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Early-onset Preeclampsia (EOPE) is a severe pregnancy complication that poses 
significant risks to both maternal and fetal health, often leading to fetal growth 
restriction and maternal morbidity. Despite extensive research, the etiology of 
EOPE remains unclear, though emerging evidence suggests that vitamin D (VD) 
may play an important role in placental development and function. Recent studies 
associate VD deficiency with adverse pregnancy outcomes, including EOPE, through 
mechanisms such as impaired trophoblast invasion and immune dysregulation 
at the maternal-fetal interface. This review aimed to synthesize current literature 
on the role of VD in the pathogenesis of EOPE. We reviewed in vitro, in vivo, and 
clinical studies to evaluate the impact of VD on immune modulation, angiogenesis, 
oxidative stress, and trophoblast migration and invasion in the placenta. This 
comprehensive review aims to provide insights into how VD deficiency exacerbates 
placental dysfunction, contributing to the development of EOPE. These insights 
support the rationale for VD supplementation as a potential preventive strategy 
and highlight the need for further clinical investigation.
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1 Introduction

Early-onset preeclampsia (EOPE) is a severe pregnancy complication defined by 
hypertension and proteinuria before 34 weeks of gestation, affecting approximately 2–8% of 
pregnancies worldwide (1). It is associated with adverse maternal and fetal outcomes including 
fetal growth restriction (FGR), preterm birth and increased maternal morbidity. While the 
exact etiology of EOPE is multifactorial, abnormal placental development is recognized as a 
central feature (2).

Among the potential upstream contributors, vitamin D (VD) deficiency has emerged as a 
candidate risk factor. VD is known to influence key biological processes such as trophoblast 
invasion, immune tolerance, angiogenesis, and oxidative balance—all of which are commonly 
disrupted in EOPE (3–5). However, the mechanistic role of VD in EOPE remains less 
thoroughly explored compared to other maternal and placental factors, and the potential for 
VD-targeted interventions has yet to be fully elucidated.

This review aims to comprehensively examine the current evidence linking VD deficiency 
to EOPE, with a focus on mechanistic insights. We synthesize findings from in vitro, in vivo, 
and clinical studies to evaluate how VD regulates placental function through its effects on 
trophoblast biology, vascular integrity, immune balance, and oxidative stress. We also discuss 
the emerging potential of VD supplementation as a modifiable risk factor in EOPE, particularly 
in high-risk pregnancies. By integrating molecular mechanisms with clinical relevance, this 
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review seeks to bridge existing knowledge gaps and inform future 
research directions.

2 Pathophysiology of early-onset 
preeclampsia

Preeclampsia (PE) is a complex, multifactorial disorder of 
pregnancy characterized by new-onset hypertension and proteinuria, 
typically after 20 weeks of gestation (6). Among its subtypes, EOPE, 
which occurs before 34 weeks of gestation, is distinguished by greater 
severity, higher rates of maternal and fetal morbidity, and a closer 
association with placental dysfunction compared to late-onset 
preeclampsia (LOPE) (7).

The pathophysiology of EOPE involves a combination of 
abnormal placentation, dysregulated maternal immune adaptation, 
oxidative stress, and impaired vascular remodeling (8–10). Abnormal 
placentation refers to defective development or function of the 
placenta, often resulting in inadequate nutrient and oxygen delivery 
to the fetus (11). In a healthy pregnancy, cytotrophoblasts (specialized 
placental cells) differentiate into extravillous trophoblasts (EVTs). 
Trophoblast invasion is the process by which these EVTs migrate into 
the maternal uterine lining, allowing the placenta to anchor securely 
and interact with maternal tissues (12). A key aspect of this 
interaction is spiral artery remodeling, during which EVTs contribute 
to the transformation of maternal uterine spiral arteries from narrow, 
high-resistance vessels into wider, lower-resistance channels (13). 
This process is thought to facilitate adequate maternal blood flow to 
the placenta and, consequently, to the developing fetus. In EOPE, 
evidence suggests that trophoblast invasion and spiral artery 
remodeling may be insufficient, which could contribute to persistently 
high-resistance blood flow, placental hypoperfusion, hypoxia, and 
increased oxidative stress (14).

