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As an important part of the limbic system of the forebrain, the bed nucleus of 
the stria terminalis (BNST) plays a key role in stress response, emotion regulation, 
and motivational behavior. Recent studies have demonstrated that BNST plays 
a crucial role in the pathological process of appetite regulation, food selection, 
and eating disorders by integrating metabolic signals, reward feedback, and stress 
input. This article systematically reviews the anatomical subdivision, neural loop 
characteristics, and multimodal mechanisms of the BNST in food intake regulation; 
discusses its association with obesity, anorexia nervosa, and other diseases; and 
explores potential therapeutic strategies targeting the BNST.
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1 Introduction

Feeding regulation involves the integrated processing of homeostatic needs, reward-
related mechanisms, and environmental challenges. The bed nucleus of the stria terminalis 
(BNST) is a basal forebrain structure located posterior to the nucleus accumbens, anterior to 
the thalamus, medial to the dorsal striatum, and dorsal to the ventral pallidum and the 
dorsomedial preoptic area. This forebrain structure comprises 12–20 distinct subdomains 
containing heterogeneous neuronal populations classified by (1) morphological characteristics, 
(2) neurotransmitter/neuropeptide profiles, (3) biophysical properties, and (4) efferent/afferent 
connectivity patterns. The anatomical complexity of the BNST closely matches the many 
behavioral, autonomic and endocrine functions it supports, among which frequently discussed 
are anxiety (1, 2), stress (3, 4), aversion and memory (5, 6), addiction (7, 8), social behavior 
(9), appetite control (10), cardiovascular modulation (11), and hormone release (12). 
Understanding how the BNST achieves such a diverse range of functions, and the molecular 
and loop mechanisms behind them, remains a major challenge.

Advanced precision neuroscience methodologies available at the time of study enable 
highly specific exploration of neural dynamics at the cellular level. By integrating optogenetic 
and chemogenetic manipulations with multiphoton imaging, fiber photometry, and viral 
vector-mediated genetic targeting, researchers can achieve precise analyses of genetically 
defined neuronal populations and circuit-level interactions. This technological synergy has 
significantly advanced the dissection of the BNST microarchitecture and its functional coding 
mechanisms. In this study, we  aim to review current insights into BNST subdomain 
specialization, connectivity patterns, and molecular determinants, offering a comprehensive 
perspective on its neuromodulatory role in homeostatic feeding regulation.
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2 Structure of the BNST

The BNST is a compact yet highly heterogeneous limbic structure in 
the ventral forebrain, playing a crucial role in integrating and coordinating 
stress-related behaviors. Composed of multiple subnuclei and 
neurochemically distinct cell populations, it forms part of the “extended 
amygdala” alongside the central amygdala (CeA) and the caudal nucleus 
accumbens (NAc) shell. BNST connectivity extends to other limbic 
regions, including the amygdala complex, the hypothalamic nuclei, the 
hippocampus, and the midbrain structures, contributing to emotion 
regulation, emotional learning, and stress responses. Acting as a key 
integrative hub, the BNST processes sensory inputs and transmits signals 
to central neuroendocrine and autonomic centers, ensuring appropriate 
physiological and behavioral adaptations. In rodents, the BNST is 
positioned anterior to the anterior fontanel, bordered by the anterior 
commissure, the lateral ventricles, and the internal capsule-associated 
regions, extending from the nucleus accumbens and lateral septal nucleus 
to the anterior hypothalamus. Despite its small size (~0.4 mm3 in mice), 
the BNST is subdivided into 12–20 nuclei, encompassing over 15 distinct 
cell types (13, 14). The BNST demonstrates distinct anatomical 
organization along its anterior–posterior axis, traditionally divided into 
the anterior and posterior regions (15). The anterior BNST can be further 
divided into the dorsal (dBNST) and ventral (vBNST) regions, which 
maintain ventrolateral continuity and are further subdivided into the 
lateral and medial portions. The dBNST includes the dorsolateral 
(dlBNST) and dorsomedial (dmBNST) regions, defined by their position 
relative to the stria terminalis, while the vBNST comprises ventrolateral 
(vlBNST) and ventromedial (vmBNST) subdivisions. Notable nuclei 
within dlBNST include the oval nucleus and juxtacapsular nucleus, 
whereas the vBNST contains the fusiform nucleus (Figure  1A). The 
posterior BNST comprises three well-defined nuclei (principal, 
interfascicular, and transverse) with distinct neurochemical profiles 

(Figure 1B), characterized by particularly high expression of sex hormone 
receptors, which are critical for regulating reproductive behaviors and 
defensive responses (4, 16).

