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Background: Dietary patterns influence the onset of metabolic syndrome (MetS) 
through the modulation of intestinal microbiota. Nevertheless, the relationship 
between the dietary index for gut microbiota (DI-GM), a novel metric for 
evaluating the link between diet and microbiota well-being, and its correlation 
with MetS, as well as the potential mediating role of body mass index (BMI), 
remains unclear.

Methods: This study examined information from 21,100 individuals participating 
in the National Health and Nutrition Examination Survey (NHANES) conducted 
between 2007 and 2020. The association of DI-GM with MetS was assessed 
using a weighted multivariate logistic regression model, and restricted cubic 
spline curves (RCS), subgroup analyses, and mediation analyses were performed.

Results: A significant inverse correlation was observed between DI-GM 
score and the prevalence of MetS. The prevalence of MetS decreased by 8% 
(OR = 0.92, 95% CI: 0.89–0.95) for each unit of DI-GM. The prevalence of MetS 
was reduced by 26% in Q4 compared with Q1 (OR = 0.74, 95% CI: 0.63–0.87). 
RCS analysis further revealed a linear relationship between DI-GM and MetS 
prevalence. Subgroup analysis showed that the negative association between 
DI-GM and MetS was more significant in the exercise, non-smoking, and non-
drinking population. Furthermore, BMI played a significant mediating role in the 
association, accounting for 52.71%.

Conclusion: A notable negative correlation exists between DI-GM score and 
the prevalence of MetS. The promotion of a healthy lifestyle can strengthen this 
correlation, with BMI serving as a crucial mediating factor. This underscores the 
potential of dietary interventions that focus on gut microbiota in conjunction 
with weight management as targeted strategies for the prevention and 
management of MetS.
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Introduction

Metabolic syndrome (MetS) represents a constellation of 
metabolic abnormalities including insulin resistance, abdominal 
obesity, elevated blood glucose, lipid abnormalities, and high blood 
pressure, posing a substantial worldwide public health concern (1). 
Research suggests that roughly 25% of the world’s population—
exceeding 1 billion individuals—suffers from this condition, while in 
the United States, approximately one-third of adults meet diagnostic 
criteria (2). Beyond being a clinical condition resulting from the 
convergence of multiple metabolic risk factors, MetS significantly 
increases vulnerability to numerous chronic conditions such as heart 
disease and type 2 diabetes (3). Consequently, prevention and 
management of MetS are essential to interrupt the onset of associated 
diseases, slow disease progression, and reduce the overall risk of 
morbidity and mortality.

Modifiable lifestyle factors, particularly dietary habits, play a 
pivotal role in the pathogenesis of MetS. Recent findings underscore 
their reciprocal relationship with gut microbiota in modulating 
metabolic well-being. Western dietary patterns, characterized by high 
fat consumption, disrupt gut microbiota composition by diminishing 
beneficial bacteria (e.g., Bifidobacterium) and fostering the growth of 
opportunistic pathogens, thereby reducing short-chain fatty acids 
(SCFAs) production, compromising gut barrier function, and 
triggering systemic inflammation that exacerbates insulin resistance 
and metabolic dysfunction (4). In contrast, diets rich in dietary fiber 
and polyphenols enhance microbial diversity, promote SCFAs 
synthesis, and inhibit endotoxin-producing bacteria, thereby 
collectively improving glucose regulation and lipid metabolism (5, 6). 
Therefore, gut microbiota is a key mediator linking dietary patterns 
with MetS development. Traditional dietary indices like the 
Mediterranean diet (MD) and the Dietary Approaches to Stop 
Hypertension (DASH) have demonstrated protective relationships 
with MetS by emphasizing anti-inflammatory and cardiometabolic 
advantages (7, 8). However, these indices do not explicitly account for 
diet-microbiome interactions, thereby limiting their capacity to 
evaluate the microbial mechanisms of dietary impacts. To fill this gap, 
the dietary index for gut microbiota (DI-GM) was developed by Kase 
et  al. as a novel tool to quantify dietary quality related to gut 
microbiota health (9). The DI-GM comprises 14 food components: 
beneficial components (e.g., whole grains, fermented dairy products, 
soybeans, green tea) that enhance microbial diversity and the 
production of SCFAs, and harmful components (e.g., red meat, 
refined grains, high-fat diets) that are linked to microbiota 
imbalances. Initial research indicates that higher DI-GM scores are 
linked to a decreased risk of diabetes and depression (10, 11), 
underscoring their potential as indicators of microbial-mediated 
metabolic health. Despite advancements, comprehensive 
epidemiological evidence establishing a connection between DI-GM 
and MetS is lacking, and it remains uncertain whether body mass 
index (BMI), a fundamental measure of obesity, mediates the impact 
of DI-GM on MetS.

