three studies (23, 54, 55). Roura et al. (54) noted cocoa 
is commonly ingested in combination with milk, and thus aimed to 
study the difference in urinary flavonoid metabolites identifiable after 
consumption of 40 g of cocoa powder prepared with milk or water, 
compared to milk-only control. Metabolites captured in both cocoa 
preparations included an (−)-epicatechin glucuronide and three 
(−)-epicatechin sulfates, showing no differences in overall excretion 
between treatments. However, findings may suggest the presence of 
milk may alter flavonoid metabolism, inducing the excretion of 
sulfates before glucuronides (54). Long-term exposure to cocoa was 
examined by Urpi-Sarda et al. (55) through a four-week randomized 
controlled, cross-over trial. Participants received 40 g of cocoa in milk 
compared to milk-only control for 4 weeks each, in a random order, 
and collected 24-h urine. Similar to Roura et al. (55) Urpi-Sarda found 
the presence of (−)-epicatechin glucuronides and (−)-epicatechin 
sulphates after consumption of cocoa, as well as O-methyl-epicatechin, 
5-(3′,4′-dihydroxyphenyl)- γ-valerolactone and 5-(3′-methoxy-4′-
hydroxyphenyl)- γ-valerolactone. Finally, Ito et al. (23) also confirmed 
urinary excretion of epicatechin after consumption of a cocoa.

Coffee
Ito et al. (23) demonstrated caffeic acid, as well as its metabolite, 

m-coumaric acid, to be present in urine after coffee ingestion. Hodgson 
et al. (56) found isoferulic acid was correlated with usual and current coffee 
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intake. Isoferulic acid was able to predict coffee intake status with 57% 
specificity and 61% sensitivity (56). Similarly, Rechner et al. (57) in a small 
study of five healthy males, identified isoferulic acid as a unique biomarker 
after ingestion of instant coffee. Lang et al. (58) sought to define dietary 
biomarkers of coffee consumption, distinct from other caffeinated foods. 
N-methyl-pyridinium (NMP) and trigonelline were found to be suitable 
markers for coffee intake, with detectable presence up to 48 h (trigonelline) 
and 72 h (NMP) (58). Bresciani et al. also showed trigonelline and NMP 
had dose–response excretion curves for coffee intake. The authors also 
noted potential sex-based differences in absorption of trigonelline and that 
NMP may be impacted by smoking status (59).

Tea
Gallic acid, a phenolic acid, and its derivative, 4-O-methylgallic 

acid (4OMGA) have been identified as a biomarker of tea intake in 
three studies (23, 56, 60). In Hodgson et al., even after adjustment 
for age, gender and study group, 4-O-methylgallic acid (4OMGA) 
was significantly correlated with usual and current tea intake and 
4OMGA was able to predict tea-drinking status with 81% specificity 
and 82% sensitivity (56). Ito et al. also identified the presence of 
gallic acid after tea consumption, as well as epicatechin, caffeic acid 
and naringenin (23). Daykin et al. also investigated tea biomarkers, 
hypothesizing that as an abundant source of polyphenols, flavonoid 
metabolites would be able to be identified in urine collection (60). 
This small study of three volunteers in a 5-day tea consumption trial 
identified hippuric acid as the main metabolite after the 
consumption of black tea but was only identifiable after around 
10.5 h post-consumption, compared to 1,3-dihydroxyphenyl-2-O-
sulfate that was present within 5 h of consumption. Low levels of 
gallic acid were also identified (60).

Urinary biomarkers of a herbal “mountain tea,” Sideritis scardica, 
used primarily by inhabitants of Balkan and Mediterranean countries 
was examined (61). Flavonoids were the predominate urinary 
metabolite group, making up to 94% of the total polyphenolic 
metabolites detected. Of sixty-three metabolites, isomers of 
methylhypolaetin and methylisoscutellarein glucuronides were most 
abundant (61). Wang et al. (25) found N-acetyltheanine to be the most 

predictive biomarker for total tea intake and specifically green tea and 
black tea.

