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Vitamin C improves 28-day 
survival in patients with 
sepsis-associated acute kidney 
injury in the intensive care unit: a 
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Background: Vitamin C, a water-soluble essential micronutrient, exhibits 
multifaceted physiological roles including immune modulation and enhanced 
resistance to infectious pathogens. Evidence suggests that hypovitaminosis 
C is associated with adverse clinical outcomes in critically ill populations, 
with notably high prevalence observed in acute kidney injury patients. This 
retrospective study aimed to evaluate the potential association between vitamin 
C supplementation during intensive care unit admission and improved clinical 
outcomes, specifically in sepsis-associated acute kidney injury (SA-AKI).

Methods: Utilizing data from the Medical Information Mart for Intensive Care 
IV (MIMIC-IV), a repository of ICU patient records from Beth Israel Deaconess 
Medical Center (United  States), we  identified patients diagnosed with SA-
AKI. Participants were stratified into two cohorts: those receiving intravenous 
vitamin C supplementation during ICU stay (vitamin C group) and those without 
supplementation (non-vitamin C group). Primary outcomes, including in-hospital 
mortality, were evaluated using Kaplan–Meier survival curves, Cox proportional 
hazards regression models, and subgroup analyses. Propensity score matching 
(PSM) was employed to mitigate potential confounding. Secondary outcomes 
encompassed 28-day mortality.

Results: Among 16,140 patients diagnosed with SA-AKI, 589 received vitamin 
C supplementation, while 15,551 did not. Kaplan–Meier analysis revealed a 
significant divergence in survival probabilities between cohorts (log-rank 
p  < 0.001). After adjusting for confounders via Cox regression, the vitamin C 
group demonstrated a 17% reduction in in-hospital mortality risk (adjusted hazard 
ratio [aHR] 0.67, 95% CI: 0.57–0.79; p  < 0.001). Consistency was maintained 
across PSM, paired algorithm, and overlap weighting analyses, with all p < 0.001.

Conclusion: Vitamin C supplementation during ICU admission may be associated 
with reduced in-hospital mortality in SA-AKI patients. These findings underscore 
the need for prospective randomized trials to validate causality.
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1 Introduction

Sepsis is clinically defined as a potentially fatal multiorgan 
dysfunction resulting from a dysregulated host response to 
infection, which contributes to substantial morbidity and mortality 
burdens in critically ill populations (1). Global epidemiological 
data indicate sepsis affects nearly 50 million cases annually, 
accounting for approximately 11 million fatalities worldwide (2). 
Renal dysfunction frequently manifests as the earliest and most 
severe organ involvement in septic patients. Acute kidney injury 
(AKI), a clinically heterogeneous syndrome characterized by rapid 
deterioration of glomerular filtration rate (GFR), demonstrates 
phenotypic variability extending beyond traditional acute renal 
failure paradigms (3). Importantly, sepsis-associated AKI 
(SA-AKI) is independently associated with increased hazards for 
in-hospital mortality, accelerated progression to chronic kidney 
disease, and persistent renal replacement therapy (RRT) 
dependency (4, 5).

Emerging evidence has delineated the pleiotropic mechanisms 
underlying vitamin C’s therapeutic potential in sepsis management, 
encompassing antioxidant, anti-inflammatory, microvascular 
stabilizing, and cytoprotective properties (6–9). Functioning as a 
potent electron donor, this micronutrient effectively neutralizes 
reactive oxygen species (ROS), thereby reducing lipid peroxidation 
cascade, preventing DNA strand breaks, and maintaining podocyte 
cytoskeletal architecture through glutathione regeneration 
pathways (10, 11). Preclinical studies substantiate its 
nephroprotective efficacy, particularly in attenuating vancomycin-
induced acute tubular necrosis via Nrf2-mediated oxidative stress 
mitigation (12). Mechanistically, vitamin C exerts 
immunomodulatory effects through suppression of NF-κB nuclear 
translocation, subsequent downregulation of proinflammatory 
mediators (TNF-α, IL-6, HMGB1), induction of M2 macrophage 
polarization via STAT6 activation, and regulation of neutrophil 
extracellular trap (NET) formation (11–13). The dual hemodynamic 
benefits are achieved through enhanced nitric oxide synthase 
(NOS) coupling for endothelial-dependent vasodilation, 
concomitantly facilitating catecholamine biosynthesis by serving 
as an essential cofactor for dopamine β-hydroxylase, which 
potentiates α1-adrenergic receptor responsiveness to 
vasoactive agents.