Therefore, this study utilized data from the National Health and 
Nutrition Examination Survey (NHANES) 2007–2020 to investigate 
the association between DI-GM score and MetS prevalence in 
American adults, as well as the mediating role of BMI. These analyses 
aim to provide evidence for developing targeted dietary intervention 
strategies to address MetS.

Materials and methods

Data sources

Conducted by the US National Center for Health Statistics, 
NHANES represents an ongoing, nationally representative cross-
sectional survey that employs a stratified, multistage probability 
sampling approach. The research protocol received review and 
approval from the NCHS Research Ethics Review Board, with all 
participants giving written informed consent. Complete data sets can 
be accessed directly through the NHANES official website. In this 
study, we  investigated 66,148 participants from 2007 to 2020. 
Exclusions were made for those under 20, with missing DI-GM or 
MetS data, a cancer diagnosis, or lacking covariate data. Ultimately, 
21,100 participants were included based on strict criteria. The specific 
inclusion process is shown in Figure 1.

Dietary index for gut microbiota

To calculate DI-GM, this research examined 24-h dietary recall 
data from the NHANES database. Participants in NHANES completed 
two detailed 24-h dietary recall assessments. The initial interview took 
place at a mobile examination center (MEC), while the second was 
administered by phone, both documenting participants’ food 
consumption during the preceding 24-h period. To improve 
measurement accuracy, we averaged two independent 24-h dietary 
recall interviews for each participant. The DI-GM scoring system was 
built based on standards proposed by Kase et  al., comprising 14 
dietary components: beneficial ones like fermented dairy, chickpeas, 
soybeans, whole grains, fiber, cranberries, avocados, broccoli, coffee, 
and green tea; and adverse ones including red meat, processed meat, 
refined grains, and high-fat diets (with ≥40% of energy from fat) (9). 
When assessing the link between individual diet and gut health, the 
DI-GM scoring system used sex-specific medians as the key cutoff. 
Beneficial components were scored as follows: participants received a 
score of 1 if their intake met or exceeded the sex-specific median, 

FIGURE 1

The flow chart of this study.
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otherwise they scored 0. For adverse components, scoring was 
inverted: participants received a score of 0 if their intake was at or 
above the median (or if fat intake contributed more than 40% of total 
energy), otherwise they received a score of 1. The total score, summing 
each component, ranges from 0 to 14.

MetS diagnostics

Based on the National Cholesterol Education Program’s Adult 
Treatment Panel III (NCEP-ATP III) criteria (12), metabolic syndrome 
is characterized by having three or more of these factors: abdominal 
girth of 102 cm or more in men or 88 cm or more in women; fasting 
plasma glucose of 100 mg/dL or higher or taking glucose-lowering 
medication; BP of 130/85 mmHg or higher or using blood pressure-
lowering medication; TG levels of 150 mg/dL or higher or receiving 
medical therapy; high-density lipoprotein cholesterol below 40 mg/dL 
in men or below 50 mg/dL in women, or being treated with medication.

Covariates

This study’s covariates comprised demographic and lifestyle 
factors including age, gender, race, poverty-to-income ratio (PIR), 
education level (high school education or less, more than high school), 
marital status (never married, divorced/widowed/separated, married/
cohabiting), smoking (yes/no), drinking (yes/no), exercise and body 
mass index (BMI, weight divided by height squared). Exercise was 
categorized as participating in a minimum of 10 consecutive minutes 
of moderate-intensity exercise, physical fitness activities, or 
recreational activities per week. Data were collected via standardized 
questionnaires and interview procedures administered by NHANES.