Immune dysregulation is an important aspect in the pathogenesis 
of EOPE (15). This may involve, but is not limited to, altered maternal 
immune responses to fetal antigens; other contributing factors such as 
embryo or systemic damage may also play a role (16). Multiple studies 
have demonstrated that changes in the maternal immune system can 
contribute to abnormal placentation and the development of EOPE 
(17). At the molecular level, EOPE is associated with an imbalance 
between pro-angiogenic and anti-angiogenic factors, such as reduced 
placental expression of vascular endothelial growth factor (VEGF) and 
placental growth factor (PlGF), alongside increased levels of soluble 
fms-like tyrosine kinase-1 (sFlt-1) and endoglin (18, 19). These changes 
disrupt angiogenesis, further impairing placental vascularization (20). 
Additionally, abnormal release of inflammatory cytokines [e.g., tumor 
necrosis factor-α (TNF-α), IL-6], heightened activation of the maternal 
immune system, and insufficient generation of regulatory T cells 

(Tregs) contribute to a pro-inflammatory environment at the maternal-
fetal interface, exacerbating placental dysfunction (21, 22).

EOPE is also characterized by heightened oxidative stress due to 
the accumulation of reactive oxygen species (ROS) and insufficient 
antioxidant defenses in the placenta (9, 23). This exacerbates 
endothelial dysfunction, maternal hypertension, and further restricts 
fetal growth (24). The combined effects of impaired trophoblast 
invasion, defective vascular remodeling, angiogenic imbalance, and 
oxidative injury underlie the unique clinical and pathological features 
of EOPE (25).

Importantly, while LOPE is often linked to maternal metabolic 
and cardiovascular risk factors, EOPE is more directly associated with 
placental pathology and abnormal early pregnancy adaptation (8). 
This review therefore focuses on placental-associated mechanisms of 
EOPE, particularly those processes that are potentially modulated by 
vitamin D—including trophoblast function, angiogenesis, immune 
regulation, and oxidative stress.

3 VD and its association with EOPE

VD exists in two primary forms in humans: vitamin D2 
(ergocalciferol) and vitamin D3 (cholecalciferol), with the latter 
synthesized endogenously through ultraviolet exposure (26). 
Vitamin D3 is the dominant form involved in human physiology 
and is the focus of this review. As a fat-soluble vitamin, VD is 
naturally found in dietary sources such as cod liver oil, fatty fish, 
mushrooms and egg yolks. Although VD has been traditionally 
associated with calcium and phosphorus metabolism, it has also 
been implicated in broader physiological functions including 
immune regulation, vascular health, and placental development 
(27–29).

VD metabolism was once believed to occur primarily in the 
kidneys (30). However, recent studies have revealed that VD is actively 
metabolized in multiple tissues, including the female reproductive 
system (31). Both 25-hydroxyvitamin D3 (25 (OH)D3) and its receptor, 
VD receptor (VDR), are expressed in various organs, including the 
uterus, ovaries, fallopian tubes, mammary glands, and placenta (15). 
The expression of α-hydroxylase enzymes in the decidua and placenta 
during pregnancy further underscores the crucial role of VD at the 
maternal-fetal interface (15). VD may assist in maintaining healthy 
placental development and function by regulating calcium transport 
and immune modulation within the placenta (32).

During healthy pregnancy, maternal serum 25 (OH)D₃ levels 
typically rise from early to mid-gestation, supporting fetal skeletal 
development and placental growth (33, 34). However, individuals with 
EOPE often exhibit significantly lower serum VD levels compared to 
normotensive pregnancies, with reported deficits of approximately 
10–20% (35). Although optimal VD status remains debated, levels 
below 20 ng/mL are generally considered deficient (36). According to 
an earlier classification proposed in 2015, serum 25 (OH)D3 levels in 
healthy pregnant individuals are generally reported to range from 20 
to 30 ng/mL (37). Several studies suggest that serum VD levels below 
this threshold in early pregnancy may be associated with an increased 
risk of EOPE, likely due to impaired placental adaptation during the 
first and second trimesters (37, 38).