Despite robust preclinical evidence supporting vitamin C’s 
antioxidant, immunomodulatory, and organ-protective effects in sepsis, 
its clinical efficacy remains debated. While a review suggests potential 
mortality reduction in sepsis, concerns have emerged regarding 
increased risks of death or organ dysfunction in adults receiving 
vasopressors and intravenous vitamin C therapy (14). Shao et al. (15) 
reported dose-dependent mortality risks with vitamin C, and meta-
analyses reveal conflicting conclusions on combination therapies due to 
heterogeneous patient populations and variable treatment protocols 
(16). The C-EASIE trial by Vandervelden et al. (17) found no significant 
improvement in 28-day mortality or organ function with early vitamin 
C use. Existing studies predominantly focus on general sepsis 
populations, overlooking sepsis-associated acute kidney injury (SA-AKI) 
patients—a high-risk subgroup with distinct pathophysiology. Our study 
utilizes a real-world ICU database to investigate vitamin C’s association 
with outcomes in SA-AKI patients through propensity score analyses, 
aiming to inform targeted interventions and clinical trial design.

2 Methods

2.1 Data source

This population-based cohort study utilized the Medical 
Information Mart for Intensive Care IV (MIMIC-IV v3.0), an 
expanded critical care database containing 76,540 ICU admissions 
from 2008 to 2019. Data access was authorized (Certification ID: 
13278787), with ethical approvals granted by the MIT Institutional 
Review Board (No. 0403000206) and Beth Israel Deaconess Medical 
Center (2001-P-001699/14). All data were de-identified prior to 
analysis (18).

2.2 Study population

From 65,366 patients with initial ICU admissions, we included 
adults (≥18 years) diagnosed with SA-AKI [Sepsis-3 criteria (19)] and 
ICU stays ≥48 h. AKI was defined per KDIGO 2012 guidelines (20): 
serum creatinine (sCr) increase ≥0.3 mg/dL (26.5 μmol/L) within 
48 h, sCr ≥ 1.5 × baseline within 7 days, or urine output <0.5 mL/kg/h 
over 6 h. Baseline sCr was derived from pre-ICU records or the first 
admission measurement if unavailable.

2.3 Exposure and covariates

The primary exposure in this study was defined as the 
administration of vitamin C supplementation via any route 
(intravenous or oral) during the ICU stay. This inclusive definition 
was adopted to comprehensively capture all patients who received 
vitamin C as part of their clinical management. Patients were 
categorized into two groups based on their exposure status: those 
who received vitamin C supplementation during their ICU 
admission (exposed group), and those who did not receive 
vitamin C supplementation (non-exposed group). Covariates 
included in the baseline table comprised demographic 
characteristics (age, sex, race, BMI), comorbidities (including 
hypertension, diabetes, congestive heart failure, chronic 
pulmonary disease, liver disease, and malignancy), lifestyle factors 
(smoking status), and disease severity scores (SOFA, LODS, SAPS 
II, Charlson Comorbidity Index, and AKI stage) to adjust for 
baseline differences and chronic disease burden. In addition, 
clinical interventions (such as invasive mechanical ventilation, 
continuous renal replacement therapy, vasopressors, 
immunosuppressants, glucocorticoids, and antihypertensive 
agents), vital signs (temperature, heart rate, blood pressure, and 
oxygenation indices), and laboratory parameters (including 
lactate, blood cell counts, albumin, creatinine, blood urea 
nitrogen, coagulation indices, liver function tests, glucose, and 
urine output) were incorporated to account for acute physiological 
status and organ function.