Statistical analysis

Considering NHANES’ complex stratified probability sampling 
design, sample weights were incorporated into the analysis. In the 
descriptive analysis of participants’ baseline characteristics, 
continuous variables are presented as weighted means ± standard 
deviations (SD), while categorical variables are reported as actual 
frequencies and weighted percentages. To investigate the association 
between DI-GM (both as continuous and categorical variables) and 
metabolic syndrome, weighted multivariable logistic regression 
models were used, with results presented as odds ratios (OR) and 
95% confidence intervals (CI). Three distinct models were developed: 
Model 1, which did not account for any covariates; Model 2, which 
adjusted for age, gender, and race; and Model 3, which further 
incorporated adjustments for socioeconomic factors (PIR, education 
level), lifestyle factors (smoking, drinking, exercise), and marital 
status to mitigate potential confounding influences. The relationship 
between DI-GM and MetS was assessed utilizing a restricted cubic 
spline curve (RCS) with three nodes positioned at the 25th, 50th, and 
75th percentiles to explore potential nonlinear associations. 
Subgroup analyses based on sex, age (<60, ≥60), race, exercise, 
smoking, and drinking were conducted to test for differences and 
potential variants between different subgroups and tested for 
interactions between them, but did not perform multiple 

comparisons. In addition, the Bootstrap method (1,000 replicates) 
was used to test the mediating effect of BMI, and the average causal 
mediating effect (ACME, reflecting the mediating effect size), direct 
effect (ADE, direct effect of DI-GM on MetS), and mediating effect 
proportion were calculated. Statistical analyses were performed using 
R version 4.2.0 and DecisionLinnc 1.0, with statistical significance set 
at p < 0.05.

Results

Baseline characterization

The research encompassed 21,100 participants, corresponding to 
a weighted total of 160,008,955 individuals, categorized into four 
quartiles (Q1-Q4) according to DI-GM scores. Findings demonstrated 
a meaningful relationship between DI-GM and metabolic syndrome 
prevalence (p < 0.001, Table  1). MetS prevalence decreased from 
24.02% in Q1 to 19.81% in Q4 as DI-GM quartiles increased. The Q4 
group (highest DI-GM) has better socioeconomic and health 
behaviors: higher mean age (48.37 ± 15.53), PIR (3.43 ± 1.60), 
education level (>high school: 74.14%), and married/living with 
partner rate (66.32%). They also had the highest exercise rate (57.54%) 
and lowest smoking (43.67%) and drinking rates (13.53%) (p < 0.05). 
Additionally, non-Hispanic White participants had the highest 
representation in Q4 (73.36%), while the proportions of Mexican 
Americans and non-Hispanic Black participants decreased with 
increasing DI-GM (both p < 0.001).

The association between DI-GM and MetS

Weighted multivariable logistic regression analysis was 
employed to evaluate the relationship between DI-GM and MetS 
(Table 2). In Model 1, with no adjustment for any covariates, a 
1-unit increase in DI-GM was found to reduce MetS prevalence by 
7% (OR = 0.93, 95% CI: 0.91–0.96, p < 0.001). Following further 
adjustment for age, sex, and race (Model 2), the reduction in 
prevalence increased to 10% (OR = 0.90, 95% CI: 0.87–0.93, 
p < 0.001). In the final model (Model 3), following additional 
adjustment for socioeconomic and lifestyle factors, each additional 
DI-GM unit was associated with an 8% reduction in MetS 
prevalence (OR = 0.92, 95% CI: 0.89–0.95, p < 0.001). The findings 
of the group analysis by DI-GM quartile demonstrated a significant 
26% reduction in MetS prevalence in the highest quartile (Q4) in 
comparison to the lowest quartile (Q1) in Model 3 (OR = 0.74, 
95% CI: 0.63–0.87, p < 0.001). Further analysis revealed that in 
Model 3, higher adverse scores for gut microbiota (i.e., reduced 
intake of harmful components) were associated with a lower 
prevalence of MetS (OR = 0.84, 95% CI: 0.80–0.88), with no 
significant differences observed for beneficial component scores. 
In addition, the beneficial ingredients avocados, chickpeas, coffee 
and the four ingredients unfavorable to gut microbes were all 
associated with a lower prevalence of MetS (p < 0.05) (see 
Supplementary Table S1). The trend analysis (p for trend < 0.001) 
additionally corroborated a statistically significant inverse 
relationship between DI-GM and metabolic syndrome prevalence. 
Furthermore, restricted cubic spline analysis (Figure  2) 
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demonstrated a meaningful linear association between DI-GM and 
metabolic syndrome (p for overall < 0.001, p for nonlinear = 0.207), 
suggesting that elevated DI-GM scores correspond to reduced 
metabolic syndrome prevalence.

