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Lipid metabolism is a dynamic and intricate process involving the uptake,

synthesis, storage and catabolism of lipid compounds in the body. Its

homeostasis is crucial for maintaining the health of the organism. The regulatory

network of lipid metabolism homeostasis consists of several key molecules,

including SREBPs, PPARs, ChREBP, FXR, LXR, AMPK, and ncRNAs. Puerarin

(Pue), an isoflavone derivative, has been demonstrated to enhance lipid

metabolism by modulating the aforementioned signaling cascades. Pue has

found extensive application in the pharmaceutical, food, and nutraceutical

industries. Considering the multi-target and multi-pathway pharmacological

properties of Pue, the present study focuses on the molecular mechanism of

Pue in the regulation of lipid metabolism, the spectrum of metabolic diseases,

as well as the limitations of the current study and the prospect of nutritional

translation. It is hoped that this study will provide a reference for the regulation of

lipid homeostasis and remodeling of lipid metabolism, with the aim of optimizing

clinical use and product development.

KEYWORDS
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transformation

1 Introduction

Lipid metabolism is defined as the process of uptake, synthesis, storage, and catabolism
of lipid compounds in living organisms. This complex process involves the coordination
of multiple organs, and the regulation of multiple enzymes and signaling pathways, and is
essential for maintaining the body’s health (1, 2). Lipid metabolism disorders are the core
pathomechanism of transdiseases, which can lead to multiple systemic diseases including
hyperlipidemia (3), obesity (4), type 2 diabetes (T2DM) (5), non-alcoholic fatty liver disease
(NAFLD) (6), cardiovascular diseases (CVD), central nervous system (CNS) disorders (3,
7), cancer (8), osteoporosis (9), and aging (10, 11), which seriously affect human health
and impose a heavy burden on global public health. Blood lipids serve as an important
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indicator of lipid metabolism disorders (12). Statins are the
prevailing lipid-lowering pharmaceutical agents (13). However,
they are susceptible to causing adverse effects like muscle
symptoms, liver dysfunction, renal insufficiency, and eye disorders
(14), which limits their clinical use to some extent. Further
studies have shown that statin monotherapy rarely achieves guide-
line-recommended low-density lipoprotein cholesterol (LDL-C)
concentrations (15). Current therapeutic strategies combining
statins with adjunctive agents such as ezetimibe and next-
generation PCSK9 inhibitors demonstrate minimal therapeutic
benefit in patients exhibiting low-to-moderate cardiovascular risk
profiles (16). This limited efficacy underscores the need for
personalized risk stratification and novel combinatorial approaches
to optimize lipid management in this population cohort.

Pueraria mirifica, the dried root of the leguminous plant
Kudzu, is widely distributed in East and Southeast Asia. Its
root is rich in isoflavonoids, which have both pharmacological
and nutritional activities. Pue is an isoflavone derivative isolated
from the traditional Chinese medicine Pueraria lobata, which has
antioxidant, anti-inflammatory, anti-tumor, immunomodulation
and other biological activities (17), which is widely used in the
pharmaceutical, food, and healthcare industries. A multitude of
studies have demonstrated that Pue possesses the capacity to
modulate lipid metabolism in a variety of targets and pathways.
Moreover, the incorporation of Pue into one’s diet has been shown
to yield substantial improvements in cases of lipid metabolism
disorders (18). In particular, the latest research has shown that
Pue reduces fat absorption in the gut through the “brain-gut axis”
(19). This provides an important reference for the use of Pue as a
dietary supplement in combination with other drugs to co-regulate
lipid metabolism for enhanced efficacy. However, there are fewer
comprehensive evaluations of the molecular mechanisms, cross-
disease therapeutic potential, and nutritional translation of Puel’s
regulation of lipid metabolism.

Therefore, this article reviews the regulatory network of lipid
metabolism in the organism, the molecular mechanism of Pue
regulation of lipid metabolism, and the spectrum of metabolic
diseases, as well as the future prospect of nutritional translation. It
is anticipated that this review will encourage the utilization of Pue
resources and serve as a valuable reference for expanding clinical
applications and translating research findings.

2 Molecular mechanisms of lipid
metabolism

Lipid compounds are essential metabolites for the human body
and are broadly divided into fatty acids (FAs), phospholipids
(glycerophospholipids, sphingolipids) and neutral lipids
[triglycerides (TGs), cholesteryl esters (CE)] (11), and their
main roles include structural components, regulation of
energy metabolism, and signal transduction (1). The increase
in intracellular FA levels is achieved through two pathways:
exogenous and endogenous (Figure 1). The exogenous pathway
is primarily the digestion and absorption of lipids in the small
intestine, while the endogenous pathway includes lipid uptake by
tissue cells, lipid biosynthesis, lipid storage, and degradation. The
process of bile micelle formation from dietary TG and cholesterol

is facilitated by the actions of gastric and pancreatic lipases, as
well as bile acid salts. Intestinal epithelial cells play a pivotal role
in the active absorption of lipids through proteins such as cluster
of differentiation 36 (CD36) and Niemann–pick C1-like 1 protein
(NPC1L1). These proteins subsequently combine to form chyme
particles, which then enter the circulation. It has been established
that cells obtain circulating lipids primarily via CD36, fatty acid
binding protein (FABP), fatty acid transporter protein (FATP),
and low density lipoprotein receptor (LDLR) (1). The liver is the
primary organ for de novo lipogenesis (DNL), and acetyl coenzyme
A is a common substrate for FA and cholesterol synthesis
(20). Acetyl-CoA is converted to malonyl-CoA by acetyl-CoA
carboxylase (ACC). Subsequently, saturated FAs are synthesized by
fatty acid synthase (FAS). The carbon chain undergoes a gradual
extension and desaturation process by stearoyl-CoA desaturase 1
(SCD1) and other desaturases. The final synthesized fat is stored
in cell lipid droplets (LDs) in the form of triglycerides (TAG) (11).
Cholesterol biosynthesis is dominated by the rate-limiting enzyme
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR)
and is ultimately stored as cholesteryl esters in LDs with TAG
(21, 22). Degradation of intracellular FAs is transported into
mitochondria for beta oxidation, the tricarboxylic acid cycle for
energy production, via carnitine palmitoyl transferase 1 (CPT1),
the rate-limiting enzyme for fatty acid mitochondrial beta-
oxidation. Cholesterol from peripheral tissue cells is transported
from peripheral cells to the liver via high-density lipoprotein
(HDL)-mediated reverse cholesterol transport (RCT) after ATP-
binding cassette transporter protein (ABCA1, ABCG1, etc.)
mediated cholesterol efflux (23). Cholesterol is converted to
bile acids (BA) by the cytochrome P450 enzyme cholesterol
7α-hydroxylase (CYP7A1), which is subsequently actively exported
from the liver via the bile salt efflux pump (BSEP)/ABCB11, and
either circulated through the enterohepatic cycle or excreted in
the feces (24). In addition, research has shown that extracellular
vesicles, such as exosomes and microbubbles, provide an additional
mechanism for cholesterol excretion outside the cell (22). Thus,
lipid dynamic homeostasis involves sophisticated regulation of
uptake, synthesis, storage, and catabolism, and its core network
consists of several key molecules and pathways, which are analyzed
in detail in the following sections.

