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Introduction: Pigmented rice is fascinated by consumers for its abundant

phytochemicals and unique aroma.

Methods: In this study, GC–MS-based metabolomics of Yangxian colored

rice varieties were performed to characterize their volatile metabolites through

multivariate statistics and machine learning algorithms.

Results: Results showed that a total of 357 volatile metabolites were detected

and segmented into 9 groups, including 96 organooxygen compounds (26.89%),

52 carboxylic acids and derivatives (14.57%), 42 fatty acyls (11.76%), 16 benzene

and substituted derivatives (4.48%), and 11 hydroxy acids and derivatives (3.08%).

Multivariate statistics screened 127 di�erentially abundant metabolites via PLS-

DA. Principal component analysis revealed that the percentages of PC1 and PC2

were 52.48% and 27.09%, respectively. Based on di�erential metabolites with

great multicollinearity above 0.8 and the chi-square test (20% feature numbers),

only 7 metabolites were found to represent the overall metabolites among

the several colored rice varieties. Four machine learning models were further

used for the classification of various colored rice varieties, and random forest

model was the optimum for predicting classification, with an accuracy of 0.97.

Moreover, Shapley additive explanations analysis revealed that the 7 metabolites

can be used as potential markers for representing the metabolomic profiles.

Conclusions: These results implied that GC–MS-basedmetabolomics combined

with random forest might be e�ective for extracting key features among di�erent

pigmented rice varieties.
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1 Introduction

Pigmented rice is a popular and healthy cereal fascinated by consumers because

of the abundance of phytochemicals, which promote favorable health benefits (1). The

primary foundation of skin coloration in rice is anthocyanins, which are flavonoids (2).

In recent years, pigmented rice has garnered increasing attention for its abundance of

bioactive compounds, particularly anthocyanins and flavonoids. These phytochemicals are
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known for their potent antioxidant and anti-inflammatory

properties. A recent study by Callcott et al. (3) demonstrated that

acute consumption of purple and red rice significantly improved

plasma antioxidant capacity and reduced levels of proinflammatory

cytokines in obese individuals. In parallel, global market trends

have shown a steady rise in consumer demand for functional rice

products (4). In addition, volatile flavors are also highly important

for the assessment of rice quality because they can be used to

determine the quality grade and price of rice in retail markets (5).

Yangxian County (Hanzhong, China) is renowned for its native-

colored rice provisions. Yangxian pigmented rice is mainly black,

yellow, purple, red, or green in color and contains abundant

fibers and bioactive components (6, 7). Therefore, pigmented

rice has great potential for use in many applications and needs

extra attention.

Currently, metabolomics has become an important topic of

systems biology after genomics, transcriptomics, and proteomics

(8). Metabolomics could provide complete information for

observing the variations in low-molecular-weight chemicals in

samples, and is targeted at revealing the relative changes among

physiopathological variations, and processing circumstances (9).

GC-MS is one of the most widely utilized approaches in

metabolomic analysis, because of its low cost, repeatability, and

simple data statistics, which are different from those of LC-MS or

NMR (10, 11).

Although volatile organic compounds detected by GC-IMS

and GC-MS methods can be used to discriminate the volatile

compounds of various colored rice varieties, they are not

sensitive enough to measure smaller variations in the same

rice (12). To overcome this disadvantage, volatile metabolites

have been a concern during the past decade. TianXin et al.

(13) performed a metabolomic assay on rice from several

different growing locations through GC-MS. Zhang et al. (14)

compared the distinctive abundant metabolites among colored

rice and white rice via a broadly targeted metabolomics method.

Wang et al. (15) also revealed the traits of distinct odor

chemicals in oats through broadly targeted GC–MS metabolomic

techniques. These GC-MS-based metabolomic studies can acquire

useful information and large amounts of data, which are often

processed through multivariable statistics and contain redundant

information. With the rapid development of artificial intelligence,

machine learning technologies (decision trees, longistic regression,

competitive adaptive reweighed sampling, etc.) have been applied

during metabolomic studies; these methods can overcome these

shortcomings to a great extent and exhibit great application

prospects. For example, using machine learning, Zheng et al. (16)

demonstrated the valid identification of more informative features

from sophisticated metabolomic data on metabolites of honey and

sugar in diets fed to mice. Metabolomics coupled with machine

learning procedures for classifying the production regions or

geographic origins of tea samples has also been published (17, 18).

Our previous studies explored the odor substances of five

different colored rice varieties (raw, cooked, and puffed) (6, 9)

and performed anthocyanin quantitative analysis, and health-

promoting functions in Yangxian (19). However, the results of the

metabolomic profiling of five different pigmented rice varieties are

still unknown. In this study, differentially abundant metabolites

in several Yangxian colored rice varieties were first investigated

via GC-MS-based metabonomics combined with multivariate

statistical analysis. Moreover, four machine learning approaches

were also employed to extract the key significant features of the

differentially abundant metabolites in different pigmented rice

varieties, and their robustness for the discrimination of pigmented

rice was also evaluated, with the hope of shedding additional light

on the quality characteristics of Yangxian pigmented rice.

