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Background: Serum vitamins A and B12, as essential micronutrients, play 
pivotal roles in maintaining physiological homeostasis; however, the association 
between these vitamins and aging remains unclear. Therefore, this study aims 
to investigate potential threshold effects of these nutrients on accelerated 
biological aging using multidimensional DNA methylation biomarkers.

Methods: This study included 2,530 participants with DNA methylation data 
from the National Health and Nutrition Examination Survey 1999–2000 and 
2001–2002. Two age acceleration metrics, derived from epigenetic clocks 
(PhenoAge and GrimAge), were calculated as the residuals obtained by 
regressing the epigenetic clock estimates on chronological age. Multivariable 
logistic regression models were used to analyze the association of vitamins 
A and B12 with epigenetic clocks. Additionally, generalized additive models 
and two-piecewise logistic regression were used to explore the non-linear 
relationships between vitamins A and B12 and epigenetic clocks.

Results: Compared to the first quintile of vitamin A, the odds ratios (ORs) 
for PhenoAge acceleration in the next four quintiles were 1.24 (0.93–1.65), 
1.04 (0.78–1.37), 0.95 (0.71–1.27), and 1.51 (1.13–2.01), respectively. No linear 
associations were found between vitamin B12 and PhenoAge acceleration, nor 
between vitamins A and B12 and GrimAge acceleration. However, the generalized 
additive model showed significant non-linear associations between serum 
levels of vitamins A and B12 and PhenoAge acceleration, with inflection points 
at 71.5 and 488.0 pg/mL, respectively. In addition, a non-linear association was 
observed between serum levels of vitamin A with GrimAge acceleration, with an 
inflection point at 71.8 μg/dL. Two-piecewise logistic regression also indicated 
that higher vitamin B12 delayed aging, while higher vitamin A accelerated aging. 
Sensitivity analyses showed a similar non-linear association between vitamins A 
and B12 and HannumAge acceleration.

Conclusion: This study suggests that higher vitamin A concentrations may 
be related to an increased risk of aging, while adequate vitamin B12 intake may 
offer protective benefits against epigenetic changes associated with aging.
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1 Introduction

According to the report of the World Health Organization 
(WHO), the population aged 60 years and above currently exceeds 1 
billion. By 2050, this number is expected to double, reaching 2.1 
billion globally (1). As the challenges associated with an aging 
population intensify, the importance of healthy aging has become 
increasingly critical. Aging is a natural physiological process in most 
living organisms, characterized by a time-dependent decline in body 
function. Traditionally, chronological age has been used as the 
primary measure of aging. However, recent studies showed that 
biological age could more accurately reflect a person’s aging status 
compared to chronological age, as the latter did not consider an 
individual’s health status (2–4). Biological aging could raise the 
accumulation of molecular changes or “hallmarks” that deteriorate the 
function and resilience of tissues and organs, eventually leading to 
death and age-related diseases such as cardiovascular disease and 
cancer (3, 4).

Recent evidence from human and mouse studies demonstrates 
that DNA methylation-based (DNAm) biomarkers satisfy the 
formerly elusive criteria of a molecular biomarker of aging and thus 
serve as vital inputs for constructing epigenetic clocks (5). These 
clocks can accurately predict biological aging by accounting for 
both genetic predispositions and environmental factors (6). 
HannumAge and HorvathAge were the “first-generation” clocks, 
which are primarily based on chronological age. In contrast, 
“second-generation” clocks, such as GrimAge and PhenoAge, 
emphasize health and mortality outcomes (7). Among these, 
PhenoAge and GrimAge have stronger evidence of association with 
morbidity and mortality and with risk factors for shorter and less 
healthy lives (8). When the epigenetic clock exceeds chronological 
age, individuals are considered to be  in the state of accelerated 
aging, which is linked to an increased risk of diseases (6, 9). 
However, few studies have explored the factors that affect 
accelerated epigenetic aging, especially the association of nutrients 
with aging (7).