2.1 Sterol regulatory element binding
proteins (SREBPs)

The SREBP family comprises three major isoforms: SREBP-1a,
SREBP-1c, and SREBP-2. While SREBP mRNAs are ubiquitously
expressed across tissues, their abundance and functional
dominance exhibit significant tissue specificity. For instance,
hepatic SREBP-1c expression surpasses SREBP-1a levels by
approximately tenfold (25). Functionally, SREBP-1a primarily
regulates both fatty acid and cholesterol biosynthesis, acting as a
master transcriptional activator of rate-limiting enzymes such as
ACC and HMGCR. In contrast, SREBP-1c serves as the principal
regulator of fatty acid synthesis and energy storage, directly
controlling the expression of key lipogenic enzymes including
ACC, FAS, and SCD1. SREBP-2 operates with high specificity in
cholesterol homeostasis, governing the transcriptional activation
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FIGURE 1

Molecular mechanisms of lipid metabolism. Diagram illustrating lipid metabolism pathways. The left section details the endogenous pathway
involving liver processes, showing the uptake, synthesis, storage, and catabolism of lipid compounds such as cholesterol and triglycerides. The right
section depicts the exogenous pathway, showing dietary fat absorption, bile acid micelle formation, and chylomicron creation in intestinal cells.
Arrows indicate processes and interactions, with labels for molecules (such as SREBPs, PPARs, ChREBP, FXR, LXR, AMPK, and ncRNAs) and inhibitors
(such as statins and PCSK9 inhibition) involved. The pathways are interconnected through enterohepatic circulation.

of HMGCR and LDLR (26). Beyond their canonical roles in
lipid metabolism, SREBPs function as critical signaling hubs
integrating diverse biological processes, including reactive oxygen
species (ROS) generation, endoplasmic reticulum stress responses,
autophagy regulation, and apoptosis modulation (27, 28).

2.2 Peroxisome proliferator-activated
receptors (PPARs)

The PPAR family comprises three distinct subtypes: PPARα,
PPARβ/δ, and PPARγ. PPARα is predominantly expressed in
brown adipose tissue, liver, heart, kidneys, and skeletal muscle.
It coordinates lipid β-oxidation through synergistic interactions
with PGC-1α, regulating key lipolytic enzymes including adipose
triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and
monoacylglycerol lipase (MGL). Additionally, PPARα activates
thermogenic gene programs, notably upregulating uncoupling
protein 1 expression to enhance energy expenditure. PPARγ, the
most abundant isoform in adipose tissue, serves as a master
regulator of white and brown adipocyte differentiation. It promotes
lipid uptake by modulating lipid transporters CD36, FABPs,
and FATPs, while stimulating lipogenesis through transcriptional

activation of lipogenic enzymes such as lipoprotein lipase (LPL)
(29). PPARβ/δ exhibits high activity in skeletal muscle, where it
cooperates with PGC-1α to induce the expression of fatty acid
catabolic enzymes and thermogenic regulators, thereby enhancing
lipid oxidative metabolism and heat production (30).

2.3 Carbohydrate response element
binding protein (ChREBP)

ChREBP is a transcription factor that promotes lipogenic gene
expression by sensing carbohydrates and is a hub for hepatic
lipid synthesis (31). It is predominantly expressed in metabolically
active tissues including the liver, intestine, and adipose tissue,
where it orchestrates hepatic lipid biosynthesis through three
distinct mechanisms: first, it regulates acetyl-CoA production
via the pentose phosphate pathway and glycolysis-derived citrate
cleavage. The second is direct transcriptional activation of the
rate-limiting enzymes in fatty acid synthesis- ACC, FAS, and
SCD1-thereby facilitating fatty acid synthesis, elongation, and
desaturation. Third, it upregulates the expression of microsomal
triglyceride transfer protein, which promotes the formation of
very low-density lipoprotein (VLDL) particles. Notably, ChREBP
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exhibits functional crosstalk with PPARα, creating a metabolic
switch that coordinates lipid anabolism and catabolism in response
to nutritional status (32).

2.4 Farnesoid X receptor (FXR)

The nuclear receptor superfamily member, FXR, exists as
four principal human isoforms (FXRα1-α4), with predominant
hepatic and intestinal expression. Functioning as a monomer
or heterodimer, FXR orchestrates transcriptional programs
governing BA homeostasis and lipid metabolism through three
primary mechanisms: (1) Suppression of bile acid synthesis
via CYP7A1 downregulation; (2) Inhibition of cholesterol
biosynthesis through Insig-2 activation; (3) Coordination of
enterohepatic circulation by regulating BSEP/ABCB11 and
intestinal bile acid-binding protein (33). Notably, hepatic
FXRα2 exerts isoform-specific functions through selective
binding to ER-2 response elements (34). Beyond its established
roles, FXR modulates adipogenesis by repressing SREBP-1c
expression (35), positioning it as a therapeutic target for metabolic
disorders, hepatobiliary malignancies, and gastrointestinal
cancers (36).

2.5 Liver X receptor (LXR)

LXR, a pivotal member of the nuclear receptor superfamily,
serves as a master coordinator of hepatic metabolic homeostasis.
Its regulatory functions encompass two principal mechanisms:
(1) promoting cellular cholesterol efflux through transcriptional
activation of ATP-binding cassette transporters ABCA1 and
ABCG1, and (2) modulating LDLR-dependent cholesterol uptake
via induction of inducible degrader of LDLR (IDOL)-mediated
receptor degradation, operating independently of the canonical
SREBP pathway (37). Furthermore, LXR exerts cross-regulation
of lipid metabolism by transcriptionally activating SREBP-
1c (38), thereby bridging cholesterol homeostasis with fatty
acid biosynthesis.