2 Materials and methods

2.1 Materials

The five colored rice varieties were grown and collected in

Yangxian, which was provided by Shuangya Zhoudahei Organic

Food Co., Ltd (Hanzhong, China). The varieties used were

Shuangya Black (moisture content of 11.77 ± 0.08 g/100 g, starch

content of 73.04 ± 0.18 g/100 g, crude protein content of 10.68

± 0.14 g/100 g, lipid content of 2.96 ± 0.05 g/100 g, ash content

of 1.56 ± 0.05 g/100 g), Shuangya Green (moisture content of

12.45 ± 0.11 g/100 g, starch content of 73.15 ± 0.19 g/100 g, crude

protein content of 9.54 ± 0.11 g/100 g, lipid content of 3.49 ±

0.02 g/100 g, ash content of 1.37 ± 0.03 g/100 g), Shuangya Purple

(moisture content of 11.95 ± 0.11 g/100 g, starch content of 74.82

± 0.18 g/100 g, crude protein content of 9.12 ± 0.12 g/100 g, lipid

content of 2.76 ± 0.08 g/100 g, ash content of 1.35 ± 0.06 g/100 g),

Shuangya Red (moisture content of 11.57 ± 0.08 g/100 g, starch

content of 74.99 ± 0.10 g/100 g, crude protein content of 9.76 ±

0.09 g/100 g, lipid content of 2.44± 0.03 g/100 g, ash content of 1.25

± 0.05 g/100 g), and Shuangya Yellow (moisture content of 11.55±

0.08 g/100 g, starch content of 73.52 ± 0.10 g/100 g, crude protein

content of 10.23± 0.06 g/100 g, lipid content of 3.11± 0.03 g/100 g,

ash content of 1.58 ± 0.05 g/100 g) (20). The appearance photo of

these colored rice was shown in Figure 1A.

2.2 Rice pretreatment and extraction

The pigmented rice was processed and extracted according to

a modified procedure from Wang et al. (15). Thirty milligrams of

tissue sample was accurately weighed into a 1.5mL vial, and 20 µL

of inner reference solution (0.3 mg/mL L-2-chlorophenylalanine

in methanol) and 600 µL of methanol-water (4:1, v/v) solution

were added. Two tiny steel balls were added, placed in a −80◦C

environment for 2min, ground in a grinder, mixed with 120 µL

of chloroform, vortexed for 2min, placed in an ice water bath,

subjected to ultrasonication at 40 kHz for 10min, and left at−20◦C

for 30min. After centrifugation at 4◦C and 13,000 r/min for 10min,

100 µL of the upper liquid was pooled and placed into a derived

bottle. Quality control (QC) was performed by blending the same

quantity of the sample extract solutions. The QC volume was

consistent with that of the sample. A centrifugal concentration

desiccator was used to evaporate the sample to dryness, and the

sample was transferred to a glass derivatization vial. Then, the

oxime reaction was performed. The sample was removed, 50 µL

of BSTFA (1% trimethyl chlorosilane) original chemical mixture,

20 µL of n-hexane, and 10 µL of inside references (11 fatty acid

methyl esters in chloroform) were added, and the mixture was

vortexed. The sample was subsequently removed and kept at 25◦C

for 30min for subsequent GC–MS metabolomic measurements.
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FIGURE 1

Volatile metabolomic profiles of di�erent pigmented rice varieties. Photos of di�erent pigmented rice varieties used (A), pie-class plot of overall

metabolites in di�erent pigmented rice varieties (B), and PCA score plot of overall metabolites in di�erent pigmented rice varieties (C).

Different pigmented rice samples (6 biological replicates each) were

labeled according to their outer pigment, namely, black (B), purple

(P), red (R), green (G), or yellow (Y).

2.3 GC–MS metabolomic assay

The chromatographic equipment used was a DB-5MS capillary

column (30m × 0.25mm, 0.25µm, Agilent Technologies, Inc.,

USA); the transport gas was helium (purity ≥99.99%), the flow

rate was 1.2 mL/min; 300◦C; 1 µL; the solvent delay was 5min;

the programmed temperature increase was 60◦C, the temperature

was maintained for 0.5min; the temperature was elevated to

125◦C at 8◦C/min, and the temperature was held for 5min; the

temperature was elevated to 210◦C at 5◦C/min and held for

5min; the transmission line temperature was elevated to 270◦C

at 10◦C/min and held for 5min; the temperature was elevated to

305◦C at 20◦C/min and held for 5min; the mass spectrometry

conditions: the electron ionization source was set at 330◦C; and the

transmission line temperature was 280◦C (21).

2.4 Identification and enrichment assay of
di�erentially abundant metabolites

To analyze the distinctness of various sample groups, a PLS-DA

model with VIP distribution by SIMCA 14.1 was used. To avoid

overfitting, a displacement test using 200 permutations was also

carried out. The sieved differentially abundant metabolites (VIP ≥

1, P < 0.05) were identified through the online KEGG database.

2.5 Machine learning approaches and
simulation assessment

Decreasing the number of features hinders dimensional

issues, improves model generalization and decreases overfitting.