Vitamins are essential nutrients that are significantly associated 
with aging-related diseases. Vitamin A, a crucial fat-soluble vitamin, 
is an indispensable dietary micronutrient essential for human health 
and development, supporting physiological processes, including 
immune function, cellular growth, and metabolic regulation (10, 
11). Previous studies have shown that adults in high-income 
countries often use dietary supplements containing vitamin A, 
which increases the risk of intake above tolerable upper intake levels 
(12). However, vitamin A deficiency has been linked to obesity and 
carcinogenesis in the oral cavity (13, 14). In addition, vitamin B12, 
a water-soluble vitamin, plays a critical role in physiological 
functions such as DNA synthesis and methylation, inflammatory 
response, and neurological function. Previous studies have shown 
that vitamin B12 deficiency could elevate homocysteine levels, 
thereby increasing the risk of cardiovascular disease (15). Moreover, 
vitamin B12 deficiency was associated with neurological sequelae 
such as peripheral neuropathy, subacute combined degeneration of 
the spinal cord, cognitive decline, and psychiatric disturbances (16, 
17). However, few studies explored the association between vitamins 
and epigenetic aging.

Previous studies have shown that serum levels of vitamin D are 
negatively associated with aging (18–22). Limited evidence exists 

regarding the associations between serum levels of vitamins A and 
B12 and aging. While most prior investigations examined linear 
associations of vitamins with health outcomes (e.g., mortality or 
disease risk), the optimal concentration ranges for these vitamins 
remain unknown. For example, previous studies showed that serum 
levels of vitamin A <30 μg/dL or >80 μg/dL may indicate a high risk 
of subsequent mortality (23). Additionally, both low (<369.1 pg/mL) 
and high (≥506.1 pg/mL) serum vitamin B12 levels were associated 
with a higher risk of cardiovascular disease (CVD) mortality in 
diabetes patients (24). To fill these knowledge gaps, we examined the 
non-linear associations between serum vitamins A and B12 
concentrations and GrimAge and PhenoAge acceleration, based on 
the National Health and Nutrition Examination Survey (NHANES). 
Furthermore, the inflection points of these associations were 
also determined.

2 Materials and methods

2.1 Study design and sample

Participants of this cross-sectional study came from the NHANES, 
a nationally representative sample of the US population, with 
methodological details reported previously (25). Briefly, the NHANES 
was conducted by the National Center for Health Statistics of the 
Centers for Disease Control and Prevention. All participants were 
recruited from the civilian, non-institutionalized household 
population of the United  States between 1988 and 2018. Baseline 
information was collected using standardized questionnaires and 
home interviews, and blood samples were collected and tested 
following standard procedures.

The data for our study were obtained from the two-cycle data of 
NHANES (1999–2000 and 2001–2002). After excluding the 
participants with missing DNAm PhenoAge (N = 18,472) and serum 
levels of vitamin A (N = 5) and vitamin B12 (N = 2) at baseline, 2,527 
and 2,530 participants were used to calculate the association of serum 
levels of vitamins A and vitamin B12 with epigenetic clocks, 
respectively (Supplementary Figure 1).

2.2 Serum levels of vitamins A and B12 
assessment

The serum levels of vitamins A and B12 were measured using 
high-performance liquid chromatography with photodiode array 
detection in the NHANES 1999–2000 and 2001–2002. The NHANES 
quality assurance and quality control protocols complied with the 
1988 Clinical Laboratory Improvement Act Mandates.

2.3 Accelerated epigenetic aging 
assessment

This study evaluated accelerated epigenetic aging through 
DNAm-based epigenetic clocks. DNA methylation profiling was 
performed on purified whole blood samples obtained from 
participants in NHANES during the 1999–2000 and 2001–2002 
cycles. Genome-wide DNAm levels were quantified using the 
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Illumina Infinium MethylationEPIC BeadChip v1.0 (Illumina, San 
Diego, CA, United States). Data preprocessing, normalization, and 
quality control procedures followed established protocols, as 
detailed in NHANES (26). Two widely validated epigenetic clocks, 
including PhenoAge (27) and GrimAge (28) were computed to 
capture distinct dimensions of biological aging. PhenoAge and 
GrimAge incorporate clinical biomarkers and mortality-related 
predictors to quantify morbidity- and mortality-associated aging 
trajectories (29). Age acceleration, a measure of epigenetic aging 
discordance, was derived for each clock by regressing chronological 
age against its corresponding epigenetic clock estimate. Accelerated 
epigenetic aging was defined as the positive age acceleration, 
indicating that the epigenetic clock was older than 
chronological age.