2.6 AMP activated protein kinase (AMPK)

AMPK serves as a central energy sensor orchestrating systemic
metabolic homeostasis through phosphorylation-dependent
regulation of key metabolic nodes. This evolutionarily conserved
kinase exerts multifaceted control over lipid metabolism via three
principal mechanisms: (1) suppression of DNL through inhibitory
phosphorylation of ACC1/ACC2 (39) and HMGCR (40), effectively
blocking FA and cholesterol biosynthesis; (2) enhancement
of lipolytic capacity via activation of ATGL phosphorylation,
driving fatty acid β-oxidation (41); and (3) transcriptional
regulation through phosphorylation-mediated inhibition of
lipogenic transcription factors SREBP-1c (42) and ChREBP (43).
By integrating glycolytic flux, mitochondrial energetics, and lipid
storage/oxidation programs, AMPK maintains cellular energy
equilibrium while preventing ectopic lipid accumulation (44).

2.7 Non-coding RNAs (ncRNAs)

ncRNAs, primarily encompassing microRNAs (miRNAs), long
non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), lack
protein-coding capacity but critically regulate lipid metabolism by
modulating the expression of related genes through transcriptional,
post-transcriptional, and post-translational mechanisms. miRNAs
primarily function post-transcriptionally, directly targeting key
enzymes and regulators (e.g., ACC, FAS, LDLR, HMGCR, ABCA1,
CYP7A1) to inhibit FA synthesis and modulate cholesterol
homeostasis. They also indirectly regulate lipid metabolism
through core regulators like SREBPs, PGC1α, AMPK, and LXR.
Notably, miR-33 is a key regulator of cholesterol homeostasis
(45, 46). lncRNAs employ more complex mechanisms (e.g.,
signaling, scaffolding, decoying, enhancer, or guide functions) to
bidirectionally regulate target genes across transcriptional, post-
transcriptional, and epigenetic levels. They target central factors
(e.g., ACC, FAS, SCD1, LDLR, ABCA1, ChREBP, SREBPs, AMPK,
LXR, FXR) to inhibit lipid synthesis, promote cholesterol uptake,
facilitate RCT and HDL synthesis, and enhance BA synthesis,
typically yielding net beneficial effects. Conversely, lncRNAs can
negatively regulate factors including CD36, HMGCR, ABCA1,
and SREBPs. Additionally, lncRNAs modulate lipid metabolism by
acting as miRNA sponges to sequester miRNAs (45, 47). Similarly,
circRNAs can also function as miRNA sponges, adsorbing miRNAs
to regulate key lipid metabolism molecules (e.g., FAS, PPARs,
AMPK, SREBPs), thereby forming an antagonistic regulatory
network with miRNAs (48, 49). Notably, HDL biogenesis is
regulated by both miRNAs and lncRNAs, while HDL particles
themselves serve as carriers for these ncRNAs (50, 51).

3 Pue’s multidimensional regulatory
mechanisms

A substantial body of research has validated the positive
impacts of Pue on lipid metabolism (Figure 2), including the
reduction of lipid uptake, the inhibition of lipid synthesis, and the
promotion of lipid degradation. The following discussion will focus
on the main molecular mechanisms by which Pue modulates lipid
metabolism.

3.1 The inhibition of lipid uptake

Cellular FA uptake is a key regulatory node in systemic
lipid homeostasis. The scavenger receptor CD36 coordinates
transmembrane fatty acid transport through dynamic plasma
membrane-organelle transport (52). Pharmacological studies have
shown that Pue exerts a multitissue lipid-lowering effect through
the coordinated regulation of FA transporters. In cardiomyocytes,
Pue inhibits Na+/K+-ATPase-driven expression of CD36, which
reduces FA uptake and ameliorates cardiac steatosis in in vitro and
in vivo models (53). In diabetic skeletal muscle, Pue attenuates
CD36 membrane translocation while increasing mitochondrial
β-oxidizing capacity, thereby reducing lipid accumulation in
myocytes (54). Liver studies have shown that Pue has a
dual inhibitory effect on CD36 and fatty acid transporter
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FIGURE 2

Puerarin’s multidimensional regulatory mechanisms. Diagram illustrating the effects of puerarin on lipid metabolism pathways. It shows the impact
of puerarin on key lipid processes, including the reduction of lipid uptake, the inhibition of lipid synthesis, and the promotion of lipid
degradation(enhancement of FA degradation and enhancement of cholesterol degradation). Puerarin modulates specific regulatory molecules
(SREBPs, PPARs, ChREBP, FXR, LXR, AMPK), exerting either positive or negative effects. The flow of fatty acids, cholesterol and triglycerides was
reflected in different processes.

protein 5 (FATP5), which significantly reduces lipid deposition
associated with NAFLD (55). Mechanistically, Pue disrupted
the PPARγ-CD36 signaling axis and effectively counteracted
environmental toxicant (bisphenol S)-induced lipid deposition in
C57BL/6J mice (56).

3.2 The inhibition of lipid synthesis

DNL, a central metabolic pathway in hepatic and adipose
tissues, is dynamically regulated by nutrient-hormonal crosstalk
involving insulin, glucagon, and glucocorticoids. These endocrine
signals converge on transcriptional activation of core lipogenic
regulators—SREBP-1c and ChREBP—through kinase-mediated
signaling cascades (2). Mechanistic studies reveal that Puel
exerts potent anti-lipogenic effects via multi-target suppression of
the DNL machinery: Transcriptional downregulation of master
regulators SREBP-1c and ChREBP; Concomitant inhibition of
rate-limiting enzymes including ACC, FAS, SCD1, and HMGCR.
Functional validation across experimental models demonstrating
attenuated lipid accumulation in both murine hepatocytes and
human HepG2 cell lines (55, 57–59).

3.3 The promotion of lipid degradation

3.3.1 The promotion of FA degradation
Free fatty acid (FFA) β-oxidation serves as a critical

pathway for maintaining lipid homeostasis. Studies have

demonstrated that Pue exerts regulatory effects through multiple
mechanisms. In C57BL/6J mice, Pue ameliorates bisphenol
S-induced lipid accumulation by activating PPARα and CPT,
thereby promoting lipidolysis (56). Through AMPK-mediated
pathways, Pue suppresses PPARγ activity while enhancing
HSL function, effectively improving lipid metabolism disorders
(60). In HepG2 hepatocytes, Pue activates the GPER/CaMKKβ,
CaMKII/CREB/SIRT1 signaling cascade, resulting in increased
ATGL activity and enhanced lipid degradation (61). In high-
fat/high-glucose-stimulated AML12 hepatocytes, Pue upregulates
PGC-1α and SIRT1 expression, synergistically enhancing
β-oxidation capacity (57). Recent evidence further identifies
flavin-containing monooxygenase 5 (FMO5)/PPARα signaling
as a critical pathway for Pue-induced PGC-1α and CPT1a
upregulation, establishing FMO5 as a novel therapeutic node for
lipid catabolism (62).