Briefly, the correlation coefficients of differentially abundant

metabolites (features) were evaluated, and metabolites with great

multicollinearity (above 0.8) were deleted (diminishing the features

from 127 to 37). Furthermore, 20% of the features were processed

via the chi-square test (diminishing the features from 37 to

7) (16). Four machine learning algorithms (XG Boost, random

forest, decision tree, and longistic regression) were employed to

characterize the key metabolomic profiles of different pigmented

rice varieties. XGBoost was selected for its high accuracy

and ability to capture complex feature interactions, whereas

logistic regression offers a simple and interpretable baseline.

Random forest provides robustness against overfitting in high-

dimensional data, and decision trees offer a clear, interpretable

classification structure (22). These algorithms were executed

via the Python package (https://anaconda.org/anaconda/conda).

Moreover, StratifiedKFold was carried out on the basis of the ratio

of positive and negative samples, and 3-fold cross-validation was
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implemented, through the optimum models for observing the key

metabolites among different pigmented rice varieties. After training

each model, metrics such as precision, recall, accuracy, and the f1

score were calculated to evaluate the robustness of the models, as

illustrated by the following equations:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

Accuracy =
True Positives + True Negatives

True Positives + True Negatives+

False Positives+ False Negatives

F1 Score = 2×
Precision× Recall

Precision + Recall

2.6 Shapley additive explanations (SHAP)
analysis

The SHAP analysis is a “model interpretation” procedure

derived from Python that explains the output of machine learning

algorithms. In SHAP, an extra interpretation model is built, and all

features are deemed “contributors”. For every forecast, the model

yields a forecast value, which can show the effect of the key features

on different pigmented rice varieties and demonstrate the impact

outcome (23).

3 Results and discussion

3.1 Outlook of metabolites in di�erent
colored rice varieties

To demonstrate the overall metabolomic profiles, the

QC spectra and detailed metabolites in different pigmented

rice samples obtained via GC-MS analysis are shown in

Supplementary Figure S1. The instrumental conditions and

spectra confirmed the reliability of the present results from the

QC and pigmented rice samples (Supplementary Figure S1).

A total of 357 metabolites were measured and segmented

into 9 groups according to their chemical traits, including

96 organooxygen compounds (26.89%), 52 carboxylic acids

and derivatives (14.57%), 42 fatty acyls (11.76%), 16 benzene

and substituted derivatives (4.48%), and 11 hydroxy acids and

derivatives (3.08%) (Figure 1B). These findings implied that

organooxygen substances, carboxylic acids and derivatives,

and fatty acyls were the dominant metabolites in the five

pigmented rice varieties, which likely determined their unique

aroma profiles.

To depict the metabolic variations identified in the five

colored rice varieties, the 357 metabolites detected were

analyzed via PCA. The PC1 and PC2 accounted for 39.7 and

17.6%, respectively, of the variance among these colored rice

samples (Figure 1C). There was a slight overlap between red-

colored rice and yellow-colored rice, and differently colored

rice still relatively clustered into different groups. Moreover,

hierarchical cluster analysis of the 357 metabolites was also

performed, indicating that the metabolites of various colored

rice varieties varied to some extent (Supplementary Figure S2).

Several studies have shown that variations in metabolic patterns

may be associated with genetics, varieties, nutrients, and

geographical differences (13, 15). Overall, these data confirmed

the high degree of similarity and high dependability among

the duplicates. The distinct metabolic profiles of the five

pigmented rice varieties were likely due to their genotypes

and varieties.

3.2 Di�erentially abundant metabolites in
pigmented rice

PLS-DA is frequently utilized to construct interplay equations

between variables and sample categories. In the present model, all

metabolites identified in several colored rice varieties were fitted

via simulation, with R2X (cum) = 0.781, R2Y (cum) = 0.983, and

Q2 (cum) = 0.95. The majority of pigmented rice samples with

various colors can be favorably classified on the PLS-DA illustration

(Figure 2A), and the discrimination pattern was consistent with the

PCA profile (Figure 1C). To elude over-fitting, the dependability

of the PLS-DA model was validated by a permutation test,

as demonstrated in Figure 2B. After 200 cross-validations, the

restoration curve of simulation Q2 crosses the abscissa, and the

intercept is negative (−2.2). In all the permutation tests, R2 and

Q2 are lower than the original values, implying that the imitation

is not overfit (24). The effect of each variable for classification was

further evaluated through VIP of the PLS-DA model. On the basis

of VIP > 1.0 and a significance level of p < 0.05, a total of 127

distinctly abundant chemicals were sieved out among five different

pigmented rice samples, which were further subjected to PCA

and heatmap clustering analysis. The majority of the variation in

pigmented rice might be distinguished via PCA, with a cumulative

percentage of 79.57% (the two components were 52.48 and 27.09%,

respectively) (Supplementary Figure S3). The heatmap clustering

results of the top 50 metabolites in the different pigmented rice

varieties are illustrated in Figure 3. As shown, the differentially

abundant metabolites in black-colored rice and purple-colored

rice were more similar, as both contained higher contents of

protocatechuic acid, dihydroxycarbazepine, nicotianamine, uracil,

etc. Similarly, black-colored rice had relatively higher contents

of levan, palatinitol, maltitol, etc., than purple-colored rice. The

characteristic metabolites in green-colored rice are caproic acid,

pinitol, 1,7-heptanediol, etc., which are significantly distinct from

those in other pigmented rice. Red- and yellow-colored rice shared

the majority of the differentially abundant metabolites, but yellow-

colored rice contained more metabolites, such as formoterol, 2-

hydroxyadenine, and 6-aminonicotinamide (Figure 3). Ch et al.