2.4 Covariate assessment

As both vitamins (A and B12) and accelerated epigenetic aging 
could be  influenced by sex, age, ethnicity, socioeconomic factors 
[education and poverty income ratio (PIR)], lifestyle factors [smoking 
and alcohol use], body mass index (BMI), and history of disease 
[diabetes, cancer, coronary heart disease (CHD) and stroke]. The 
history of disease was defined based on self-reported diagnoses by 
doctors or the use of drugs associated with those diseases.

2.5 Statistical analyses

To reduce the effect of false positives, our study used winsorization 
to adjust for outliers prior to log-transformation (30). The outliers were 
capped by the 5th percentile (Q5) or 95th percentile (Q95) of vitamin 
levels. The chi-squared test was used to compare baseline categorical 
variables by quintiles of serum levels of vitamins A and B12, and analysis 
of variance (ANOVA) or Kruskal–Wallis rank sum test for continuous 
variables. Logistic regression was used to calculate odds ratios (ORs) 
and 95% confidence intervals (CIs) for the association of serum levels 
of vitamins A and B12 with accelerated epigenetic aging. Model 1 was 
the crude model without adjustment. In multivariable analyses, model 
2 was adjusted for sex, age, ethnicity, and PIR, and model 3 additionally 
adjusted for lifestyle factors (smoking and alcohol use), BMI, and 
comorbidities (history of diabetes, cancer, stroke, and CHD).

Furthermore, potential non-linear associations between serum 
levels of vitamins A and B12 and accelerated epigenetic aging were 
explored using logistic regression with generalized additive model and 
smoothed curve fitting (penalized spline method). Vitamins A and B12 
were included in the models as continuous, log2-transformed, and 
scaled values. A recursive algorithm was then employed to estimate the 
inflection points from these non-linear associations, and a two-segment 
logistic regression model based on inflection points was used.

2.6 Sensitivity analysis

To assess potential effect modification, a log-likelihood ratio test 
was used to calculate the model fit by comparing models with and 
without interaction terms of vitamins A and B12 with selected 
potential effect modifiers. When significant interactions were found, 

we conducted subgroup analyses by the possible effect modifiers. To 
assess the robustness of our findings, we  used HorvathAge and 
HannumAge acceleration, which have been extensively validated in 
previous studies. In addition, we analyzed the association between 
serum vitamin quantiles and epigenetic age acceleration, with model 
fit assessed using Akaike Information Criterion (AIC) values. Two 
DNAm ages were trained on chronological age and reflect mitotic and 
tissue-specific aging processes (31, 32). Statistical analysis was 
performed using R (version 4.4.1; R Core Team, Vienna, Austria). 
Two-sided p < 0.05 were considered statistically significant.

3 Results

3.1 Participant characteristics

Table 1 shows that at baseline compared with those in the lowest 
quintile (Q1) of vitamin A level, participants in the highest quintile 
(Q5) were more likely to be men, older and non-Hispanic White, had 
higher family income, more smoking and alcohol use, were less likely 
to be obese (all p < 0.05). They had a higher prevalence of diabetes, 
cancer, and CVD (all p < 0.05), but similar prevalence of stroke 
(p = 0.28). In contrast, participants in the highest quintile (Q5) of 
vitamin B12 were more likely to be women and non-Hispanic Black, 
with lower smoking and alcohol use. At the same time, age, income, 
and prevalence of cancer and CHD were similar.

3.2 Association of vitamins A and B12 with 
accelerated epigenetic aging

Table 2 shows that compared to the first quintile of vitamin A, the 
fully adjusted OR (95% CI) of PhenoAge acceleration for the second 
to fifth quintiles were 1.24 (95% CI: 0.93–1.65), 1.04 (95% CI: 0.78–
1.37), 0.95 (95% CI: 0.71–1.27), and 1.51 (95% CI: 1.13–2.01), 
respectively. Although we found no significant linear association of 
serum levels of vitamin B12 with PhenoAge acceleration [Q1: 
reference; Q2: OR = 1.20, 95% CI: 0.91–1.58; Q3: OR = 1.36, 95% CI: 
1.03–1.80; Q4: OR = 0.98, 95% CI: 0.74–1.29; and Q5: OR = 0.88, 95% 
CI: 0.66–1.16; p for trend = 0.16], the trend of the OR values suggested 
a potential non-linear dose–response association. Similarly, we found 
no significant linear association of serum levels of vitamins A and B12 
with GrimAge acceleration (p for trend = 0.23 and 0.26, respectively). 
However, nonmonotonic trends in ORs across quintiles suggested 
possible threshold or biphasic effects.