2.4 Outcomes

Primary outcome: In-hospital mortality.
Secondary outcomes: 28-day mortality.
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2.5 Statistical analysis

Categorical variables were reported as frequencies (%), continuous 
variables as mean ± SD or median (IQR). Group comparisons 
employed chi-square, t-, or Kruskal-Wallis tests. Survival analysis used 
Kaplan–Meier curves with log-rank tests.

To address confounding, 1:1 propensity score matching (PSM, 
caliper = 0.05) incorporated age, sex, race, vitals, labs, 
comorbidities, and SOFA scores. Covariate balance was verified 
via standardized mean differences (SMD < 0.1). Multivariable Cox 
regression adjusted for propensity score-weighted covariates. 
Sensitivity analyses included paired algorithm (PA) (21) and 
overlap weighting (OW) models (22). Subgroup analyses stratified 
by age, sex, SOFA, interventions, and comorbidities. Analyses 
utilized R v4.3.3.

3 Results

3.1 Participant selection

From 65,366 initial ICU admissions, 16,140 SA-AKI patients were 
enrolled (Figure 1), including 589 vitamin C recipients and 15,551 
non-recipients.

3.2 Baseline characteristics

Pre-PSM, the vitamin C group exhibited higher BUN levels, 
comorbidities (congestive heart failure, chronic lung disease, severe 
liver disease, diabetes), Charlson indices, and intervention 
requirements (CRRT, mechanical ventilation). Post-PSM, covariates 
were balanced across groups (Table 1).

3.3 Primary outcomes

The overall in-hospital mortality rate was 18.8%. Subgroup analysis 
revealed distinct mortality patterns: the vitamin C supplementation 
group exhibited significantly lower in-hospital mortality (20.0%, 151/589) 
compared to the non-supplementation group (25.6%, 3,110/15,551). 
Kaplan–Meier survival curves demonstrated a pronounced divergence 
in 28-day mortality favoring the vitamin C cohort (Figure 2).

Univariate Cox regression identified vitamin C supplementation 
as a protective factor against mortality in SA-AKI patients, yielding a 
hazard ratio (HR) of 0.83 (95% CI: 0.71–0.98). This corresponds to an 
estimated 17% reduction in mortality risk among supplementation 
recipients. Multivariable Cox regression incorporating all covariates 
from Table 1 strengthened this association (adjusted HR: 0.67, 95% 
CI: 0.57–0.79). Propensity score-matched analyses further validated 
these findings: PSM-adjusted HR: 0.68 (95% CI: 0.57–0.80); Overlap 
weighting model HR: 0.61 (95% CI: 0.49–0.77).

Sensitivity analyses using paired algorithm (PA) and overlap 
weighting (OW) methodologies consistently reinforced the stability 
of this protective effect (Figure 3). The concordance across multiple 
statistical approaches underscores the reliability of the observed 
mortality reduction.

3.4 Subgroup analysis

After adjusting for all covariates in Table 1, subgroup analyses 
were performed based on age, sex, Sequential Organ Failure 
Assessment (SOFA) score, Simplified Acute Physiology Score II (SAPS 
II), vasopressor use, presence of invasive mechanical ventilation, and 
comorbidities including hypertension, diabetes mellitus, chronic 
kidney disease, chronic pulmonary disease, and congestive heart 
failure. The results remained consistent across all subgroups (Figure 4).

FIGURE 1

Flowchart of participant selection.
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TABLE 1 Baseline characteristics of participants.