(25) used an HS-GC–MS approach for investigating metabolomic

substances to classify rice samples from several states. The present

results indicate that the 127 differentially abundant metabolites can

also be used for classifying the overall metabolic profiles of various

colored rice varieties.
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FIGURE 2

PLS-DA score plot (A) and cross-validation by a permutation test (B) of the overall metabolites in di�erent pigmented rice varieties.

3.3 KEGG and enrichment assays of
distinctly abundant metabolites

The distinct variations in metabolites are closely connected

to the metabolic pathways in which they are located. The

metabolic pathways that contributed the most to the differentially

abundant metabolites among the different pigmented rice varieties

were investigated. The KEGG database was utilized to discuss

the metabolic pathway accumulation of the distinctly abundant

chemicals identified in the present investigation (Figure 4). As

shown, the top 3 pathways with significant differences (p <

0.05) were aminoacyl-tRNA biosynthesis, butanoate metabolism,

and alanine, aspartate and glutamate metabolism in the different

pigmented rice varieties.

Aminoacyl-tRNA biosynthesis is chiefly triggered by the direct

association of an amino acid with the leading tRNA by a

synthetase. Its function is to accurately target amino acids with

tRNAs (26). Butanoate metabolism is a vital metabolic pathway

under mild salinity stress (27). Alanine, aspartate and glutamate

metabolism are in charge of osmotic balance regulation in plants.

In addition, glutamate and glutamine produced by these metabolic

pathways are imperative factors of phytochelatin (28). Liu et al.

(29) compared pathways of differentially abundant metabolites

between the normal and colored rice samples and detected alanine,
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FIGURE 3

Clustering heatmap of the top 50 di�erentially abundant metabolites in di�erent pigmented rice varieties.

aspartate and glutamate metabolism. Sew et al. (30) reported

that pathways associated with the biosynthesis of aminoacyl-tRNA

synthesis were significantly enriched in black, red, and white rice

groups. The present data were almost similar to those of the

previous publications.

3.4 Prediction of di�erentially abundant
metabolites via machine learning

As 127 differentially abundant metabolites were much more

abundant than the number of different pigmented rice samples

(16), they still contained many redundant features, and there was

still great potential for overfitting the data, leading to incorrect

forecasts (16). Therefore, we processed the data, the correlation

coefficients of differentially abundant metabolites (127 features)

were evaluated, and metabolites with great multicollinearity

(above 0.8) were deleted (diminishing the features from 127

to 37). Moreover, 20% of the features were processed through

the chi-square test (diminishing the features from 37 to 7)

(Supplementary Figure S4). Similar feature extraction procedures

and methods were also published previously (16, 23).

Four machine learning approaches (XG Boost, random forest,

decision tree, and logistic regression) were chosen to mine the data

in the present work. XGBoost and random forest, as ensemble

methods, are known for their high accuracy and robustness. The

decision tree offers simplicity and interpretability, whereas logistic

regression provides a solid baseline for binary classification tasks

(23). Figures 5A–D shows the four selected machine learning

models for predicting the classification of different pigmented rice

varieties, and they all show better classification effects with the

help of the 7 feature metabolites. Compared with the other models,

the random forest model was the best (Figure 5B). Furthermore,

the metrics of the four machine learning approaches via the

three-fold cross-validation procedure were also evaluated, and the

results are shown in Table 1. The outcomes for four assessment
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FIGURE 4

KEGG pathways enriched based on di�erentially abundant metabolites in di�erent pigmented rice varieties.

criteria, precision, recall, F1 score, and accuracy, suggested that the

random forest algorithm scored the highest, with an accuracy of

0.97. Logistic regression displayed the minimum accuracy of 0.89,

whereas the accuracies of the XB boost (0.90) and decision tree

(0.91) models were comparable (Table 1). In general, the random

forest model was the optimum for predicting metabolites among

different pigmented rice varieties. Several studies have also shown

that a random forest can diminish overfitting and has the best

separation, as it introduces randomness, possesses low noise and

is applicable for complex data (16).

3.5 Feature importance and SHAP analysis

Figure 5E shows the feature importance of the selected 7

metabolites for prediction through machine learning, which

revealed that phytosphingosine and lactitol were the top 2 features.

Through SHAP analysis, the influence intensities of the import

eigenvalue can be compared in order. In the present study, the

7 metabolites were ranked by the average SHAP value, which

denoted the scale of the influence of each variable on the simulated

export. As illustrated in Figures 5F, 6, phytosphingosine and lactitol

contributed to the model discriminating the different pigmented

rice varieties, which was similar to the feature importance

outcomes. Moreover, the seven features contributing to the

TABLE 1 Metric parameters of the four machine learning approaches for

the discrimination of metabolites.