Alcohol

A summary of urinary biomarkers of alcohol intake is presented in 
Figure 4. While alcohol is predominantly metabolized to acetaldehyde 
and acetic acid, a small fraction is also converted to ethyl glucuronide 
(EtG) and ethyl sulfate (EtS). This has prompted researchers to examine 
the utility of EtG and EtS as sensitive biomarkers of alcohol intake. 
Across three studies, EtG was a biomarker for alcohol intake (25, 62, 
63). Helander and Beck conducted a small study with nine healthy 
adults who drank alcohol (unspecified) equivalent to either 0.15 g/kg 
or 0.5 g/kg and collected urine for 24 h (62). Both EtS and EtG were 
identifiable as early as one-hour post-consumption, where EtS 
exhibited a longer and dose-dependent elimination half-life and was 
still detectable at 24 h. Notably, water dilution was accounted for when 
expressed as a ratio of EtS to urinary creatinine (62). While Vazquez-
Fresno et al. (63) also found EtG to be a robust marker of wine intake 
among a sub-population of the free-living PREDIMED cohort study, a 
combined model of EtG and tartrate produced an AUC of 90.7%, 
compared to EtG singularly (AUC 86.3%). EtG and tartrate models 
may also provide evidence of wine consumption between 24 and 72 h, 
as concentrations of EtG and tartrate were significantly higher in those 
reporting drinking wine within the previous 3 days compared to 
non-drinkers, but this difference was not seen in those who drank wine 
greater than 3 days prior to the urine sample and non-drinkers (63).

Resveratrol is another highly studied component of wine and 
shown as a potential biomarker of wine intake in three studies (64–
66). Two interventional studies were able to distinguish resveratrol 
as a biomarker of wine intake, compared to gin as a control ethanol 
source (64, 65), as well as its continued presence in dealcoholized 
wine (64). Another factor of consideration is white versus red wine, 
where resveratrol metabolites significantly increase for both white 
and red wine drinkers, but red wine produced a higher 
concentration change of resveratrol over white wine (65). In 

FIGURE 4

Summary of urinary metabolites as biomarkers of cocoa, coffee, tea, and alcohol. Created with BioRender.com. Jackson, M. (2025) https://BioRender.
com/e82j056.
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cross-sectional analyses, those reporting wine consumption had 
significantly higher levels of resveratrol metabolites than 
non-drinkers (65, 66). Resveratrol metabolites in urine also showed 
detectable differences between those reporting drinking one glass 
of wine per week and three glasses of wine per week, where one 
glass of wine per week was detectable up until 3 days post-
consumption and three glasses of wine were detectable until 5 days 
post-consumption (66).

Dairy

Products of galactose, a dairy sugar, metabolism have been 
found to be biomarkers of dairy, including galactonic acid (67) 
and galactitol (68), summarized in Figure  5. Pimentel et  al. 
utilized the A Healthy Diet for a Healthy Life: Food Biomarkers 
Alliance (FoodBAll) study to describe potential biomarkers of 
milk and cheese intake, comparing 600 mL of full-fat milk and 
100 g of hard cheese to 600 mL of a soy-based drink with a 24-h 
urine collection (67). After consumption of milk, urinary blood 
group H disaccharide (BGH) and galactonic acid and its isomer, 
gluconic acid were present. Aminoadipic acid, phenylalanyl-
proline and indole-3-lactic acid were detected in urine post-
cheese consumption; however, aminoadipic acid was not found 
to be discriminate to cheese, as increased presence was noted 
with both milk and soy intake (67). Similarly, Li et  al. (68) 
examined intake of milk, cheese, and yogurt in a free-living 
population in the Netherlands. For milk intake, urinary galactitol 
was significantly different between quintile 3–5 versus 1–2. 
Several differences were found based on participant phenotypes, 
including sex-specific differences in urinary lactose and galactitol 
in men versus women. Cheese intake had no specific biomarkers 
for the whole population, but when stratified by sex, urinary 
indole-3-lactic acid was different across quintile in men, but not 

women. There were no specific significant markers for yogurt 
intake (68). Lastly, Toren and Norman investigated the utility of 
24-h urinary calcium as a marker for dietary calcium intake. In a 
population of 68 women, there was no significance between 24-h 
urinary calcium and dietary calcium, after adjustment (69).