3.3.2 The promotion of cholesterol degradation
Pue orchestrates systemic cholesterol clearance through

two complementary mechanisms: reverse cholesterol transport
and biliary efflux Potentiation. In THP-1 macrophage-derived
foam cells, Pue activates the AMPK-PPARγ- LXRα axis,
increasing ATP-binding cassette subfamily A member 1 (ABCA1)
expression to facilitate cholesterol efflux (63). Pue acts as a FXR
agonist, upregulating BSEP/ABCB11 expression to enhance BA
excretion (57).
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FIGURE 3

Puerarin’s modulation of lipid metabolism: molecular mechanisms and therapeutic applications.

4 Cross-disease therapeutic
applications of Pue

As a natural active monomer derived from traditional Chinese
medicine, Pue has a favorable safety profile and exhibits potent lipid
metabolism regulation through multi-targets and multi-pathways
(Figure 3; Table 1). This means that Pue has the potential to be a
superior lipid-modulating drug to single-target inhibitors, which is
why Pue is receiving increasing attention across disease therapies.

4.1 Hyperlipidemia

Hyperlipidemia, defined as a disturbance in the
balance of plasma lipids, is most frequently manifested as
hypercholesterolemia. This condition is a well-established risk
factor for a variety of metabolic disorders, including obesity,
T2DM, CVD, NAFLD, and acute pancreatitis (3). Experimental
studies demonstrate that Pue ameliorates high-cholesterol diet-
induced hyperlipidemia through CYP7A1 upregulation (64).
Mechanistically, Pue exerts dual regulatory effects by suppressing
HMGCR activity (reducing cholesterol biosynthesis) while
enhancing CYP7A1 and LDLR expression, thereby promoting
cholesterol excretion and LDL clearance. This dual mechanism
underlies its protective effects against lead-induced hyperlipidemia
(65). Notably, the JNK/c-Jun/CYP7A1 pathway has been identified
as a critical mediator of Pue’s anti-hyperlipidemic activity in carbon
tetrachloride (CCl4)-induced models (66). In diabetic models,
Pue shows therapeutic potential through PPARα activation
in gastrocnemius muscle tissue, effectively reducing lipid
accumulation in streptozotocin (STZ)-induced diabetic mice

(67). Cellular studies reveal that Pue inhibits lipid deposition in
HepG2 hepatocytes via AMP-activated protein kinase (AMPK)-
mediated suppression of acetyl-CoA carboxylase (ACC) activity,
concurrently downregulating adipogenic markers (SREBP-1c,
FAS, SCD, and HMGCR) (58). Interestingly, while Pue and its
glycosides consistently upregulate LDLR expression in both HepG2
cells and C57BL/6J mice, their effect on CYP7A1 exhibits model
specificity–significantly enhancing mRNA levels in murine liver
without affecting in vitro systems (68).

4.2 Obesity

Obesity is typically characterized by a state of energy imbalance,
whereby energy intake exceeds energy expenditure, leading to
excessive fat storage. Obesity is a significant risk factor for a
number of diseases, including T2DM, NAFLD, CVD, and cancer
(69). Current epidemiological data indicate over 600 million
adults worldwide are clinically diagnosed with this condition
(70). In high-fat diet/streptozotocin (HFD/STZ)-induced diabetic
Sprague–Dawley rats, Pue administration significantly attenuated
obesity-related metabolic derangements, manifested by reduced
serum TG and FFA levels concomitant with decreased body
weight (54). Notably, Pue demonstrated comparable efficacy
in high-fat fructose diet-induced obese SD rats (58). Pue is
also effective in modulating dyslipidemia through AMPK
activation and coordinated regulation of key lipid-metabolizing
enzymes: upregulating HSL while suppressing PPARγ (60). Pue
enhances PGC-1α expression in skeletal muscle of HFD-fed mice,
counteracting obesity-associated complications (71). Mechanistic
studies further elucidate its multi-target effects: Inhibiting lipid
absorption/synthesis via FXR-mediated downregulation of CD36,
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TABLE 1 Cross-disease therapeutic applications of Pue.

Disease Animal/Cell model The way of
modeling

Dosage and duration Mode of
administration

Described effects Pathways References

Hyperlipidemia Male Wistar rats Pb 200 mg/kg/d; 75 days Gavage ↓: ALT, AST, ROS, MDA, TC, TG, LDL,
HMGCR
↑: HDL, CYP7A1, LDL-R

– (65)

Male ICR mice Carbon tetrachloride 200 and 400 mg/kg/d; 8 weeks Intragastric
administration

↓: ALT, AST, TC, TG, LDL, p-JNK,
p-c-Jun
↑: CYP7A1, HDL

JNK/c-
Jun/CYP7A1

(66)

Male BALB/c mice STZ (150 mg/kg) 20, 40, and 80 mg/kg/d; 14 days Intragastric
administration

↓: Body weight, FBG, TC, TG, LDL-C
↑: HDL-C, FNS, IRS-1, IGF-1, InsR,
PPARα

PPARα (67)

HepG2 cells 10 mM glucose, 15 mM
fructose, and 0.5 mM of

FFA

75 and 150 µM; 24 h – ↓: TG, ACC, SREBP 1c, FAS, SCD-1,
HMGCR
↑: AMPK

AMPK (58)

Male Sprague–Dawley rats HFFD 0.2%; 16 weeks Oral administration ↓: Liver fat indices, Perirenal fat indices,
Epididymal fat indices, Retroperitoneal fat
indices, TG, TC, LDL-C, MDA
↑: HDL-C, SOD, AMPK

AMPK (58)

Female and male C57BL/6J mice – 0.05% and 0.1%; 3 weeks – ↓: TC, TG, HMGCR
↑: CYP7A1, LDL-R

– (68)

HepG2 cells – 50, 100, and 200 µM; 24 h – ↓: HMGCR
↑: LDL-R, SOD

– (68)

Obesity Male Sprague–Dawley rats HFD + STZ (35mg/kg) 100 mg/kg/d; 4 weeks Intraperitoneal injection ↓: FFA, TG, MDA, CD36
↑: p-AMPK, p-ACC, CPT1b, SIRT 1, PGC
1α, PPAR-δ, LCAD, ACOX 1, UCP2,
UCP3

– (54)

Male Sprague–Dawley rats HFFD 0.2%; 16 weeks Oral administration ↓: Liver fat indices, Perirenal fat indices,
Epididymal fat indices, Retroperitoneal fat
indices, TG, TC, LDL-C, MDA
↑: HDL-C, SOD, AMPK

AMPK (58)

Female ICR mice HFD 0.2, 0.4, and 0.8%; 12 weeks Oral administration ↓: TC, TG, FAS, PPARγ2
↑: AMPK, p-AMPK, HSL

– (60)