Model Precision Recall F1-score Accuracy

XG boost 0.902 0.900 0.898 0.90

Random

forest

0.966 0.966 0.966 0.97

Logistic

regression

0.898 0.888 0.888 0.89

Decision

tree

0.91 0.91 0.91 0.91

prediction varied among different pigmented rice varieties, a

screening method that was also employed by Zhang et al. (21).

Phytosphingosine had a greater impact on the prediction of

yellow-colored rice and green-colored rice than did the other three

rice varieties. Lactitol and L-tryptophan had greater impacts on the

prediction of red-colored rice than the other four rice varieties did

(Figure 6). D-glucose and D-mannonic acid had greater impacts

on the prediction of black-colored rice than did the other four

rice varieties. Maltitol had a greater impact on the prediction of

purple-colored rice than on that of the other four rice varieties

(Figures 5F, 6). Moreover, coupling the feature importance value

with the SHPA value examination can visually show the influence
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FIGURE 5

Confusion matrix and feature importance of the 7 metabolites according to the four machine learning models. (A) XGBoost, (B) random forest, (C)

decision tree, (D) logistic regression, (E) feature importance, and (F) SHAP values based on random forest.

allocation for each sample, offering a probable justification for the

forecast simulation and its dependence on metabolites in different

pigmented rice varieties.

The long-chain base phytosphingosine is a component of

sphingolipids and is present in yeast, plants and some mammalian

tissues (31). Sphingosphingoid is the main component of plant

biofilms and an important bioactive molecule in cells. It is involved

in a variety of signal transduction pathways plays a vital role in plant

growth, development and response to biotic and abiotic stresses. In

the present study, it was found in pigmented rice, and it serves as

an important differentially abundant metabolite.

Tryptophan (TRP) is converted into countless chemicals

of biological significance, such as vitamins, and auxins (32).

Fatchiyah et al. (33) used high-performance liquid chromatography

(HPLC) to analyze L-tryptophan (Trp) in black rice samples and

reported that Trp was the main precursor for the formation of

phenolic compounds.

Soluble sugars contribute to many biological processes and

structural constituents of cells (34). Kotamreddy et al. (35) found

variations in glucose content in red, white and black rice via

GC–MS in conjunction with metabolomics. Sugars and sugar

alcohols play vital roles in the response of plants to salinity

and drought stresses (36). By gas chromatography coupled with

time-of-flight mass spectrometry (GC–TOF–MS), Kim et al. (37)

detected three sugar alcohols in black and white rice. Figure 6

shows the boxplot profiles of the 7 features extracted from

the differentially abundant metabolites in different pigmented

rice varieties, which can well depict and distinguish the overall

metabolomic profiles in pigmented rice. Compared with those of

the other types, the levels of D-xylopyranose and D-fructose were

significantly greater in black rice, indicating possible metabolic

enrichment unique to black rice. D-mannonic acid was expressed

at the highest level in red rice, while yellow rice also presented

elevated levels, suggesting its potential involvement in oxidative

stress or mannosemetabolism. L-tryptophan and phosphoglycerate

were predominantly elevated in purple rice, reflecting differences

in amino acid and glycolytic metabolism. Notably, lactitol was

almost exclusively expressed in purple rice, whereas the other

types presented nearly zero levels. Similarly, maltitol levels were

substantially higher in red rice and yellow rice.

The present study considered D-mannonic acid, maltitol and

lactitol to be important differentially abundant metabolites, which

is similar to the findings of the abovementioned reports (36,

37). Studies have shown that maltitol promotes the growth of

beneficial gut bacteria, such as bifidobacteria and lactobacilli, and

increases short-chain fatty acid production, enhancing gut health

(38). Similarly, lactitol has been found to support the growth of

these beneficial microbiota and increase the levels of SCFAs, such

as butyrate and propionate, which are beneficial for gut function

(39). Additionally, D-mannonic acid, a derivative of mannose

metabolism, has been linked to antioxidant properties andmay help

modulate oxidative stress, although more direct studies are needed

to fully elucidate its role in cellular protection. This finding also

indicated that the key features of volatile metabolites in various

colored rice varieties could be effectively extracted via GC–MS

coupled with machine learning. Similar reports about features

selected on the basis of metabolomics and machine learning were

also published (16, 23). However, the present data and sample size

were small, and the results should be expanded and validated in

the future.
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FIGURE 6

Box plot of the 7 feature metabolites in di�erent pigmented rice varieties.

4 Conclusions

In summary, GC–MS-based metabolomics of different

pigmented rice varieties was characterized, and 127 differentially

abundant metabolites, which can favorably represent the majority

of sample features, were screened. On the basis of metabolites

with great multicollinearity above 0.8 and the chi-square test (20%

feature numbers), only 7 metabolites were found to better represent

the overall metabolites among the several colored rice varieties.

The seven metabolites of the four machine learning models

were further used for the classification of different pigmented rice

varieties. The random forest model was the optimum for predicting

classification, with an accuracy of 0.97. Moreover, SHAP analysis

revealed that 7 metabolites can be used as potential markers for

representing the metabolomic profiles. Overall, these results could

provide insights into the distinctness of key gaseous metabolites in

the five colored rice varieties. Machine learning approaches have

proven to be rapid, useful tools for identifying key features of large

data sets related to metabolomic analysis.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

KC: Methodology, Investigation, Writing – original draft,

Formal analysis. RD: Software, Visualization, Data curation,

Writing – original draft, Investigation. FP: Writing – original

draft, Data curation, Visualization, Software, Validation. WS:

Data curation, Writing – original draft, Software, Validation. LX:

Software, Writing – original draft, Data curation, Validation.