Subgroup analysis

Subgroup analysis (Figure 3) demonstrated differing relationships 
between DI-GM and metabolic syndrome across various population 
segments. In exercise individuals (OR = 0.93, 95% CI: 0.88–0.98, 
p = 0.006), individuals who were non-smokers (OR = 0.93, 95% CI: 
0.88–0.97, p = 0.002), and those who non-drinkers (OR = 0.94, 95% 
CI: 0.91–0.98, p = 0.001), the inverse relationship between DI-GM and 
metabolic syndrome reached statistical significance. Statistically 
significant interaction effects were detected for exercise (p for 
interaction = 0.047), smoking (p for interaction = 0.018), and drinking 
(p for interaction = 0.012). No significant interaction effects were 
observed in other subgroup analyses (all p for interaction > 0.05).

Mediation analysis

Furthermore, mediation analysis was conducted to ascertain the 
potential mediating role of BMI in the association between DI-GM 
and MetS. As illustrated in Figure 4, the relationship between DI-GM 
and MetS was found to be  significantly mediated by BMI, upon 
adjustment for all potential confounding variables. The total effect 
coefficient of DI-GM on BMI-mediated MetS was found to be −0.0083 
(p < 0.001). The mediating effect was found to be −0.0044 (p < 0.001). 
The direct effect was found to be −0.0039 (p = 0.014). The proportion 
of mediation was 52.71% (p < 0.001).

Discussion

This study analyzed the NHANES data from 2007 to 2020 to 
investigate the association between DI-GM and MetS. Findings 
revealed that higher DI-GM scores were linked to lower metabolic 
syndrome prevalence, even after adjusting for multiple covariates. RCS 

TABLE 1 Baseline characteristics of the study population classified according to DI-GM.

Variable Overall (weighted 
N = 160,008,955)

Q1 
(N = 5,071)

Q2 
(N = 5,454)

Q3 
(N = 5,232)

Q4 
(N = 5,343)

p-value

Age, years 45.81 ± 16.09 44.34 ± 16.23 44.73 ± 16.27 45.28 ± 16.08 48.37 ± 15.53 <0.001

PIR 3.08 ± 1.66 2.75 ± 1.64 2.98 ± 1.66 3.04 ± 1.66 3.43 ± 1.60 <0.001

Gender, N (weighted %) <0.001

  Male 11,081 (51.39) 2,873 (56.31) 2,896 (52.69) 2,710 (51.04) 2,602 (46.86)

  Female 10,019 (48.61) 2,198 (43.69) 2,558 (47.31) 2,522 (48.96) 2,741 (53.14)

Race, N (weighted %) <0.001

  Mexican American 2,993 (8.37) 696 (8.60) 838 (9.84) 783 (8.62) 676 (6.58)

  Other Hispanic 2,121 (5.93) 536 (6.96) 563 (6.60) 521 (5.46) 501 (4.91)

  Non-Hispanic White 9,002 (67.42) 1924 (61.53) 2,255 (65.21) 2,277 (67.98) 2,546 (73.36)

  Non-Hispanic Black 4,758 (10.88) 1,461 (15.79) 1,257 (11.35) 1,166 (10.95) 874 (6.83)

  Other Race 2,226 (7.40) 454 (7.12) 541 (7.00) 485 (6.99) 746 (8.32)