Male C5BL/6 mice HFD 100 and 300 mg/kg/d; 16 weeks Gavage ↓: Body weight, Glucose, Insulin
↑: MW to BW ratios, Cross sectional areas
in muscle, p-AMPK, PGC 1α

PGC 1α (71)

C2C12 cells – 10 and 20 µM; 24 h – ↑: p-AMPK, p-ACC, PGC 1α PGC 1α (71)
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TABLE 1 (Continued)

Disease Animal/Cell model The way of
modeling

Dosage and duration Mode of
administration

Described effects Pathways References

Male C57BL/6 mice HFD 100 mg/kg/d; 4 weeks Oral administration ↓: TG, FFA, ALT, CD36, SREBP 1c, ACC,
FAS, SCD-1, NLRP 3, TNFα, IFN-γ,
MCP-1, IL-1β, CYP7A1,
Firmicutes/Bacteroidetes ratio
↑: FXR, BSEP, Shannon and Chao1’s
diversity index

FXR (57)

AML-12 cells HFFA 10, 30, and 100 µM; 24 h ↓: SREBP 1, NF-κB, ROS, CYP7A 1,
TNFα, IFN-γ, MCP-1, IL-1β

↑: FXR, BSEP, SIRT1, PGC 1α, UCP 1

FXR (57)

Sprague–Dawley rats Low-protein diet 50 mg/kg/d; 2 weeks Intraperitoneal injection ↓: HFF – (72)

Male C57BL/6J mice HFD 37.3 µg/kg/d; 7 days Intraperitoneal injection ↓: DMV activity, TG, body weight, jejunal
fat absorption, jejunal TG content, length
of microvilli
↑: total fecal lipid content, fecal fat
excretion

– (19)

T2DM Male Kunming mice STZ (75 mg/kg) 40, 80, and 160 mg/kg/d; 8 weeks Gavage ↓: FBG, IRI, TG, TC, LDL-C, MDA,
mTOR, NF-κB, PA, LysoPC
↑: HDL-C, SOD, AMPK, PPARγ, PC, PE

AMPK-mTOR,
PPARγ-NF-κB

(74)

Male Sprague–Dawley rats HFD + STZ (35 mg/kg) 100 mg/kg/d; 4 weeks Intraperitoneal injection ↓: FFA, TG, MDA, CD36
↑: p-AMPK, p-ACC, CPT1b, SIRT 1, PGC
1α, PPAR-δ, LCAD, ACOX 1, UCP2,
UCP3

– (54)

Rat L6 skeletal muscle cells Palmitate (0.75 mM) 0.3 mM; 24 h – ↓: FFA, CD36
↑: p-ACC, p-AKT

– (54)

Male C57BL/6J mice HFD + STZ (100 mg/kg) 50, 100, and 200 mg/kg/d; 8 weeks Gavage ↓: FBG, TG, TC, Fetuin B, ACC
↑: AMPK

AMPK/ACC (75)

NAFLD Male Sprague–Dawley rats HFFD 0.1% and 0.2%; 20 weeks Oral administration ↓: TG, FFA, AST, ALT, MDA, IL-1β, IL-6,
TNF-α, SREBF1, ChREBP, FAS, PLIN2,
CD36, FATP5, ApoB100
↑: VLDL, SOD, CAT, GSH-Px, CPT 1α,
ATGL

– (55)

Male C57BL/6 mice HFD 200 and 300 mg/kg Intragastric
administration

↓: ALT, MDA
↑: Nrf 2, SOD, GSH-Px, CPT 1α, PPARα,
PGC 1α, FMO5

FMO5/PPARα (62)

AML-12 cells PA (500 µM) 10, 20, 40, and 80 µM; 24 h – ↑: PPARα FMO5/PPARα (62)

HepG2 cells OA 25, 50, and 100 µ; 24 h – ↓: TC, TG, SREBP 1, FAS
↑: PPARα, p-AMPK

– (59)

(Continued)
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TABLE 1 (Continued)

Disease Animal/Cell model The way of
modeling

Dosage and duration Mode of
administration

Described effects Pathways References

CVD Male Sprague–Dawley rats High cholesterol diet
(HCD)

300 mg/kg/d; 4 weeks Oral administration ↓: TC, TG, LDL-C
↑: CYP7A1

– (64)

Male white rabbits HFD 0.1, 0.2, and 0.4 g/kg/d; 90 days Intragastric
administration

↓: TC, TG, PCNA, PDGF-A
↑: LDL-C

– (80)

ApoE−/−mice HFD 100, 200, and 300 µM; 12 weeks. Oral administration ↓: IL-1β, IL-6, TNF-α, ICAM-1, VCAM-1,
TMA, TMAO, P. copri

– (81)

Human THP1 monocytes PMA + oxLDL 25, 50, and 100 µg/mL; 24 h – ↑: p-AMPK, PPARγ, LXR-α, ABCA1 AMPK-
PPARγ-LXR-

α-ABCA1

(63)

Human THP1 monocytes oxLDL 10, 50, and 100 µg/mL; 24 h – ↓: CD36, TNFα, IL 1β, TLR 4, p-Iκ Bα/Iκ
Bα, oil red intensity, early apoptotic cells
of macrophages

– (83)

Murine RAW264.7
macrophages

oxLDL 10 and 50 µM; 24 h – ↓: Txnip, ROS, TC, SR-A, Lox-1
↑: Nrf2, PERK, Trx1, TrxR1

PERK/Nrf2/Trx1 (84)

C57BL/6 mice HFD 100 mg/kg/d; 12 weeks – ↓: Txnip, ROS, SR-A, Lox-1
↑: Nrf2, PERK, ATF4, Trx1, TrxR1

PERK/Nrf2/Trx1 (84)

Female pathogen-free
Sprague–Dawley rats

Bilateral OVX + AAC 50 mg/kg/d; 8 weeks Intraperitoneal injection ↓: HW/BW, HW/TL, LVPW, LVAW
↑: LVEF, LVFS, PPARα, PGC 1α, PGC 1β,
CPT 1a, CPT1b

PPARα/PGC-1 (85)

Neonatal rat cardiomyocytes Ang II 100 µM; 48 h – ↓: NEFAs
↑: PPARα, PGC 1α, PGC 1β, CPT 1a,
CPT1b

PPARα/PGC-1 (85)

Primary cardiomyocytes High glucose (HG) 1, 3, 5, 10, and 15 mM; 24 h – ↓: CD36, CRP, IL-1b, Apoptotic cell
proportion
↑: Na+-K+-ATPase acitivity

Na+-K+-ATPase (53)

Lipotoxic cardiomyopathy
mice

– 90 mg/kg/d; 12 weeks Intravenous injection ↓: CD36, CRP, IL-1b, Apoptotic cell
proportion
↑: Na+-K+-ATPase activity