MZ: Validation, Writing – original draft, Data curation,

Software. JG: Writing – review & editing, Supervision.

RG: Supervision, Writing – review & editing. WJ: Project

administration, Supervision, Funding acquisition, Writing –

review & editing, Conceptualization. AA: Writing – review &

editing, Supervision, Conceptualization, Funding acquisition,

Project administration.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This research was

funded by the Foreign Expert Service Project of Shaanxi Province,

China (Grant Numbers 2024WZ-YBXM-40 and 2025WZ-YBXM-

45) and Scientific Plan of Shaanxi University of Technology

(No. SXC-2303).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2025.1598875
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cheng et al. 10.3389/fnut.2025.1598875

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnut.2025.

1598875/full#supplementary-material

References

1. Seo WD, Kim JY, Han S-I, Ra J-E, Lee JH, Song YC, et al. Relationship of radical
scavenging activities and anthocyanin contents in the 12 colored rice varieties in Korea.
J Korean Soc Appl Biol Chem. (2011) 54:693–9. doi: 10.1007/BF03253147

2. Yodmanee S, Karrila T, Pakdeechanuan P. Physical, chemical and antioxidant
properties of pigmented rice grown in Southern Thailand. Int Food Res J.
(2011) 18:901–6. doi: 10.1080/10942912.2023.2293465

3. Callcott ET, Blanchard CL, Snell P, Santhakumar AB. The anti-inflammatory and
antioxidant effects of pigmented rice consumption in an obese cohort. Food Funct.
(2019) 10:8016–25. doi: 10.1039/C9FO02261A

4. Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile
and human health benefit of pigmented rice and the impact of post-harvest processes
and product development on the nutritional components: a review. Crit Rev Food Sci
Nutr. (2023) 63:3867–94. doi: 10.1080/10408398.2021.1995697

5. Sirilertpanich P, Ekkaphan P, Andriyas T, Leksungnoen N, Ruengphayak S,
Vanavichit A, et al. Metabolomics study on the main volatile components of
Thai colored rice cultivars from different agricultural locations. Food Chem. (2024)
434:137424. doi: 10.1016/j.foodchem.2023.137424

6. Jin W, Zhang Z, Zhao S, Liu J, Gao R, Jiang P. Characterization of volatile organic
compounds of different pig-mented rice after puffing based on gas chromatography-
ion migration spectrometry and chemometrics. Food Res Int. (2023) 169:112879.
doi: 10.1016/j.foodres.2023.112879

7. Qi S, He J, Han H, Zheng H, Jiang H, Hu CY, Zhang Z, Li X. Anthocyanin-rich
extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in
rats. Food Funct. (2019) 10:5350–60. doi: 10.1039/C9FO00681H

8. Chen S, Qin W, Guo Z, Li R, Ding C, Zhang S, Tan Z. Metabonomics study of
fresh bruises on an apple using the gas chromatography–mass spectrometry (GC–MS)
method. Eur Food Res Technol. (2020) 246:201–12. doi: 10.1007/s00217-019-03386-x

9. Jin W, Liu J, Zhao P, Chen X, Han H, Pei J, et al. Analysis of volatile flavor
components in cooked unpolished rice of different colors from Yangxian County by
headspace-gas chromatography-ionmobility spectroscopy. Food Sci. (2022) 43:258–64.
doi: 10.7506/spkx1002-6630-20210927-324

10. Putri SP, Ikram MMM, Sato A, Dahlan HA, Rahmawati D, Ohto
Y, et al. Application of gas chroma-tography-mass spectrometry-based
metabolomics in food science and technology. J Biosci Bioeng. (2022) 133:425–35.
doi: 10.1016/j.jbiosc.2022.01.011

11. Yamada T, Kamiya M, Higuchi M. Gas chromatography–mass spectrometry-
based metabolomic analysis of Wagyu and Holstein beef. Metabolites. (2020) 10:95.
doi: 10.3390/metabo10030095

12. Vieira MB, Faustino MV, Lourenço TF, Oliveira MM. DNA-based tools
to certify authenticity of rice varie-ties—an overview. Foods. (2022) 11:258.
doi: 10.3390/foods11030258

13. Fu TX, Feng YC, Zhang LY, Li X, Wang CY. Metabonomics study on rice from
different geographical areas based on gas chromatography-mass spectrometry. Food
Sci. (2019) 40:176–81. doi: 10.7506/spkx1002-6630-20180621-412

14. Zhang L, Cui D, Ma X, Han B, Han L. Comparative analysis of rice reveals
insights into the mechanism of colored rice via widely targeted metabolomics. Food
Chem. (2023) 399:133926. doi: 10.1016/j.foodchem.2022.133926

15. Wang T, An J, Chai M, Zhu Z, Jiang Y, Huang X, et al. Volatile metabolomics
reveals the characteristics of the unique flavor substances in oats. Food Chem. (2023)
20:101000. doi: 10.1016/j.fochx.2023.101000