3.3 The detection of non-linear association

Figure 1 shows that the generalized additive model revealed a 
non-linear association of serum levels of vitamin A (p for 
non-linear = 0.02 for PhenoAge acceleration and p for 
non-linear = 0.01 for GrimAge acceleration) and serum levels of 
vitamin B12 (p for non-linear = 0.03 for PhenoAge acceleration) with 
accelerated epigenetic aging. The inflection points of serum levels of 
vitamins A and B12 with PhenoAge acceleration were 71.5 μg/dL and 
488.0 pg/mL, respectively. In addition, the points at which the curve 
crossed the horizontal vector were similar for the PhenoAge 
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TABLE 1 Baseline characteristics of participants according to serum levels of vitamins A and vitamin B12a.

Characteristic
Serum vitamins levels p value

Q1 Q2 Q3 Q4 Q5

Vitamin A

  Sex, women 305 (60.2) 243 (48.2) 257 (50.8) 235 (46.6) 205 (40.5) <0.01

  Age, mean (SD), years 65.6 (9.9) 65.2 (10.1) 65.7 (10.3) 66.9 (10.2) 67.4 (9.8) <0.01

  Race/ethnicity <0.01

  Mexican American 208 (41.0) 182 (36.1) 122 (24.1) 117 (23.2) 90 (17.8)

  Other Hispanic 42 (8.3) 44 (8.7) 32 (6.3) 22 (4.4) 23 (4.5)

   Non-Hispanic White 96 (18.9) 155 (30.8) 228 (45.1) 266 (52.8) 280 (55.3)

   Non-Hispanic Black 146 (28.8) 111 (22.0) 100 (19.8) 84 (16.6) 96 (19.0)

   Other race-including multi-racial 15 (3.0) 12 (2.4) 24 (0.9) 15 (3.0) 17 (3.4)

  Family PIR, mean (SD) 2.1 (1.5) 2.4 (1.5) 2.7 (1.6) 2.8 (1.6) 2.8 (1.7) <0.01

  Smoking status 0.02

  ≥100 cigarettes in life 255 (50.3) 260 (51.6) 264 (52.3) 275 (54.7) 301 (59.5)

  <100 cigarettes in life 250 (49.3) 242 (48.0) 241 (47.7) 228 (45.3) 205 (40.5)

  Not recorded 2 (0.4) 2 (0.4) 0 (0.0) 0 (0.0) 0 (0.0)

  Alcohol use <0.01

  ≥12 alcohol drinks/year 255 (53.6) 293 (62.6) 313 (64.0) 309 (64.2) 333 (68.1)

  <12 alcohol drinks/year 221 (46.4) 175 (39.4) 176 (36.0) 172 (35.8) 156 (31.9)

  BMI, mean (SD), kg/m2 29.8 (6.4) 28.7 (5.8) 28.7 (6.0) 27.9 (5.3) 28.2 (5.4) <0.01

  History of diabetes 112 (22.1) 82 (16.3) 95 (18.8) 100 (19.8) 123 (24.3) 0.02

  History of cancer 52 (10.3) 61 (12.1) 80 (15.8) 62 (12.3) 90 (17.8) <0.01

  History of stroke 25 (4.9) 22 (4.4) 31 (6.1) 34 (6.77) 36 (7.1) 0.28

  History of CHD 41 (8.1) 33 (6.5) 46 (9.1) 45 (8.9) 77 (15.2) <0.01

Vitamin B12

  Sex, women 218 (43.1) 219 (43.4) 234 (46.2) 257 (50.7) 317 (63.3) <0.01

  Age, mean (SD), years 67.1 (10.3) 66.1 (10.0) 65.3 (10.0) 65.9 (9.8) 66.3 (10.1) 0.07

  Race/ethnicity <0.01

  Mexican American 140 (27.7) 136 (26.9) 160 (31.6) 131 (25.8) 152 (30.3)

  Other Hispanic 35 (6.9) 38 (7.5) 40 (7.9) 25 (4.9) 25 (5.0)

   Non-Hispanic White 215 (42.5) 239 (47.3) 203 (40.1) 194 (38.3) 172 (34.3)

   Non-Hispanic Black 98 (19.4) 79 (15.7) 87 (17.2) 137 (27.0) 136 (27.1)

   Other race-including multi-racial 18 (3.5) 13 (2.6) 16 (3.2) 20 (4.0) 16 (3.3)