Na+-K+-ATPase (53)

CNS disorders Male Sprague–Dawley rats HFHS 5% PUE; 12 weeks Oral administration ↓: TC, TG, LDL-C, SBP, DBP, MAP, AI,
LDH, CK, LVAW, LVID, EDV, α-SMA,
BNP, ANP, CSA, Collagen I,
NeuN-positive cells number in the
hippocampus and cortex, CRP
↑: HDL-C, E/A

– (18)
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TABLE 1 (Continued)

Disease Animal/Cell model The way of
modeling

Dosage and
duration

Mode of
administration

Described effects Pathways References

Male Sprague–Dawley rats HFD 30, 60, and
120 mg/kg/d;7 days

– ↓: TLR 4, IL-6, TNFα, cPLA 2, COX-2,
PGE2
↑: IL-10

TLR4/cPLA2/COX-2 (91)

Male ICR mice Chronic unpredictable
mild stress

30 and 100 mg/kg/d;
4 weeks

Intragastric
administration

↓: Desulfovibrionales
↑: Sucrose preference ratio, α-diversity
index, the ratio of Bacilli/Clostridia,
Bacillales, Lactobacillales and Bacillales

– (92)

Osteoporosis Female Sprague–Dawley rats Ovariectomy 50 and 100 mg/kg/d;
14 weeks

Oral administration ↓: TRAcP-5 b, CTX-1, BALP,
Firmicutes-to-Bacteroidetes (F/B ratio),
LPS, IL-1β, TNF, IL-6
↑: BV/TV, Tb.N, Tb. Th, BMP,
OPG/RANKL, acetic acid, Butyric acid,
valeric acid, total SCFAs

– (96)

MC3T3-E1 cells 10 mM β-sodium
glycerophosphate,

50 µM vitamin C, and
10 nM dexamethasone

10 µM; 48 h – ↑: Col 1a, Runx, ALP – (97)

Male C57BL/6J mice HFD + STZ (40 mg/kg) 25 and 50 mg/kg/d;
8 weeks

Oral administration ↓: Lipid droplets fraction area, TRAcP
positive are
↑: BV/TV, Tb.N, Ct. Th

– (97)

Female Sprague–Dawley rats OVX 100 mg/kg/d; 14 weeks Oral administration ↓: BMD, CTX-I, TRACP-5 b, RANKL,
TG, TC, LDL-C, PPARγ, the ratio of
adipocytes versus osteoblasts
↑: Tb. Sp, OPG, BMP, PICP, Wnt 3a,
β-catenin, Runx 2

– (98)

(Continued)
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TABLE 1 (Continued)

Disease Animal/Cell model The way of
modeling

Dosage and duration Mode of
administration

Described effects Pathways References

Cancer MCF-7/adr Adriamycin 100 µ; 24 h – ↓: CREB
↑: p-AMPK, p-ACC

– (109)

Others Zebrafish larvae 2% alcohol 40 µM; 36 h – ↓: Liver gray level – (111)

Wild-type AB line zebrafish 2% ethanol solution 25 µM; 48 h – ↓: Liver gray level, TC, TG, FAS, HMGCR,
IL 1β, TNFα, ACC
↑: p-AMPK

AMPKα-ACC (112)

Male Sprague–Dawley rats – 150 mg/kg/d; 2 weeks Gavage ↓: Body weight, prevotellaceae
↑: Grip strength/BW, specific twitch
forces of SOL, specific tetanic forces of
SOL, specific twitch forces of EDL, specific
tetanic forces of EDL, CSA of type II fiber,
Erysipelotrichaceae, Clostridia,
Peptococcaceae, n-butyric acid, total
SCFAs, ATP concentration

– (113)

Bone marrow stromal cells 0.09 mol/L ethanol 0.01 mg/mL; 21 days – ↓: TG, PPARγ

↑: ALP, osteocalcin
– (114)

Kunming mice 46% ethanol 0.5 g/kg; 10 months Intramuscular injection ↓: TC, TG, Empty osteocyte lacuna,
largest fat cell diameter, PPARγ

↑: ALP, osteocalcin

– (114)
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SREBP-1c, ACC, and FAS; Modulating bile acid homeostasis
through CYP7A1 suppression and BSEP induction; Restoring gut
microbiota composition, particularly Firmicutes/Bacteroidetes
ratio and relative abundances of Firmicutes/Ascomycota phyla
in HFD-induced obese C57BL/6 mice (57). Emerging evidence
highlights Pue’s developmental programming effects–early
intervention ameliorates hepatic steatosis and may mitigate
adult-onset obesity in intrauterine growth restriction models (72).
Recently discovered, Pue exerts central nervous system-mediated
anti-obesity effects by binding to γ-aminobutyric acid type A
receptor (GABAAR), thereby suppressing dorsal motor nucleus
of the vagus neuronal activity. This neuroendocrine mechanism
leads to jejunal microvilli shortening and consequent inhibition of
intestinal fat absorption (19).

4.3 T2DM

T2DM, defined as a chronic metabolic disorder characterized
by persistent hyperglycemia, arises from pancreatic β-cell
dysfunction coupled with systemic insulin resistance. Moreover,
Emerging evidence indicates that chronic intracellular lipid
accumulation (lip toxicity) contributes to β-cell dysfunction
through multiple molecular mechanisms, including endoplasmic
reticulum stress, oxidative stress, inflammatory responses,
mitochondrial dysfunction, and impaired autophagy (73). Pue
reduces TC, TG, LDL, PA, and Lysophosphatidylcholine (LysoPC)
levels, increase HDL, PC, and PE levels, improve glucose-lipid
metabolism and reduce inflammatory damage through AMPK-
mTOR and PPARγ-NF-κB signaling pathways, thus treating
diabetes mellitus (74). In skeletal muscle, Pue increased AMPK,
SIRT1, PGC-1α, and CPT-1β levels and promoted fatty acid
oxidation, thereby preventing lipid accumulation in diabetic
models (54). Concurrently, hepatic insulin resistance is improved
through Fetuin B suppression, AMPK phosphorylation, and
inhibition of ACC activity (75). It is noteworthy that Professor
Roy Taylor, a prominent British scholar, has underscored that lipid
deposition in the liver and pancreas serves as the initiating factor
that precipitates diabetes mellitus (76). This provides an important
reference for Pue to target the regulation of lipid metabolism in the
treatment of diabetes mellitus and its complications.