Levels of education, N (weighted %) <0.001

  ≤ high school 9,232 (36.48) 2,630 (46.16) 2,590 (41.02) 2,269 (35.49) 1743 (25.86)

  > high school 11,868 (63.52) 2,441 (53.84) 2,864 (58.98) 2,963 (64.51) 3,600 (74.14)

Marital status, N (weighted %) <0.001

  Never married 3,070 (14.97) 841 (16.40) 687 (13.42) 777 (17.85) 765 (13.11)

  Widowed/Divorced /Separated 5,489 (22.29) 1,360 (24.35) 1,591 (25.14) 1,318 (19.16) 1,220 (20.58)

  Married/Living with partner 12,541 (62.74) 2,870 (59.25) 3,176 (61.44) 3,137 (62.99) 3,358 (66.32)

Drinking, N (weighted %) 0.002

  Yes 3,591 (15.95) 981 (18.64) 961 (16.68) 882 (15.65) 767 (13.53)

  No 17,509 (84.05) 4,090 (81.36) 4,493 (83.32) 4,350 (84.35) 4,576 (86.47)

Smoking, N (weighted %) 0.009

  Yes 10,189 (46.42) 2,578 (48.70) 2,670 (47.17) 2,562 (46.86) 2,379 (43.67)

  No 10,911 (53.58) 2,493 (51.30) 2,784 (52.83) 2,670 (53.14) 2,964 (56.33)

Exercise, N (weighted %) <0.001

  Yes 8,891 (48.44) 1826 (41.52) 2,167 (45.51) 2,196 (46.88) 2,702 (57.54)

  No 12,209 (51.56) 3,245 (58.48) 3,287 (54.49) 3,036 (53.12) 2,641 (42.46)

MetS, N (weighted %) <0.001

  No 15,780 (78.24) 3,750 (75.98) 4,012 (76.55) 3,921 (79.87) 4,097 (80.19)

  Yes 5,320 (21.76) 1,321 (24.02) 1,442 (23.45) 1,311 (20.13) 1,246 (19.81)
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analysis additionally verified the linear association between these 
factors. Furthermore, this relationship was more evident among 
individuals maintaining healthy lifestyle behaviors, such as 
non-smoking, non-drinking, and exercising. It is important to note 
that BMI plays a key mediating role (mediating effect accounted for 
52.71%). The findings indicate that dietary patterns targeting gut 
microbiota can reduce the risk of MetS by regulating body weight and 
directly improving metabolic homeostasis, thereby emphasizing the 
distinct value of DI-GM in comparison to conventional dietary indices.

It is important to emphasize that DI-GM is a proxy indicator 
constructed based on food components known to influence the 
composition and function of gut microbiota. Although DI-GM does 
reflect dietary patterns associated with gut health, it does not directly 
measure microbial diversity, composition, or metabolite levels. 
Consequently, the present findings indicate an association between 
diet and metabolic syndrome, which is mediated through putative 
microbial pathways rather than directly confirmed microbial causal 
changes. Notwithstanding this limitation, the dynamic interaction of 
dietary components with intestinal flora provides clear theoretical 
support for the underlying mechanism of DI-GM (see 

Supplementary Table S1 for details). Short-term dietary changes can 
quickly and reversibly alter microbiota composition, while long-term 
changes may lead to lasting changes in the microbial genome (13). 
DI-GM is designed on this principle by integrating 14 key dietary 
ingredients that affect gut flora, beneficial ingredients (e.g., whole 
grains, fermented dairy products, coffee) modulate insulin sensitivity 
by promoting short-chain fatty acid (SCFA) production, increasing 
the abundance of beneficial bacteria, improving intestinal barrier 
function, and inhibiting inflammation (14–16); harmful ingredients 
(e.g., red meat, high-fat diets) induce flora dysregulation, producing 
pro-inflammatory metabolites (e.g., TMAO), and exacerbating 
metabolic derangements (17–19). In comparison with conventional 
indices such as the Mediterranean Diet (MD) and the Dietary 
Approaches to Stop Hypertension (DASH), which demonstrate 
protective effects against MetS through anti-inflammation, 
modulation of lipid metabolism, or control of blood pressure (20, 21), 
the DI-GM is distinct in its approach. The DI-GM explicitly integrates 
foods that can be used as substrates for bacterial fermentation or that 
can inhibit bacterial dysbiosis (e.g., yogurt, kefir), and categorizes 
high-fat diets (≥40% of energy from fat) as unfavorable components 
(9). This dietary effect on flora is the result of multicomponent 
synergism intervening at the root of flora dysbiosis, providing a more 
mechanistic strategy for the prevention of MetS and a more precise 
tool for the assessment of diet-flora-metabolism interactions.