3 BNST afferent inputs and feeding 
behavior regulation

The BNST receives input signals from multiple upstream brain 
regions to regulate eating (Figure 2A).

The BNST brain areas express a variety of neuropeptides and 
multiple neuropeptide receptors, responding to neurotransmitters 
transmitted from multiple brain areas. Glucagon-like peptide-1 
(GLP-1) injected into the brain reduces food intake. Similarly, 
activating preproglucagon (PPG) cells in the brain, which synthesize 
GLP-1, reduces food intake. PPG neurons that express GLP-1 in the 
nucleus tractus solitarius (NTS) are widely believed to play an important 
role in regulating food intake, weight, and stress responses (17, 18). These 
neurons project to areas across the brain where many GLP-1 receptors 
(GLP-1R) are expressed. Both the dorsal and ventral parts of the BNST 
receive projections from PPG neurons in the NTS. Direct injection of 
exogenous GLP-1 into the BNST effectively reduces food intake in mice. 
Blocking the GLP-1 receptor in BNST by microinjection of the GLP-1R 
antagonist exendin (9–39) significantly increases acute food intake, thus 
confirming that BNST GLP-1R is a physiologically relevant target of 
endogenous GLP-1 (19).

Agouti-related peptide (AgRP), a hypothalamic neuropeptide 
synthesized in ventromedial arcuate nucleus (ARC) neurons 
co-expressing neuropeptide Y (NPY), orchestrates energy balance 
through dual orexigenic actions comprising appetite potentiation 
coupled with metabolic rate suppression. This evolutionarily conserved 
mediator, exclusively produced by AgRP/NPY co-localized neuronal 

FIGURE 1

Structural diagram of the BNST. (A) The anterior BNST can be divided into dorsolateral BNST (dlBNST), dorsomedial BNST (dmBNST), ventrolateral 
(vlBNST), ventromedial (vmBNST), oval nucleus (Ov), juxtacapsular nucleus (Ju), and fusiform nucleus (Fu). (B) The posterior BNST can be divided into 
the principal nucleus (Pr), interfascicular nucleus (If), and transverse nucleus (Tr).
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populations, exhibits the most robust and sustained hunger-promoting 
effects among central feeding regulators. Anatomically, AgRP neuronal 
projections to the anterior BNST (aBNST) constitute a critical circuit 
mediating feeding potentiation, with optogenetic activation of aBNST-
targeting AgRP neurons triggering hyperphagia in murine models. 
Crucially, AgRP’s neuromodulatory function demonstrates obligatory 
NPY dependence, as evidenced by complete ablation of its feeding-
modulatory capacity in NPY-knockout rodents (20).

Somatostatin (SST) neurons in the tuberous nucleus (TN) play a 
crucial role in regulating food intake in mice. These hunger-activated 
neurons project to the BNST and release gamma-aminobutyric acid 
(GABA), which promotes food intake in mice by inhibiting the cellular 
activity of BNST. Conversely, inhibition of this group of SST neurons 
reduces food intake (21).

The BNST’s reception of signals from various upstream sources 
exerts diverse impacts on the feeding behavior of mice. This finding 
might be associated with differences in the subregions and cell types that 
receive these signals.

4 BNST downstream projections and 
feeding behavior regulation

The BNST not only receives neuronal projections from multiple 
brain areas but also projects neurons to many brain areas in order to 
regulate eating, especially the mid-posterior part of the brain (Figure 2B).

In mammals, the parabrachial nucleus (PBN), a pontine structure 
integrating visceral and sensory inputs, regulates food intake and threat 
assessment by encoding metabolic needs. Studies have shown that there 
are two different groups of neurons in the BNST that project to PBN, and 
both have an impact on eating behavior. One group consists of 
GABAergic neurons. Activation of the neuron terminals projecting from 
the BNST to the PBN brain area will increase the feeding of satiated mice 
in a short period of time, while inhibition of this loop will cause reduced 
feeding of hungry mice. The other nucleus is composed of glutamatergic 
neurons. Contrary to the effect of GABAergic nuclei, activating their 
nerve terminals in PBN will inhibit the feeding behavior of mice in a 
short period of time, while chemical inhibition of this loop will increase 
the food intake of satiated mice (22).

The lateral hypothalamus (LH) is an important neural substrate for 
motivated behaviors, including eating. A large number of vesicular 

GABA transporter (VGAT) neurons in the BNST project to the LH, 
mainly targeting glutamatergic neurons. When activated, these VGAT 
neuron terminals induce greedy feeding behavior in satiated mice, while 
inhibition significantly reduces food intake in hungry mice. However, it 
is worth noting that suppression of this loop significantly increased 
aversion to the light pairing chamber in the position-preference 
experiment, so it is difficult to say whether the mice’s reduced eating was 
simply due to a change in food preference or because of an aversion to 
the entire environment (23).