4.4 NAFLD

NAFLD affects approximately 25.24% of the global population
(77), with pathogenesis driven by hepatic lipid dysregulation
through enhanced FA uptake and DNL, ultimately triggering
cellular stress, inflammation, tissue remodeling, and fibrosis.
Experimental evidence demonstrates that Pue can reduce the
expression of FATP 5, CD36, SREBF1, ChREBP, ACC, and
FAS to decrease lipid uptake and biosynthesis, and up-regulate
the expression of CPT 1a, ATGL, and ApoB100 to promote
the degradation of lipids, which significantly improves the
accumulation of lipids in the livers of rats with NAFLD (55).
Mechanistic studies reveal Pue activates the FMO5/PPARα axis
to stimulate PGC1α and CPT1a expression, thereby promoting
FA oxidation and reducing lipid deposition in NAFLD mice (62).
In vitro validation using oleic acid-treated HepG2 cells confirms

Pue’s multi-target action: activation of PPARα and AMPK pathways
concurrently inhibits SREBP1 and FAS expression while enhancing
FA oxidation, effectively counteracting lipid accumulation (59).

4.5 CVD

CVD is the leading cause of death worldwide. Atherosclerosis
(AS), the primary CVD manifestation, results from cholesterol
deposition in arterial walls, leading to plaque formation and
vascular dysfunction (78). LDL critically drives AS progression
(79), underscoring lipid metabolism regulation as a key therapeutic
target. Pue exerts anti-atherogenic effects by reducing serum
TG, TC, and LDL levels while enhancing CYP7A1 expression
in hypercholesterolemic models, thereby promoting cholesterol
and bile acid excretion and lowering atherogenic indices (64).
In vivo studies demonstrate Pue’s capacity to inhibit aortic
intimal thickening and plaque formation in rabbits (80). In
addition, Pue alleviate AS by inhibiting the production of
Prevotella copri (P. copri) as well as trimethylamine (TMA)
(81), while trimethylamine-N-oxide (TMAO) relies on the gut
microbiota to improve lipid metabolism by regulating reverse
cholesterol transport (82). At the cellular level, Pue combats foam
cell formation through dual actions: (1) activating the AMPK-
PPARγ-LXRα pathway to promote ABCA1-mediated cholesterol
efflux (63), and (2) downregulating CD36 expression to limit
lipid uptake in human THP-1 macrophages (83). Further studies
reveal Pue’s activation of the PERK/Nrf2/thioredoxin 1 (Trx1)
axis reduces scavenger receptor-A (SR-A) and lectin-type oxidized
LDL receptor-1 (LOX-1) expression, inhibiting macrophage lipid
accumulation (84). In cardiac pathophysiology models, Pue
attenuates myocardial hypertrophy via PPARα/PGC-1α-mediated
upregulation of CPT1a/b, enhancing fatty acid oxidation (85). It
concurrently preserves cardiac function by increasing Na+/K+-
ATPase activity and suppressing CD36-mediated fatty acid uptake
(53). Notably, Pue supplementation demonstrates preventive
efficacy against diet-induced metabolic syndrome and CVD
complications by improving glucolipid homeostasis, attenuating
cardiovascular remodeling, and reducing atherogenic indices (18),
positioning it as a promising nutraceutical for cardiometabolic
disease prevention.

4.6 CNS disorders

Pue exhibits therapeutic potential for central nervous
system (CNS) disorders through multimodal mechanisms
(86–88). Emerging research highlights the intersection of
lipid metabolic dysregulation and CNS pathophysiology
(89). Hypercholesterolemia exacerbates neuroinflammation,
accelerating neuronal degeneration and cognitive decline (90).
Dietary supplementation with Pue attenuates the metabolic
syndrome and associated neurological damage induced by a
high-fat/high-sugar diet by restoring glycolipid homeostasis and
improving cortical/hippocampal vascularity and neuronal density
(18). In addition, Pue modulates phospholipid metabolism and
attenuates inflammation associated with depression by inhibiting
TLR4 and repairing the intestinal barrier (91). Gut-brain axis
studies reveal Pue’s microbiota remodeling capacity in chronic
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stress models: Enriching beneficial taxa (Firmicutes, Lactobacillus)
and Depleting pathogenic genera (Proteobacteria, Desulfovibrio)
(92). These commensal microbes enhance intestinal integrity
and immunomodulation through short-chain fatty acid (SCFA)
production (93, 94). Notably, recent advances position cellular
senescence as a therapeutic frontier for CNS disorders (95), with
lipid metabolic alterations driving senescence progression (10).
Pue’s dual targeting capability—modulating lipid metabolism while
clearing senescent cells—presents a novel strategy for treating
age-related neurological diseases.

4.7 Osteoporosis

Osteoporosis is characterized by low bone mass and
deterioration of bone micro-structure. Pue exerts anti-osteoporotic
effects by regulating the type and abundance of intestinal flora,
increasing the content of SCFAs in the colon, especially acetic
acid and butyric acid, maintaining the dynamic balance of the
colonic mucosa, and reducing the inflammatory response (96). Pue
influences gut microbial diversity by modulating Alloprevotella,
Rodentibacter, Alistipes, and Fusobacterium flora, remodels
gut flora, and regulates alpha-linolenic acid metabolism and
glycerophospholipid metabolism, thereby inhibiting pioglitazone-
mediated bone loss (97). Pue can also improve OVX-induced
osteoporosis by activating the Wnt 3a/β-catenin signaling pathway,
inhibiting the PPARγ signaling pathway, regulating phospholipid
metabolism and the biosynthesis of PUFAs, and modulating the
differentiation of bone mesenchymal stem cells to osteoblasts (98).

4.8 Cancer

Lipid signaling critically regulates tumor progression and
microenvironment remodeling, with Pue emerging as a multi-
target anticancer agent since its initial antitumor activity in colon
cancer was reported in 2006 (99). Subsequent studies validate
Pue’s efficacy across esophageal (100), lung (101, 102), hepatic
(103), breast (104), and bladder cancers (105) through five core
mechanisms: suppressing cancer cell proliferation/migration (105),
inducing apoptosis (106), reprogramming glucose metabolism
(107), overcoming chemoresistance, and modulating tumor
immune landscapes (108). Mechanistically, Pue reverses multidrug
resistance (MDR) in human breast cancer MCF-7/adr cells
by upregulating AMPK and ACC, thereby inhibiting MDR1
expression (109). This finding holds particular significance given
that phospholipid/cholesterol-mediated MDR pathways represent
major obstacles in chemotherapy (110). Crucially, Pue’s ability to
target lipid metabolic nodes—including MDR1 suppression and
chemoresistance reversal—positions it as a promising candidate
for developing lipid-centric anticancer strategies, offering novel
therapeutic opportunities for oncology patients.