Further analysis in this study revealed that higher scores on the 
DI-GM score for harmful ingredients (i.e., lower intake of harmful 
ingredients) were associated with significantly lower prevalence of 
MetS. This finding is consistent with previous research that the DI-GM 
reduces the risk of diabetes by improving metabolic disorders (22). This 
suggests that reducing harmful ingredient intake is generalisable to 
improving the metabolic core mechanisms. However, scores on beneficial 
dietary components other than avocado, chickpeas, and coffee were not 
significantly associated with lower MetS prevalence. This phenomenon 
may be indicative of the heterogeneity of effects of different components 
in the diet-gut microbiota axis, or may be limited by the accuracy of 
short-term dietary assessments. Furthermore, it has been determined 
that specific beneficial components may exert a “double-edged sword” 
effect. In the male population, abnormal glucose metabolism has been 
identified as a significant contributor to the development of MetS, while 

TABLE 2 Association between DI-GM and MetS.

Exposure Model 1 OR 
(95% CI)

p-value Model 2 OR 
(95% CI)

p-value Model 3 OR 
(95% CI)

p-value

DI-GM 0.93 (0.91, 0.96) <0.001 0.90 (0.87, 0.93) <0.001 0.92 (0.89, 0.95) <0.001

DI-GM quartiles

  Q1 (0–4) Ref Ref Ref

  Q2 (4–5) 0.97 (0.83, 1.13) 0.689 0.95 (0.81, 1.11) 0.488 0.98 (0.83, 1.15) 0.773

  Q3 (5–6) 0.80 (0.69, 0.93) 0.004 0.75 (0.64, 0.87) <0.001 0.79 (0.68, 0.93) 0.004

  Q4 (≥6) 0.78 (0.67, 0.91) 0.002 0.65 (0.56, 0.76) <0.001 0.74 (0.63, 0.87) <0.001

p for trend <0.001 <0.001 <0.001

Beneficial to gut 

microbiota
0.97 (0.94,1.01) 0.139 0.95 (0.92,0.98) 0.005 0.99 (0.96,1.03) 0.598

Unfavorable to gut 

microbiota
0.88 (0.84,0.92) <0.001 0.83 (0.80,0.87) <0.001 0.84 (0.80,0.88) <0.001

Model 1: No covariates were adjusted.
Model 2: Adjust for age, gender, race.
Model 3: Adjust age, gender, race, PIR, levels of education, Marital status, smoking, drinking, exercise.

FIGURE 2

RCS analysis of the association between DI-GM and MetS.
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the consumption of certain dairy products may indirectly lead to the 
onset of obesity and insulin resistance by increasing total calorie intake, 
a consequence of the presence of added sugars (23). Concurrently, 
excessive intake of green tea has the potential to attenuate its anticipated 
metabolic protective effects (24). The findings of this study suggest that 
a reduction in the consumption of detrimental substances (e.g., red meat, 
high-fat diets) may exert a more immediate effect on the prevention of 
MetS than merely increasing the consumption of beneficial substances.