The periaqueductal gray (PAG) constitutes a pivotal integration 
node mediating adaptive survival responses to environmental challenges 
through its quadripartite columnar organization (24). Within this 
framework, the ventrolateral PAG (vlPAG) emerges as a specialized 
mediator of defensive states, particularly governing threat-evoked 
freezing responses in mammals, which is an evolutionarily conserved 
mechanism balancing predation risk during foraging activities (25). 
Moreover, vlPAG directly receives projections from multiple brain 
regions involved in feeding regulation. The BNST sends monosynaptic 
GABAergic inputs to GABAergic cells in the vlPAG. Photogenetic 
activation of the terminals of these GABAergic neurons can induce 
feeding behavior. Bilateral inhibition of this loop does not affect the 
feeding behavior of satiated mice but significantly reduces the food 
intake of mice fasted for 24 h (26).

It can be observed that the BNST mainly promotes feeding in 
mice by releasing GABAergic signals to downstream brain regions.

5 Microcircuits regulating eating in the 
BNST

Because the BNST is composed of many subregions, there are also 
neuronal projections between them, one of which regulates eating. The 
oval region of the BNST (ovBNST) is a functionally diverse brain area 
involved in regulating multiple emotional and physiological reactions. 
Its role in social behavior, emotional cognition, and stress response is a 
topic of great interest in current neuroscience research. Current studies 
have shown that the ovBNST also plays an important role in regulating 
eating behavior. Inflammation-induced anorexia activates protein 
kinase C delta (PKC-δ) neurons in the ovBNST brain area. Photogenetic 
activation of these neurons results in a significant decrease in the 
amount of food consumed by mice during the stimulation period, 

FIGURE 2

Neural circuits involving the BNST in feeding regulation. (A) The upstream brain regions of the BNST that regulate food intake, nucleus tractus solitarius 
(NTS), arcuate nucleus (ARC), tuberous nucleus (TN), Agouti-related peptide (AgRP), Glucagon-like peptide-1 (GLP-1), Somatostatin (SST). (B) The BNST 
transmits signals to downstream brain regions to regulate food intake, parabrachial nucleus (PBN), lateral hypothalamus (LH), periaqueductal gray 
(PAG). (C) The microcircuits within the BNST that regulate food intake, protein kinase C delta (PKC-δ).
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whereas chemical genetic inhibition of these neurons can increase the 
total amount of food consumed by mice. These neurons mainly project 
to GABAergic neurons in vlBNST that regulate eating, and these 
GABAergic neurons primarily project to the LH (Figure 2C). In other 
words, the ovBNST regulates eating through the regulation of the 
vlBNST-LH loop (27).

6 BNST abnormalities and eating 
disorders

Corticotropin-releasing factor (CRF) is a neuropeptide that regulates 
endocrine and behavioral stress responses. Overexpression or knock-out 
of CRF in the mouse brain affects feeding behavior of mice. The BNST 
contains abundant CRF receptor subtypes, namely corticotropin-
releasing factor receptor type 1 (CRFR1) and corticotropin-releasing 
factor receptor type 2 (CRFR2). Studies have shown that CRFR1 
receptors in the BNST are involved in regulating overeating behavior due 
to stress, while CRFR2 receptors regulate appetite loss.

In rat experiments, researchers found that rats exposed to stress 
exhibited increased food intake, which was reduced by the 
administration of specific CRFR1 receptor antagonists. This finding 
suggests that activation of CRFR1 receptors in BNST leads to 
increased eating. This activation is often accompanied by individuals 
being exposed to some environmental stress, which suggests that an 
abnormal increase in activation of CRFR1 receptors in BNST may lead 
to individuals suffering from binge eating and obesity (28). In other 
experiments, researchers found that rats developed anorexia after 
experiencing acute restraint, and injecting CRFR2 receptor antagonists 
into the BNST eliminated the reduced eating after restraint in rats, 
suggesting that CRFR2 in the BNST plays an important role in stress-
induced anorexia (29).

These studies will help to provide a more comprehensive 
understanding of the role of BNST in eating behavior and provide new 
ideas and targets for the treatment of eating disorders.

7 Discussion

The BNST serves as a “decision-making center” for regulating 
eating behavior by integrating metabolic, reward, and stress signals. 
Its dysfunction is closely related to a variety of eating disorders, and 
intervention strategies targeting specific BNST subunits or 
neurotransmitter systems have broad prospects. Future research 
should combine cross-species models and clinical transformation to 
promote the practical application of BNST-related therapies.
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