16. Zheng X, Pan F, Naumovski N, Wei Y, Wu L, Peng W, et al. Precise
prediction of metabolites patterns using machine learning approaches in
distinguishing honey and sugar diets fed to mice. Food Chem. (2024) 430:136915.
doi: 10.1016/j.foodchem.2023.136915

17. Peng Y, Zheng C, Guo S, Gao F, Wang X, Du Z, et al. Metabolomics integrated
with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea.
NPJ Sci Food. (2023) 7:7. doi: 10.1038/s41538-023-00187-1

18. Xiong Z, Feng W, Xia D, Zhang J, Wei Y, Li T, et al. Distinguishing raw pu-
erh tea pro-duction regions through a combination of HS-SPME-GC-MS and machine
learning algorithms. LWT. (2023) 185:115140. doi: 10.1016/j.lwt.2023.115140

19. Han H, Liu C, Gao W, Li Z, Qin G, Qi S, et al. Anthocyanins are converted into
anthocyanidins and phenolic acids and effectively absorbed in the jejunum and ileum.
J Agric Food Chem. (2021) 69:992–1002. doi: 10.1021/acs.jafc.0c07771

20. Runqing L. Study on brewing characteristics, flavor characteristics, and quality
of huangjiu made from different pigmented rice varieties (Thesis for Master degree).
Shaanxi University of Technology, Hanzhong, China (2024). p. 18–20.

21. Zhang X, Lu X, He C, Chen Y, Wang Y, Hu L, et al. Characterizing and
decoding the dynamic alterations of volatile organic compounds and non-volatile
metabolites of dark tea by solid-state fermentation with Penicillium polonicum based
on GC–MS, GC-IMS, HPLC, E-nose and E-tongue. Food Res Int. (2025) 209:116279.
doi: 10.1016/j.foodres.2025.116279

22. Cheng K, Xiao J, He J, Yang R, Pei J, Jin W, et al. Unraveling volatile
metabolites in pigmented onion (Allium cepa L.) bulbs through HS-SPME/GC-
MS-based metabolomics and machine learning. Front Nutr. (2025) 12:1582576.
doi: 10.3389/fnut.2025.1582576

23. Guo T, Pan F, Cui Z, Yang Z, Chen Q, Zhao L, et al. FAPD: an astringency
threshold and astringency type prediction database for flavonoid compounds based on
machine learning. J Agric Food Chem. (2023) 71:4172–83. doi: 10.1021/acs.jafc.2c08822

24. Xiao Y, ChenH, Chen Y, Ho C-T, Wang Y, Cai T, et al. Effect of inoculation
with different Eurotium cristatum strains on the microbial communities and
volatile organic compounds of Fu brick tea. Food Res Int. (2024) 197:115219.
doi: 10.1016/j.foodres.2024.115219

25. Ch R, Chevallier O, McCarron P, McGrath TF, Wu D, Nguyen Doan Duy L,
et al. Metabolomic fingerprinting of volatile organic compounds for the geographical
discrimination of rice samples from China, Vietnam and India. Food Chem. (2021)
334:127553. doi: 10.1016/j.foodchem.2020.127553

26. IbbaM, Söll D. Aminoacyl-tRNA synthesis. Ann Rev Biochem. (2000) 69:617–50.
doi: 10.1146/annurev.biochem.69.1.617

27. Jumpa T, Phetcharaburanin J, Suksawat M, Pattanagul W. Physiological traits
and metabolic profiles of contrasting rice cultivars under mild salinity stress during
the seedling stage. Notulae Botanicae Horti Agrobot Cluj-Napoca. (2023) 51:13211.
doi: 10.15835/nbha51213211

28. Duan R, Lin Y, Yang L, Zhang Y, Hu W, Du Y, et al. Effects of antimony
stress on growth, structure, enzyme activity and metabolism of Nipponbare
rice (Oryza sativa L.) roots. Ecotoxicol. Environ. Safety. (2023) 249:114409.
doi: 10.1016/j.ecoenv.2022.114409

29. Liu Y, Liu J, Liu M, Liu Y, Strappe P, Sun H, et al. Comparative non-targeted
metabolomic analysis reveals insights into the mechanism of rice yellowing. Food
Chem. (2020) 308:125621. doi: 10.1016/j.foodchem.2019.125621

30. Sew YS, Aizat WM, Zainal-Abidin R-A, Ab Razak MS, Simoh S, Abu-Bakar
N. Proteomic variability and nu-trient-related proteins across pigmented and non-
pigmented rice grains. Crops. (2023) 3:63–77. doi: 10.3390/crops3010007

31. Kondo N, Ohno Y, YamagataM, Obara T, Seki N, Kitamura T, et al. Identification
of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat
Commun. (2014) 5:5338. doi: 10.1038/ncomms6338

32. Setyaningsih W, Saputro IE, Palma M, Barroso CG. Optimization of the
ultrasound-assisted extraction of tryptophan and its derivatives from rice (Oryza
sativa) grains through a response surface methodology. J Cereal Sci. (2017) 75:192–7.
doi: 10.1016/j.jcs.2017.04.006