4.9 Others

Pue reverses alcohol-induced metabolic disturbances,
including sphingolipid metabolism, resulting in hepatoprotective
effects (111). In alcoholic fatty liver disease (AFLD), Pue

ameliorates hepatic lipid accumulation in zebrafish larvae by
suppressing fatty acid synthesis via the AMPKα-ACC pathway,
while concurrently restoring sphingolipid homeostasis to exert
hepatoprotective effects (112). Beyond hepatic protection, Pue
counteracts sarcopenia by remodeling the gut-muscle axis:
enhancing gut microbiota diversity, elevating SCFA production,
and boosting ATP synthesis to improve skeletal muscle strength
(113). Additionally, in alcohol-related osteopathology models, Pue
reduces PPARγ expression in both murine bone marrow stromal
cells and Kunming mice, effectively inhibiting bone marrow
adipogenesis while preserving osteogenic differentiation capacity,
thereby mitigating alcoholic osteonecrosis (114).

5 Clinical translation and nutritional
considerations

Despite Pue’s clinical potential in metabolic regulation,
its poor oral bioavailability due to low aqueous solubility and
erratic lipid dispersion poses significant translational challenges.
Pharmaceutical innovations have addressed these limitations
through advanced delivery systems including cubic liquid crystal
nanoparticles (115), chitosan/PLGA-based nanocarriers (116),
long-circulating liposomes (117), and self-microemulsifying
formulations (118), which collectively enhance Pue’s absorption
and therapeutic efficacy. Clinically, Pue supplementation
demonstrates metabolic benefits across multiple trials: oral
administration (400 mg/day for 10 days) improves cardiac function
in chronic heart failure patients by elevating left ventricular
ejection fraction and reducing oxidized LDL levels (119);
intravenous delivery (500 mg/day) ameliorates dyslipidemia and
insulin resistance in coronary artery disease through TG, TC, and
LDL-C reduction alongside HDL-C elevation (120); prolonged oral
regimens (150 mg/day for 12 weeks) effectively lower cholesterol in
polycystic ovary syndrome when combined with standard therapies
(121); oral regimens (750 mg/day) effectively lower cholesterol
in diabetic nephropathy cohorts when combined with standard
therapies (122). Paradoxically, a short-term trial in Chinese
males (18–50 years) showed no significant lipid improvement
(123), potentially reflecting population-specific responses or trial
design limitations. Future clinical validation should prioritize
expanded demographic inclusion, gender-balanced cohorts, and
standardized dosing protocols to establish robust evidence for Pue’s
nutraceutical applications in lipid metabolic disorders.

It should be emphasized that intravascular administration
of Pue can cause adverse reactions including drug fever, rash,
nausea, vomiting, diarrhea, hepatic/renal damage, palpitations,
anaphylactic shock, and hemolysis (124). Critically, hemolysis
represents a key limiting factor for Pue injection’s clinical use.
This hemolytic effect has been confirmed in both animal and
cellular models: Rabbits receiving 25 mg/kg/day Pue developed
hemolysis after 42 days (125). Furthermore, in vitro erythrocyte
experiments demonstrated that Pue induces hemolysis in a
dose- and time-dependent manner (126). Pharmacokinetic studies
reveal its inhibitory effects on cytochrome P450 isozymes
(CYP2B6, CYP2C9, and CYP3A4) (127), which may potentiate
statin plasma concentrations–necessitating vigilant creatine kinase
monitoring during coadministration. Furthermore, long-term
estrogen use may increase the risk of breast cancer (128). The
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estrogenic properties of Pue raise potential concerns about long-
term endocrine effects. Therefore, comprehensive toxicological
evaluations of Pueraria mirifica derivatives are imperative to assess
breast cancer risk associations and establish safe administration
protocols, particularly for chronic therapeutic applications. These
precautionary measures will facilitate the development of evidence-
based guidelines to optimize Pue’s clinical translation while
mitigating iatrogenic risks.

6 Summary and outlook

Lipid metabolism, a dynamically regulated process orchestrated
by core molecular networks involving SREBPs, PPARs, ChREBP,
FXR, LXR, AMPK, and ncRNAs, represents a critical therapeutic
frontier. Unlike single-target lipid-lowering agents (statins,
ezetimibe, PCSK9 inhibitors), Pue exhibits multi-target regulatory
capacity, simultaneously modulating interconnected pathways to
achieve synergistic therapeutic effects while minimizing adverse
outcomes associated with monotarget interventions—exemplifying
the systemic advantages of natural products. Nevertheless, four
critical research gaps require attention:

First, while lipid storage mechanisms—particularly lipid
droplet (LD) dynamics as functionally active organelles mediating
fatty acid trafficking, storage, and interorganelle communication
(129)—constitute essential components of lipid homeostasis,
Pue’s regulatory effects on LD biogenesis/remodeling remain
unexplored. Second, key lipid chaperones and transcription
factors including FABPs that coordinate HSL-mediated lipolysis
and PPARγ-driven adipogenesis (130), transcription factor EB
(TFEB) regulating autophagy-lipid metabolism crosstalk via
PGC-1α/PPARα (131), and forkhead box O1 (FOXO1) governing
ATGL/LAL-mediated lipolysis and adipocyte differentiation
(132) represent promising yet uninvestigated targets for Pue’s
metabolic actions. Third, ncRNAs are established regulators of
lipid metabolism, offering novel biomarkers and therapeutic
targets for related diseases while demonstrating potential for
individualized therapy in precision medicine. However, current
studies on Pue have primarily focused on: miRNA-mediated
pathways (including antioxidant, anti-inflammatory effects,
inhibition of cellular pyroptosis, and cardioprotection) (133–136);
lncRNA Anril-regulated autophagy (137); lncRNA/mRNA
co-expression networks; and the role of circ_0020394 as
a molecular sponge for miR-328-3p promoting apoptosis
(138),while lacking specific studies on ncRNA regulation
of lipid metabolism. In addition, HDL is both a regulatory
target of ncRNA and a transport carrier of ncRNA, and the
interaction between the two remains to be elucidated. Therefore,
future studies should investigate the activity of Pue in the
ncRNA-lipid metabolism axis and elucidate how the dynamic
transport of HDL-ncRNA contributes to its therapeutic efficacy,
thus laying the molecular foundation for individualized drug
administration. Fourth, despite compelling preclinical evidence,
clinical validation through multicenter randomized controlled
trials evaluating Pue’s lipid-modulating efficacy and safety
remains limited.

Emerging insights into Pue’s novel brain-gut axis-mediated
fat absorption inhibition reveal its potential as a master metabolic
regulator, suggesting combinatory therapeutic strategies with

conventional lipid-lowering agents. Given lipid metabolism’s
centrality in energy homeostasis and cellular physiology,
elucidating Pue’s molecular interplay with intracellular lipid
networks and advancing translational nutrition research will not
only enable cross-disease therapeutic innovations but also optimize
clinical applications and nutraceutical development.
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