Moreover, in subgroup analyses, the inverse correlation between 
DI-GM and MetS was more pronounced in exercise, non-smoking, 
and non-drinking individuals. However, it is important to note that 
these analyses were exploratory studies without statistical correction 
for multiple comparisons, which may increase the risk of false positives. 
Nevertheless, these results suggest a potential synergistic effect between 
DI-GM and health-promoting behaviors. These findings suggest a 

synergistic effect between DI-GM and health-promoting behaviors. 
Exercise improves gut microbiota composition and diversity by 
increasing beneficial bacteria, reducing gut inflammation, and 
enhancing intestinal barrier function (25). When combined with a 
high-quality DI-GM diet, they may synergistically enhance beneficial 
gut microbial effects, more effectively reducing MetS risk. Smoking and 
drinking are linked to dysbiosis and increased gut permeability (26, 
27). Conversely, refraining from harmful habits maintains gut 
microbiota integrity, thereby enabling the beneficial components of 
DI-GM to more effectively regulate gut microbiota and support 
metabolic health. These interactions highlight the importance of 
combining dietary interventions with health-behavior promotion in 
MetS prevention and management, surpassing single-intervention 
limitations to maximize MetS risk reduction.

Notably, this study first quantified the mediating role of BMI in the 
association between the DI-GM score and MetS, expanding our 
understanding of the diet-gut microbiota-metabolism axis. These 
findings highlight weight management as a critical pathway through 
which diet improves metabolic health, likely due to the DI-GM diet’s 
high fiber content, abundant in whole grains and prebiotics such as 
fermented dairy products, that enhances satiety, reduces energy intake, 
and promotes BMI reduction (28). Additionally, restricting red meat and 
high-fat diets impedes fat accumulation, further alleviating visceral 
obesity (29). These results align with prior research showing that dietary 
interventions may improve metabolic disorders through the microbiota-
metabolism axis and weight control (30). Importantly, the direct effect 
indicates the existence of BMI-independent pathways (e.g., enhancement 
of intestinal barrier), corroborating the “gut microbiota-metabolism” 
direct axis identified in earlier studies (31, 32). By verifying both the 
BMI-dependent and-independent mechanisms, this study enriches the 
theoretical framework for diet-metabolic disease relationships. Future 
research could deeply investigate the interaction between these two 

FIGURE 3

Subgroup analysis between DI-GM and MetS.

FIGURE 4

Mediation analysis.
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pathways using metabolomics, providing a more comprehensive 
understanding of dietary influences on metabolic health.

Although this study, based on NHANES 2007–2020 data, included 
21,100 participants (representing 160 million after weighting), ensuring 
a large, nationally representative sample that enhances the universality 
and statistical power of the results. However, several limitations should 
be acknowledged. First, the cross-sectional design cannot establish a 
temporal relationship between DI-GM and MetS, raising the possibility 
of reverse causality. Individuals at high risk of MetS might alter their 
dietary behaviors due to metabolic abnormalities. Second, despite 
controlling for major confounders, unmeasured and unknown 
confounders could still influence the results. Third, dietary assessment 
relies on 24-h recalls, which may not accurately reflect long-term eating 
patterns and are susceptible to recall bias. Fourth, DI-GM infers gut 
microbiota status from dietary components but lacks direct biological 
data on microbiota composition, abundance, and functional metabolites. 
Lastly, NHANES samples are predominantly from the US, so 
extrapolating results to other ethnicities or cultural backgrounds should 
be done cautiously. In the future, it is recommended that the causality 
be  verified through prospective cohorts and that the mechanism 
be explored in more depth using macrogenomic sequencing, in order to 
further verify whether the DI-GM-related dietary pattern plays a 
protective role through specific changes in the microbiota, and to carry 
out validation studies in multi-ethnic groups.

Conclusion

This study demonstrated that DI-GM was significantly and 
negatively associated with the prevalence of metabolic syndrome (MetS), 
and that body mass index (BMI) played an important partial mediating 
role in this association. A healthy lifestyle (e.g., regular exercise, not 
smoking or drinking alcohol) could reinforce the protective effect of 
DI-GM. This suggests that dietary strategies targeting gut flora could 
directly regulate metabolic homeostasis through microbial metabolism 
and indirectly reduce the risk of MetS by managing weight. In the future, 
it will be necessary to analyze the molecular mechanism of the ‘diet-flora-
BMI-metabolism’ axis by combining longitudinal cohort and multi-
omics techniques. This will provide a basis for integrating dietary 
interventions and weight control strategies.
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