  Family PIR, mean (SD) 2.6 (1.6) 2.6 (1.6) 2.6 (1.6) 2.6 (1.6) 2.6 (1.6) 0.99

  Smoking status <0.01

  ≥100 cigarettes in life 280 (55.6) 295 (58.4) 300 (59.3) 244 (48.1) 235 (46.9)

  <100 cigarettes in life 222 (44.0) 210 (41.6) 205 (40.5) 263 (51.9) 265 (52.9)

  Not recorded 2 (0.4) 0 (0.0) 1 (0.2) 0 (0.0) 1 (0.2)

  Alcohol use <0.01

  ≥12 alcohol drinks/year 322 (67.1) 317 (66.0) 308 (63.8) 300 (62.1) 254 (53.5)

  <12 alcohol drinks/year 158 (32.9) 163 (34.0) 175 (36.2) 183 (37.9) 221 (46.5)

  BMI, mean (SD), kg/m2 29.4 (6.4) 29.0 (5.6) 28.8 (5.7) 28.6 (5.8) 27.7 (5.6) <0.01

  History of diabetes 86 (17.0) 77 (15.2) 111 (21.9) 117 (23.1) 121 (24.2) <0.01

  History of cancer 76 (15.0) 69 (13.7) 69 (13.7) 64 (12.6) 66 (13.2) 0.85

  History of stroke 23 (4.5) 35 (6.9) 30 (5.9) 34 (6.7) 26 (5.2) 0.45

(Continued)
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acceleration and GrimAge acceleration (71.8 μg/dL for vitamin A). 
However, no significant non-linear association was found between 
vitamin B12 and GrimAge acceleration (p for non-linear = 0.30).

Furthermore, two-piecewise logistic regression shows similar 
results (all p for log-likelihood ratio < 0.05, Table 3). Meanwhile, if the 
serum vitamin A concentration is ≥71.5 μg/dL, each standard 
deviation (SD) raises the risk of PhenoAge acceleration by 26% 
(OR = 1.26, 95% CI: 1.06–1.51). However, per 1 SD increase in serum 
levels of vitamin B12 was associated with a 14% lower risk of 
PhenoAge acceleration when the concentration was ≥488.0 pg/mL 
(OR = 0.86, 95% CI: 0.75–0.98). When serum levels of vitamins A and 
B12 were <71.5 μg/dL and 488.0 pg/mL, respectively, no associations 
were observed between those vitamins and PhenoAge acceleration 
(OR = 0.96, 95% CI: 0.86–1.07 and OR = 1.07, 95% CI: 0.95–1.22, 
respectively). If the serum vitamin A concentration is ≥71.8 μg/dL, 
each SD raises the risk of GrimAge acceleration by 33% (OR = 1.33, 
95% CI: 1.09–1.62). However, no associations were observed between 
vitamin A and GrimAge acceleration (OR = 0.89, 95% CI: 0.78–1.01).

3.4 Subgroup analysis and sensitivity 
analysis

Figure 2 shows that serum levels of vitamins A and B12 were 
categorized into low and high groups using a cut-off value of 71.5 μg/
dL and 488.0 pg/mL, respectively. The association of high vs. low 
serum vitamins A and B12 concentrations on PhenoAge acceleration 
was consistent across various subgroups by age, sex, ethnicity, BMI, 
and history of diabetes, stroke, and CHD. No significant interactions 
were observed between serum levels of vitamins (A and B12) and 
subgroup variables related to epigenetic acceleration of aging 
(PhenoAge acceleration and GrimAge acceleration), except in cancer 
subgroup analyses. The positive association between serum levels of 
vitamin A and PhenoAge Acceleration was stronger in participants 
with cancer than in participants without cancer (p for interaction 
<0.01), with the OR being 2.46 (1.49–4.05) and 1.12 (0.91–1.39), 
respectively. Figure  3 shows that the direction of the association 
between vitamins A and B12 and GrimAge was almost consistent with 

TABLE 1 (Continued)

Characteristic
Serum vitamins levels p value

Q1 Q2 Q3 Q4 Q5

  History of CHD 49 (9.7) 47 (9.3) 48 (9.5) 51 (10.1) 47 (9.4) 0.99

BMI, body mass index; CHD, coronary heart disease; PIR, poverty income ratio; SD, standard deviation.
aData are presented as number (percentage) of study participants unless otherwise indicated.