Numerous meta-analyses, case–control studies, and randomized 
controlled trials have consistently shown that low maternal vitamin D 

Abbreviations: EOPE, Early-onset preeclampsia; LOPE, Late-onset preeclampsia; 
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Tregs, Regulatory T cells; Th, T helper; DC, Dendritic cell; RAAS, Renin-angiotensin-

aldosterone system; VEGF, Vascular endothelial growth factor; NF-κB, Nuclear 
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status is associated with an increased risk of preeclampsia and EOPE, 
and that vitamin D supplementation may have a protective effect, 
particularly in high-risk pregnancies. The key clinical evidence is 
summarized in Table 1.

4 Mechanisms involving VD in EOPE

EOPE remains poorly understood. Beyond its traditional role in 
regulating calcium and phosphorus metabolism, VD influences early 
placental development and function through multiple biological 
pathways, including gene expression, immune modulation, 
angiogenesis, and antioxidant activity (39). Low serum VD levels are 
associated with abnormal placental implantation and disrupted 
uterine spiral artery remodeling, leading to impaired angiogenesis and 
insufficient placental blood supply (40). These pathological processes 
may exacerbate placental hypoxia and oxidative stress, thereby 
contributing to the early onset of EOPE (41).

A growing body of research suggests that VD deficiency may 
promote the onset and progression of EOPE through both direct and 
indirect mechanisms (39). In early pregnancy, VD is involved in 
placental immune regulation and trophoblast cell invasion, both of 
which are essential for ensuring adequate placental blood flow (42). 
Therefore, further investigation into the role of VD in immune 
modulation, angiogenesis, oxidative stress, and trophoblast invasion 
may clarify the pathogenesis of EOPE and provide a theoretical basis 
for considering VD as a potential preventive strategy. The following 
sections will explore these key mechanisms in detail, highlighting the 
specific effects and influences of VD in EOPE.

4.1 Role of VD in maternal-fetal immune 
tolerance

Dysregulation of immune adaptation at the maternal-fetal 
interface has been widely reported in EOPE. Studies suggest that VD 
may be involved in the regulation of maternal immune tolerance by 
promoting Treg function and modulating T helper cell differentiation 
(43). VD deficiency has therefore been proposed as a potential 
contributor to placental immune imbalance observed in EOPE 
(Figure 1).

Experimental and clinical evidence indicates that the active form 
of VD, 1,25(OH)₂D₃, enhances the expansion and suppressive 

function of FoxP3 + regulatory Tregs, which are essential for 
maintaining immune homeostasis at the maternal-fetal interface (15, 
44). For example, in patients with EOPE, both peripheral and decidual 
Treg counts are significantly decreased compared to normotensive 
pregnant controls, and these alterations have been correlated with 
lower maternal 25(OH)D₃ concentrations (45, 46). In vitro studies 
using human immune cells have further demonstrated that VD/VDR 
signaling directly upregulates FoxP3 expression, supporting Treg 
differentiation and activity (44).

In addition to Treg modulation, VD also influences the Th1/Th2 
balance, a key immunological axis in pregnancy. VD has been shown 
to suppress the production of pro-inflammatory Th1 cytokines, 
including TNF-α and interferon-γ, while promoting anti-
inflammatory Th2 cytokines such as interleukin-4 (IL-4), interleukin-5 
(IL-5), and interleukin-10 (IL-10) (47–50). This effect has been 
observed in both in vitro human T cell studies and clinical cohorts, 
where VD deficiency is associated with elevated Th1/Th2 ratios and 
increased placental inflammation in EOPE (46, 50).

Furthermore, studies have demonstrated that VD regulates the 
activity of dendritic cells (DCs), which play a central role in antigen 
presentation at the maternal-fetal interface (51, 52). VD inhibits the 
maturation of DCs and reduces their capacity to activate T cells, 
thereby limiting local inflammatory responses in the placenta (52, 
53). Insufficient VD enhances DC-mediated T cell activation and 
promotes a pro-inflammatory environment, which has been 
implicated in abnormal placental development and increased EOPE 
risk (53, 54).