Soy

Ten studies investigated urinary isoflavones from soy-based foods 
(Figure 5). There was a consistent significant relationship among various 
populations and demographics between soy products and urinary 
isoflavone concentrations. This relationship persisted among Asian 
cohorts (70, 71) with typical high intake of soy-based foods and Western 
populations with low reported intake (72–75). Four additional 
interventional studies (76–79) provided additional evidence of this 
relationship being present in both men and women. Haron et  al. 
compared urinary isoflavone excretions in post-menopausal women after 
consumption of tempeh versus milk in a randomized cross-over study. 
Daidzein and genistein, but not equol, were detected in low amounts after 
consumption of milk. However, concentrations of daidzein, genistein and 
equol were up to 13 times higher with tempeh consumption compared to 
milk, offering a clear distinction (78). Grainger et al. studied 55 men with 
prostate cancer, prior to prostatectomy, for the relationship of urinary 
biomarkers after the consumption of zero, one or two 6-oz cans of a 
tomato-soy drink (77). Urinary isoflavones (daidzein, genistein, glycitein 
and their derivatives) were only detectable in those consuming the drink, 
with a significant dose–response relationship.

Meat and protein sources

Multiple studies covered topics of protein sources, including red 
meat, fish, eggs, chicken, and pork, where 1-methylhistidine (1-MH) 

FIGURE 5

Summary of urinary metabolites as biomarkers of dairy, soy, meat and other protein foods. Created with BioRender.com. Jackson, M. (2025) https://
BioRender.com/l61v909.
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(80, 81), 3-methylhistidine (3-MH) (25, 81, 82) and carnosine (81, 82) 
were commonly found across studies as biomarkers of meat intake 
(Figure  5). Additional markers identified urinary choline for egg 
consumption (83), methionine (83) and Trimethylamine N-oxide 
(TMAO) (84) for fish consumption, and dimethylglycine (DMG) for 
beef consumption (83).

Cross et  al. utilized 24-h urine samples from two cross-over 
randomized controlled dietary studies, following different doses of red 
meat and a high-protein vegetarian diet (80). Urinary output of taurine, 
creatinine, 1-MH and 3-MH were significantly higher after consumption 
of a high-red meat diet vs. low red meat or vegetarian diet but only 1-MH 
and 3-MH increased in a significant dose-dependent manner. Altorf-van 
der Kuil et al. looked at metabolite profiles for meat, dairy and grain-based 
protein intake (81). A prediction model using urinary carnosine, 1-MH 
and 3-MH accounted for 98% of the variability of intake of meat-based 
protein, but were unable to distinguish between dairy-based protein and 
grain-based protein (81). Cuparencu et al. (82) designed a randomized 
cross-over meal study to examine biomarkers for meat consumption, 
testing 48-h urine after intake of chicken, pork, beef against a control of 
egg whites and peas. Of the metabolites, creatine and carnosine were 
confirmed as biomarkers of general meat intake by an independent 
confirmation study comparing beef intake to a vegetarian meal. Five 
hydroxyproline-based peptides were confirmed as markers of red meat 
intake and anserine and 3-MH were detected as biomarkers of chicken 
intake. However, the study concluded that prediction models were 
strongest when combining two or more markers (82).

Discussion

This systematic review demonstrated current evidence for 
potential urinary biomarkers of food and food group intake. Here, 
we described a wide array of investigated biomarkers, across food 
groupings, where some food groups showed multiple potential 
biomarkers, while others have a narrower consensus. We were able to 
expand the context (85) to which metabolites of foods of interest were 
examined and compare them across similar and dissimilar 
food groupings.

Seemingly, the scope of food studies that investigate one food, 
while successfully identifying key metabolites of interest, limits 
the ability to understand shared metabolites across food 
groupings. In isolation, this may lead to a false conclusion, 
weakening the ability to correctly distinguish unique biomarkers. 
For example, kaempferol and quercetin were found to be the two 
most abundant flavonoids in onions (39), but in separate studies, 
these also were found to have dose-dependent relationships with 
fruit and vegetable intake (37, 38). Quercetin and kaempferol are 
specifically flavonols, a sub-class of flavonoids, which belong to 
the overarching group of polyphenols (86). Therefore, quercetin 
and kaempferol, while abundant in onions, may be too ubiquitous 
biomarker to solely measure onion intake, and rather suggestive 
of a diet comprised of flavonoid-rich foods, like fruits, vegetables, 
and aromatics. This has been similarly demonstrated by Yang 
et  al. where those consuming a polyphenol-rich diet (fruits, 
vegetables, coffee and tea) had significantly higher urinary levels 
of several polyphenols, including kaempferol and quercetin (87).