TABLE 2 Association between serum levels of vitamin and epigenetic accelerated aging.

Variable Serum vitamins levels p for trend

Q1 Q2 Q3 Q4 Q5

PhenoAge acceleration

Vitamin A

  Crude OR (95% CI) 1.00 1.13 (0.88–1.13) 0.99 (0.77–1.45) 0.91 (0.71–1.16) 1.36 (1.06–1.74)* 0.17

  Adjusted OR (95% CI)a 1.00 1.25 (0.95–1.63) 1.01 (0.77–1.32) 0.99 (0.75–1.30) 1.56 (1.18–2.05)** 0.03

  Adjusted OR (95% CI)b 1.00 1.24 (0.93–1.65) 1.04 (0.78–1.37) 0.95 (0.71–1.27) 1.51 (1.13–2.01)** 0.04

Vitamin B12

  Crude OR (95% CI) 1.00 1.25 (0.98–1.60) 1.38 (0.98–1.60) 1.01 (0.79–1.29) 0.91 (0.71–1.17) 0.17

  Adjusted OR (95% CI)a 1.00 1.17 (0.90–1.53) 1.38 (1.06–1.80) * 0.98 (0.75–1.27) 0.87 (0.67–1.14) 0.15

  Adjusted OR (95% CI)b 1.00 1.20 (0.91–1.58) 1.36 (1.03–1.80) * 0.98 (0.74–1.29) 0.88 (0.66–1.16) 0.16

GrimAge Acceleration

Vitamin A

  Crude OR (95% CI) 1.00 0.93 (0.73–1.20) 0.93 (0.73–1.20) 0.81 (0.63–1.04) 1.19 (0.93–1.52) 0.46

  Adjusted OR (95% CI)a 1.00 0.81 (0.61–1.08) 0.87 (0.65–1.15) 0.70 (0.52–0.94) * 1.00 (0.75–1.34) 0.73

  Adjusted OR (95% CI)b 1.00 0.78 (0.56–1.10) 0.83 (0.60–1.16) 0.61 (0.43–0.86) * 0.87 (0.62–1.22) 0.23

Vitamin B12

  Crude OR (95% CI) 1.00 0.80 (0.63–1.03) 0.93 (0.72–1.19) 0.67 (0.52–0.86) ** 0.66 (0.51–0.85) ** <0.01

  Adjusted OR (95% CI)a   0.81 (0.61–1.07) 0.99 (0.75–1.32) 0.71 (0.54–0.94) * 0.80 (0.60–1.07) 0.08

  Adjusted OR (95% CI)b 1.00 0.82 (0.59–1.13) 0.93 (0.67–1.29) 0.75 (0.54–1.04) 0.84 (0.60–1.18) 0.26

aAdjusted for sex, PIR, and ethnicity.
bAdditionally adjusted for smoking status, alcohol use, BMI, and history of diabetes, cancer, stroke, and CHD.
OR, odds ratio; CI, confidence interval; BMI, body mass index; CHD, coronary heart disease; PIR, poverty income ratio. * p < 0.05; ** p < 0.01; *** p < 0.001.
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the aforementioned association, although it was not 
statistically significant.

In addition, the associations between serum levels of vitamins A 
and B12 and HorvathAge acceleration or HannumAge acceleration 
show similar results. Supplementary Table 1 shows that compared to 
the first quintile of vitamin A, the highest quintile was associated with 
higher risks of HorvathAge acceleration (OR = 1.44, 95% CI: 1.07–
1.92) and HannumAge acceleration (OR = 1.36, 95% CI: 1.01–1.83). 
This study also showed no associations between vitamin B12 and 
HorvathAge acceleration or HannumAge acceleration. 
Supplementary Table 2 shows consistent associations between serum 
vitamin quartiles and epigenetic age acceleration in the quartile-based 
model. Compared to the quartile-based model, the quintile-based 
model yielded higher AIC values for the association between vitamin 
A and epigenetic age acceleration (PhenoAge Acceleration: 2,826.80 
vs. 2,829.43; GrimAge Acceleration: 2,368.77 vs. 2,369.52), as well as 
for vitamin B12 (PhenoAge Acceleration: 2,835.98 vs. 2,831.86; 
GrimAge Acceleration: 2,366.98 vs. 2,366.00). Supplementary Figure 2 

shows similar non-linear associations of vitamins A and B12 with 
HannumAge acceleration (p for non-linear = 0.04 and 0.02). Although 
no significant non-linear associations of those vitamins with 
HorvathAge acceleration (p for non-linear = 0.09 and 0.21 for 
vitamins A and B12, respectively), high vitamin A and low vitamin 
B12 concentrations may be associated with HorvathAge acceleration 
according to the plot of the generalized additive model.