VD also modulates placental macrophage polarization. VD 
promotes the M2 anti-inflammatory phenotype while inhibiting the 
M1 pro-inflammatory phenotype, leading to reduced secretion of 
TNF-α and interleukin-6 (IL-6) in the placenta (55, 56). Both animal 
models and human studies have linked VD deficiency to increased M1 
macrophage infiltration and heightened local inflammation in EOPE 
placentas (21, 57).

Collectively, these findings from in  vitro, animal, and clinical 
studies indicate that adequate VD status supports maternal-fetal 
immune tolerance by enhancing Treg function, regulating the Th1/
Th2 axis, suppressing excessive dendritic cell and macrophage 
activation, and mitigating placental inflammation. Contrarily, VD 
deficiency, disrupts these immunological processes, contributing to 
the immune pathophysiology of EOPE.

4.2 Role of VD in reducing impaired uterine 
spiral artery remodeling

Disruption of placental angiogenesis and inadequate 
remodeling of the uterine spiral arteries are frequently described 
features in EOPE (41, 58, 59). Current evidence indicates that VD 
can influence angiogenic pathways in the placenta, including the 
regulation of VEGF expression and the renin-angiotensin-
aldosterone system (RAAS) (60, 61). The relationship between VD 
status and placental vascular development remains an area of active 
research (Figure 2).

Clinical research has corroborated these findings. Analyses of 
EOPE placental tissue and maternal serum reveal lower levels of 
VEGF and PlGF, along with elevated concentrations of the anti-
angiogenic factor sFlt-1 in women with low VD status (58, 62, 63). 

TABLE 1 Summary of clinical and epidemiological studies linking vitamin 
D status and risk of PE/EOPE.

Study type Main finding References

Meta-analysis VD deficiency associated with 78% 

increased risk of PE

(81)

Meta-analysis Confirmed correlation between low VD 

and PE across 7 countries

(81)

Case–control Lower serum VD in EOPE vs. 

normotensive pregnancy

(82–85)

RCT VD supplementation improves serum 

VD, may reduce PE/EOPE risk

(86, 87)

PE, preeclampsia; EOPE, early-onset preeclampsia; RCT, randomized controlled trials; VD, 
vitamin D.
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These molecular changes correlate with reduced spiral artery 
remodeling and increased placental vascular resistance, as observed 
in Doppler ultrasound and histopathology studies.

In addition to directly regulating angiogenic factors, VD is known 
to modulate the RAAS pathway within the placenta. Experimental 
animal studies demonstrate that VD suppresses the transcription of 
the renin gene, leading to lower angiotensin II production and 
decreased vasoconstriction (61, 64). Clinical data indicate that VD 

deficiency is associated with increased RAAS activity, contributing to 
hypertension and further compromising placental perfusion in EOPE 
(64, 65).

Placental VD receptor (VDR) expression is also reduced in EOPE, 
which may decrease the placenta’s responsiveness to circulating VD and 
further limit angiogenic signaling (66–68). Notably, studies report that 
lower maternal and placental VD/VDR levels are associated with higher 
risk of FGR secondary to impaired placental blood flow (66, 69).

FIGURE 1

The immunoregulatory role of vitamin D deficiency in EOPE. Created with BioRender and designed by the authors. EOPE, early-onset preeclampsia; 
IFN-γ, interferon gamma; Th, T-helper cells; TNF-α, tumor necrosis factor alpha; Treg, regulatory T cells.

FIGURE 2

The role of vitamin D deficiency in regulating angiogenesis in the placenta. ACE, angiotensin-converting enzyme; VEGF, vascular endothelial growth 
factor.
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Although considerable progress has been made in delineating the 
relationship between vitamin D and placental vascular development, 
the precise molecular mechanisms—particularly the interplay 
between VD/VDR signaling, angiogenic factor expression, and RAAS 
regulation in EOPE—require further investigation in experimental 
models and large-scale clinical studies.

4.3 Role of VD in oxidative stress

Elevated oxidative stress has been implicated in the 
pathophysiology of EOPE, particularly in relation to placental 
dysfunction and endothelial injury (23, 70). Experimental and clinical 
studies have examined the antioxidant properties of VD, including its 
regulation of key antioxidant enzymes and its effects on oxidative 
stress pathways (Figure 3) (70–72). The role of VD in modulating 
placental oxidative stress is being increasingly explored.