33. Fatchiyah F, Sari DRT, Safitri A, Cairns JR. Phytochemical compound and
nutritional value in black rice from Java Island, Indonesia. Syst Rev Pharm. 11:414–21.
doi: 10.31838/srp.2020.7.61

34. Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M. Role
of sugars, amino acids and organic acids in improving plant abiotic
stress tolerance. Pak J Bot. (2020) 52:355–63. doi: 10.30848/PJB20
20-2(24)

35. Kotamreddy JNR, Hansda C, Mitra A. Semi-targeted metabolomic analysis
provides the basis for enhanced antiox-idant capacities in pigmented rice
grains. J Food Meas Charact. (2020) 14:1183–91. doi: 10.1007/s11694-019-
00367-2

Frontiers inNutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2025.1598875
https://www.frontiersin.org/articles/10.3389/fnut.2025.1598875/full#supplementary-material
https://doi.org/10.1007/BF03253147
https://doi.org/10.1080/10942912.2023.2293465
https://doi.org/10.1039/C9FO02261A
https://doi.org/10.1080/10408398.2021.1995697
https://doi.org/10.1016/j.foodchem.2023.137424
https://doi.org/10.1016/j.foodres.2023.112879
https://doi.org/10.1039/C9FO00681H
https://doi.org/10.1007/s00217-019-03386-x
https://doi.org/10.7506/spkx1002-6630-20210927-324
https://doi.org/10.1016/j.jbiosc.2022.01.011
https://doi.org/10.3390/metabo10030095
https://doi.org/10.3390/foods11030258
https://doi.org/10.7506/spkx1002-6630-20180621-412
https://doi.org/10.1016/j.foodchem.2022.133926
https://doi.org/10.1016/j.fochx.2023.101000
https://doi.org/10.1016/j.foodchem.2023.136915
https://doi.org/10.1038/s41538-023-00187-1
https://doi.org/10.1016/j.lwt.2023.115140
https://doi.org/10.1021/acs.jafc.0c07771
https://doi.org/10.1016/j.foodres.2025.116279
https://doi.org/10.3389/fnut.2025.1582576
https://doi.org/10.1021/acs.jafc.2c08822
https://doi.org/10.1016/j.foodres.2024.115219
https://doi.org/10.1016/j.foodchem.2020.127553
https://doi.org/10.1146/annurev.biochem.69.1.617
https://doi.org/10.15835/nbha51213211
https://doi.org/10.1016/j.ecoenv.2022.114409
https://doi.org/10.1016/j.foodchem.2019.125621
https://doi.org/10.3390/crops3010007
https://doi.org/10.1038/ncomms6338
https://doi.org/10.1016/j.jcs.2017.04.006
https://doi.org/10.31838/srp.2020.7.61
https://doi.org/10.30848/PJB2020-2(24)
https://doi.org/10.1007/s11694-019-00367-2
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cheng et al. 10.3389/fnut.2025.1598875

36. Singh M, Kumar J, Singh S, Singh VP, Prasad SM. Roles of osmoprotectants
in improving salinity and drought tolerance in plants: a review. Rev. Environ. Sci.
BioTechnol. (2015) 14:407–26. doi: 10.1007/s11157-015-9372-8

37. Kim JK, Park S-Y, Lim S-H, Yeo Y, Cho HS, Ha S-H. Comparative
metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary
metabolites are correlated with secondary metabolites. J Cereal Sci. (2013) 57:14–20.
doi: 10.1016/j.jcs.2012.09.012

38. Thabuis C, Herbomez A-C, Desailly F, Ringard F, Wils D, Guérin-Deremaux
L. Prebiotic-like effects of SweetPearl R© Maltitol through changes in caecal
and fecal parameters. Food Nutr Sci. (2012) 3:1375–81. doi: 10.4236/fns.2012.
310180

39. Li XQ, Zhang XM, Wu X, Lan Y, Xu L, Meng XC, et al. Beneficial effects of
lactitol on the composition of gut microbiota in constipated patients. J Digest Dis.
(2020) 21:445–53. doi: 10.1111/1751-2980.12912

Frontiers inNutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2025.1598875
https://doi.org/10.1007/s11157-015-9372-8
https://doi.org/10.1016/j.jcs.2012.09.012
https://doi.org/10.4236/fns.2012.310180
https://doi.org/10.1111/1751-2980.12912
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

	Characterization and feature selection of volatile metabolites in Yangxian pigmented rice varieties through GC-MS and machine learning algorithms
	1 Introduction
	2 Materials and methods
	2.1 Materials
	2.2 Rice pretreatment and extraction
	2.3 GC–MS metabolomic assay
	2.4 Identification and enrichment assay of differentially abundant metabolites
	2.5 Machine learning approaches and simulation assessment
	2.6 Shapley additive explanations (SHAP) analysis

	3 Results and discussion
	3.1 Outlook of metabolites in different colored rice varieties
	3.2 Differentially abundant metabolites in pigmented rice
	3.3 KEGG and enrichment assays of distinctly abundant metabolites
	3.4 Prediction of differentially abundant metabolites via machine learning
	3.5 Feature importance and SHAP analysis

	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