4 Discussion

This study found significant non-linear associations between 
serum levels of vitamins A and B12 and accelerated epigenetic aging. 
Specifically, higher serum vitamin B12 concentrations (≥488.0 pg/
mL) were associated with delayed PhenoAge acceleration. Conversely, 
higher serum vitamin A concentrations (≥71.5 μg/dL) were linked to 
accelerated PhenoAge, GrimAge, and HannumAge. Compared with 
the results of logistic regression between vitamins and biological 

FIGURE 1

The non-linear association of serum levels of vitamins A and B12 concentrations with accelerated epigenetic aging.
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aging, these results could inform recommendations for optimal serum 
vitamin concentrations to delay biological aging and have substantial 
public health implications.

4.1 Comparison with previous studies

Previous studies have primarily focused on the association of serum 
vitamins and mortality risk, as well as aging-related diseases. For example, 

Chen et  al. (33) demonstrated that serum vitamin D deficiency was 
associated with an increased risk of dementia, while Xiao et al. (34) 
revealed an L-shaped relationship between vitamin D levels and mortality. 
However, few studies explored the association between serum vitamins 
and aging. We searched the PubMed database using the keywords “serum 
vitamin” and “aging” or “biological age” up to 29 May 2025 and found 
seven studies exploring the association between vitamins and aging (18–
22, 35, 36). Nevertheless, only one study has reported the association of 
serum B12 levels with phenotypic aging measured by chemistry 
biomarkers. Although similar results were found, this study did not 
further investigate the non-linear association of serum B12 with 
phenotypic aging (35). Additionally, some studies have found an 
association between serum levels of vitamins A and B12 and age-related 
diseases, which partially supports our findings (37, 38). For example, one 
cohort study showed that serum levels of vitamin A were also positively 
associated with the development of CVD (38). Conversely, low serum 
vitamin B12 concentrations were associated with higher risks of 
age-related diseases, such as Alzheimer’s disease and metabolic syndrome 
(39, 40). Accelerated epigenetic aging provides a more comprehensive 
assessment of an individual’s overall health status than age-related diseases 
alone (41). This holistic evaluation allows for timely interventions and the 
potential to delay the onset of diseases (42).

Furthermore, the clinical reference ranges for vitamins A and B12 
are typically above 24.08 μg/dL and 270.8 pg/mL, respectively. These 
references are disease-defined thresholds. However, optimal biological 
ranges and the prevention level for aging and age-related disease remain 
undefined. Therefore, this study further identified a non-linear 
association of serum levels of vitamin A with PhenoAge, GrimAge, and 
HannumAge acceleration, and of serum levels of vitamin B12 with 
PhenoAge acceleration. These results are partially consistent with 
previous studies (23, 43, 44). For instance, Min et al. (23) observed that 
serum levels of vitamin A < 30 μg/dL or A > 80 μg/dL indicate a higher 
risk of subsequent mortality. Liu et  al. (24) reported that both low 
(<369.1 pg/mL) and high (≥506.1 pg/mL) serum levels of vitamin B12 
were associated with increased CVD mortality risk in diabetes patients. 
A cross-sectional study showed that the relationship between circulating 
vitamin B12 and α-Klotho in American adults was inverted U-shaped, 
which is consistent with the present results (36). While previous studies 
indicate that serum levels of vitamins A and B12 may reduce premature 
mortality, they failed to identify protective concentration ranges for 
health outcomes. In contrast, the present study suggested that the 
potential optimal concentrations of serum levels of vitamins A and B12 
to delay accelerated epigenetic aging were <71.5 μg/dL and ≥488.0 pg/
mL, respectively.