In vitro studies have shown that 1,25(OH)₂D₃ can upregulate 
antioxidant enzymes such as superoxide dismutase (SOD) and 
glutathione peroxidase in placental cells, thereby reducing levels of 
ROS and lipid peroxidation (70, 73). Consistent with this, women with 
EOPE and VD deficiency display increased placental malondialdehyde 
(a marker of oxidative stress) and reduced SOD activity compared to 
healthy pregnancies (70, 74).

Mechanistically, vitamin D has been reported to inhibit activation 
of the nuclear factor kappa-light-chain-enhancer of activated B cells 
pathway in trophoblasts, thereby reducing the expression of 
pro-inflammatory and pro-oxidant genes and mitigating oxidative 

injury (70, 72). Furthermore, animal models of preeclampsia have 
demonstrated that VD supplementation increases nuclear factor 
erythroid 2-related factor 2 transcriptional activity in the placenta and 
lowers oxidative stress biomarkers (75).

Although these findings support an antioxidant role for vitamin 
D in the placenta, the precise molecular mechanisms, especially 
involving VDR, NF-κB, and downstream effectors such as Nrf2, 
require further clarification.

4.4 Role of VD in EVT migration and 
invasion

Limited trophoblast invasion and suboptimal remodeling of the 
maternal uterine arteries have been associated with EOPE in both 
experimental and clinical observations (76, 77). Research has 
suggested that VD, via the VDR expressed in trophoblasts, may 
be involved in the regulation of EVT migration and invasion (78, 79). 
The possible impact of VD deficiency on these cellular processes is the 
subject of ongoing investigation.

In vitro experiments with human trophoblast cell lines have 
demonstrated that 1,25(OH)₂D₃ upregulates the expression of matrix 
metalloproteinases (MMP2 and MMP9), which are essential for 
extracellular matrix degradation and successful EVT invasion (79). 
Placental samples from EOPE pregnancies show decreased VDR and 
MMP9 expression, which are associated with reduced EVT invasive 
capacity (79, 80). Additionally, vitamin D signaling modulates other 
molecules involved in cell migration, such as E-cadherin and integrins, 

FIGURE 3

Potential molecular mechanisms of vitamin D deficiency in the development of EOPE. EOPE, early-onset preeclampsia.
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FIGURE 5

The metabolism of vitamin D and the functional differences in the regulation of placentas between EOPE and normal pregnancy. Created with 
BioRender and designed by the authors. EOPE, early-onset preeclampsia; ROS, reactive oxygen species; Th cells, T-helper cells; UV, ultraviolet.

which play roles in cell adhesion and motility (59, 78). Importantly, 
1,25(OH)₂D₃ stimulates the secretion of human chorionic gonadotropin 
(hCG) via the cAMP/PKA pathway, which is a well-known regulator of 
trophoblast motility and invasion (78). Animal studies further indicate 
that vitamin D deficiency impairs trophoblast invasion and spiral artery 
remodeling, resulting in phenotypes similar to EOPE (59).

Overall, these findings suggest that vitamin D may facilitate 
EVT migration and invasion by regulating MMPs, adhesion 

molecules, and hCG-related signaling pathways, but more research 
is needed to clarify its exact molecular targets in the context of 
EOPE (Figure 4).

5 Conclusion

VD has been proposed to play a role in the pathogenesis of 
EOPE, as its deficiency has been associated with impaired placental 
development, increased oxidative stress, and immune dysregulation 
at the maternal-fetal interface (Figure 5). Findings from individual 
studies suggest that VD may influence processes such as 
angiogenesis and vascular remodeling, which are considered 
important for supporting healthy pregnancy outcomes. Low VD 
levels during pregnancy have been associated with an increased risk 
of EOPE and FGR, and VD supplementation has been proposed as 
a potential area for therapeutic exploration. Understanding the 
molecular mechanisms through which VD influences EOPE offers 
a promising approach to clinical management and prevention. In 
clinical practice, monitoring and managing VD levels has been 
suggested as a potentially beneficial approach, especially in high-
risk pregnancies.
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