In fact, one broad theme across food groupings was the majority of 
plant-based foods reviewed polyphenols and their subclasses as potential 

biomarkers. Figure 6 summarizes the connections between polyphenol 
classes and their respective plant-derived foods. For example, soy foods 
were unanimously represented by urinary isoflavones, a type of 
polyphenol of the sub-class of flavonoids; resveratrol as a biomarker for 
wine is a type of polyphenol under stilbenes; and naringenin and 
hesperetin, which fall under the polyphenol subgroup of flavanones, had 
strong representation as biomarkers of citrus fruit intake. Epicatechins 
were found to be biomarkers of cocoa and tea, which fall under flavanols, 
a sub-class of flavonoids, while coffee was represented by coumaric acid 
and ferulic acid, that can be  grouped into hydroxycinnamic acids, a 
sub-class of phenolic acids.

While several studies point to high fruit and vegetable 
consumption being represented by polyphenols, additional 
common biomarkers across plant foods, included sulfur-
containing compounds, such as glucosinolates, sulfoxides, and 
sulfides. These compounds are generally found in vegetables in 
the Brassica family (88), including cruciferous vegetables of 
broccoli, kale and cabbage, as well as foods in the Allium family 
(89), like garlic, leek and onion; thus it is logical they are 
confirmed to be present in urine for these foods. Additionally, 
whole grains did not have a polyphenol biomarker, but strong 
consensus demonstrated the appropriate biomarker for whole 
grains are alkylresorcinols. While not a polyphenol, 
alkylresorcinols do contain a lipophilic polyphenol structure, 
naturally synthesized by plants (90). In contrast, animal-based 
foods reviewed were not represented by polyphenols, but instead 
more commonly represented by amino acid-related metabolites, 
such as 1-MH and 3-MH, as derivatives of the essential amino 
acid histidine (91). Biomarkers for dairy similarly were derived 
from its major food component, galactose, only found in dairy 
foods (92). An additional point of interest is that combined 
modeling (using a profile of metabolites) was only investigated 
in a few studies, but led to stronger prediction capabilities (50, 
63, 82) and warrants further exploration of combining several 
metabolites to create biomarker profiles of food intake. For 
example, McNamara et al. sought to develop a biomarker panel 
for fruit intake containing proline betaine, hippurate, and xylose 
and was able to distinguish intake based off three ranges grams 
of fruit intake, improving descriptive abilities compared to a 
dichotomous detection of yes/no metabolite present (93). The 
results from the present review can continue to guide the 
investigation of the most promising groupings of metabolites to 
improve predictions of food intake.

This study is strengthened by its wide inclusion criteria, allowing for 
cross-examination across different groups of food intake. Very few food 
groups delivered a consensus of one biomarker for a particular food and 
thus future studies may benefit from investigating if a multiple metabolite 
profile has a stronger relationship with food intake. While an array of 
study designs increased the ability to examine a diverse set of food groups, 
it also limits comparability across studies. Additionally, many studies had 
small cohorts, where 71% had less than 50 participants, and diversity was 
equally as sparse, being predominantly white. There is evidence to suggest 
that nutrient metabolism may differ by ethnic/racial genetic background, 
such as polymorphisms that increase choline requirements (94) or 
metabolism of polyunsaturated fatty acids (95). Thus, biomarkers of diet 
intake, especially when derived from downstream metabolite products, 
should be  further studied in diverse cohorts. Lastly, further research 
should expand upon the predictive ability, including accuracy and 
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reliability, of these identified metabolites in order to increase clinical and 
research utility of urinary biomarkers.

Current evidence on urinary biomarkers may have utility in 
describing intake of broad food groups, such as citrus fruits, cruciferous 
vegetables, whole grains, and soy foods, but may lack the ability to clearly 
distinguish individual foods. The ability to reliably use urine as a method 
of biomarker attainment for dietary intake has the potential to transform 
diet assessment methods, remove barriers to care, and improve the ability 
to personalize nutrition interventions. Importantly, urine collection can 
be  done at home, compared to blood-derived nutrient assessment, 
allowing for an improvement in collection burden and compliance, while 
also expanding healthcare access to rural areas and those with 
transportation barriers. While these urinary metabolites have been 
researched broadly within general healthy populations, future research 
can verify these as biomarkers of diet intake in disease-state populations. 
The overall improvement of exposure assessment methodology is a key 
step toward strengthening research data validity and accurately measuring 
outcomes in chronic disease management.
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