4.2 Possible explanations

A previous study has shown that vitamin A induces epigenetic 
changes in monocytes (45). Moreover, excess serum levels of vitamin 
A could also increase the transport of retinol-binding protein 4 
(RBP4), subsequently increasing the risk of CHD, stroke, metabolic 
syndrome, and cardiovascular risk factors, including triglycerides and 
hypertension (46–51). Conversely, previous studies found that 
vitamin B12 deficiency is positively associated with inflammatory 
factors [such as C-reactive protein (CRP) and interleukin 6 (IL-6)] 
(52, 53), and leads to metabolic syndrome onset and an increase in 
cardiovascular risk factors (40, 54). Furthermore, the α-Klotho 

TABLE 3 Threshold effect analysis of serum levels of vitamin on 
epigenetic accelerated aging.

Variable Adjusted OR 
(95% CI)

p

PhenoAge Acceleration

Vitamin A

  Fitting by the logistic model 1.10 (1.01–1.21) 0.03

  Fitting by the two-piecewise logistic 

model

  Threshold value

   ≥71.5 ug/dL 1.26 (1.06–1.51) <0.01

   <71.5 ug/dL 0.96 (0.86–1.07) 0.42

  p for log-likelihood ratio 0.02

Vitamin B12

  Fitting by the logistic model 0.93 (0.85–1.02) 0.10

  Fitting by the two-piecewise logistic 

model

  Threshold value

   ≥488.0 pg/mL 0.86 (0.75–0.98) 0.02

   <488.0 pg/mL 1.07 (0.95–1.22) 0.26

  p for log-likelihood ratio 0.02

GrimAge Acceleration

Vitamin A

  Fitting by the logistic model 0.96 (0.86–1.07) 0.49

  Fitting by the two-piecewise logistic 

model

  Threshold value

   ≥71.8 ug/dL 1.33 (1.09–1.62) <0.01

   <71.8 ug/dL 0.89 (0.78–1.01) 0.08

  p for log-likelihood ratio <0.01

Vitamin B12

  Fitting by the logistic model 0.96 (0.86–1.07) 0.45

  Fitting by the two-piecewise logistic 

model

  Threshold value

   \ \ \

   \ \ \

p for log-likelihood ratio \

OR, odds ratio; CI, confidence interval; PIR, poverty income ratio; BMI, body mass index; 
CHD, coronary heart disease.
The model was adjusted for sex, ethnicity, PIR, smoking status, alcohol use, BMI, and history 
of diabetes, cancer, stroke, and CHD.
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FIGURE 2

Subgroup analysis of the association of higher levels of serum vitamins A and B12 with PhenoAge acceleration.
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FIGURE 3

Subgroup analysis of the association of high levels of serum vitamins A and B12 with GrimAge acceleration.
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(known for inhibiting cellular senescence) is a hallmark of aging (3), 
and it can decelerate the aging process in both animal and human 
studies (55). One study reported a positive relationship between 
serum levels of vitamin B12 (<1,020 pg/mL) and α-Klotho 
concentration (36). Thus, maintaining appropriate serum vitamins A 
and B12 concentrations may help mitigate accelerated 
epigenetic aging.

5 Study limitations

The present study had some limitations. First, the results of the 
association analysis between vitamins and the methylation clock are not 
entirely consistent, and there is no gold standard for measuring 
biological aging. Recent studies have demonstrated that PhenoAge can 
effectively predict age-related diseases and mortality in large populations 
(56). Second, despite adjusting for 11 potential confounders, the lack of 
adjustment for dietary and total energy intake may have attenuated the 
observed association toward the null. Third, the sample size may have 
been insufficient to detect subtle associations, and recall bias could have 
led to underestimation of the association. Fourth, because of the cross-
sectional design, causal relationships cannot be established based on our 
findings. Further prospective studies are warranted to confirm and 
clarify this relationship. Fifth, due to a lack of genetic and multiomics 
data, further studies are warranted to explore the potential mechanism 
of vitamins A and B12 with epigenetic aging. Finally, although no 
significant interaction was observed between the vitamins and ethnicity 
on accelerated epigenetic aging, the generalizability of our findings to 
ethnic populations should be approached with caution due to potential 
representativeness limitations.

6 Conclusion

This study identified biphasic effects of serum levels of vitamins 
A and B12 on accelerated epigenetic aging. The findings suggest 
that higher vitamin A levels may be associated with an increased 
aging risk, whereas adequate vitamin B12 may offer protective 
benefits against epigenetic changes associated with aging. This 
study offers promising insights for developing preventive public 
health strategies and dietary recommendations to delay accelerated 
epigenetic aging; however, validation in large-scale clinical trials 
is necessary.
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