Covariate

Unmatched patients

p-value

Propensity-score-matched patients

P-value
Total

No Vitamin 
C

Vitamin C Total
No Vitamin 

C
Vitamin C

n 16,140 15,551 589 1,072 536 536

Gender = 1 (%) 9,323 (57.76) 8,978 (57.73) 345 (58.57) 0.7164 617 (57.6) 309 (57.6) 308 (57.5) 1

Race (%) 0.1861 0.293

White 10,267 (63.61) 9,902 (63.67) 365 (61.97) 682 (63.6) 347 (64.7) 335 (62.5)

Black 1,356 (8.40) 1,292 (8.31) 64 (10.87) 116 (10.8) 60 (11.2) 56 (10.4)

Asian 404 (2.50) 392 (2.52) 12 (2.04) 23 (2.1) 11 (2.1) 12 (2.2)

Hispanic 505 (3.13) 483 (3.11) 22 (3.74) 27 (2.5) 8 (1.5) 19 (3.5)

Others 3,608 (22.35) 3,482 (22.39) 126 (21.39) 224 (20.9) 110 (20.5) 114 (21.3)

Hospital_death (%) 3,261 (20.20) 3,110 (20.00) 151 (25.64) 0.001 251 (23.4) 122 (22.8) 129 (24.1) 0.665

Smoker (%) 1,095 (6.78) 1,063 (6.84) 32 (5.43) 0.213 62 (5.8) 30 (5.6) 32 (6.0) 0.896

Myocardial_infarct (%) 3,025 (18.74) 2,913 (18.73) 112 (19.02) 0.9051 222 (20.7) 117 (21.8) 105 (19.6) 0.407

Congestive_heart_failure 

(%)
5,271 (32.66) 5,038 (32.40) 233 (39.56) 0.0003 435 (40.6) 221 (41.2) 214 (39.9) 0.709

Peripheral_vascular 

disease (%)
2081 (12.89) 2007 (12.91) 74 (12.56) 0.8566 140 (13.1) 67 (12.5) 73 (13.6) 0.65

Cerebrovascular_disease 

(%)
2,914 (18.05) 2,813 (18.09) 101 (17.15) 0.5973 189 (17.6) 101 (18.8) 88 (16.4) 0.336

Dementia (%) 702 (4.35) 676 (4.35) 26 (4.41) 1 58 (5.4) 32 (6.0) 26 (4.9) 0.5

Chronic_pulmonary_

disease (%)
4,327 (26.81) 4,166 (26.79) 161 (27.33) 0.8058 312 (29.1) 159 (29.7) 153 (28.5) 0.737

Mild liver disease (%) 2,586 (16.02) 2,502 (16.09) 84 (14.26) 0.2586 159 (14.8) 80 (14.9) 79 (14.7) 1

Diabetes (%) 5,092 (31.55) 4,871 (31.32) 221 (37.52) 0.0017 394 (36.8) 196 (36.6) 198 (36.9) 0.949

Malignant cancer (%) 2,149 (13.31) 2085 (13.41) 64 (10.87) 0.0854 132 (12.3) 71 (13.2) 61 (11.4) 0.403

Severe liver disease (%) 1,368 (8.48) 1,312 (8.44) 56 (9.51) 0.4006 94 (8.8) 44 (8.2) 50 (9.3) 0.589

Aids (%) 92 (0.57) 91 (0.59) 1 (0.17) 0.3004 3 (0.3) 2 (0.4) 1 (0.2) 1

Hypertension (%) 6,584 (40.79) 6,405 (41.19) 179 (30.39) <0.0001 344 (32.1) 175 (32.6) 169 (31.5) 0.744

InvasiveVent (%) 11,553 (71.58) 11,110 (71.44) 443 (75.21) 0.0518 778 (72.6) 387 (72.2) 391 (72.9) 0.837

Crrt (%) 1,633 (10.12) 1,471 (9.46) 162 (27.50) <0.0001 230 (21.5) 114 (21.3) 116 (21.6) 0.941

Immunosuppressant (%) 645 (4.00) 617 (3.97) 28 (4.75) 0.3958 43 (4.0) 21 (3.9) 22 (4.1) 1

Glucocorticoid (%) 4,031 (24.98) 3,808 (24.49) 223 (37.86) <0.0001 370 (34.5) 183 (34.1) 187 (34.9) 0.847

Antihypertensive (%) 12,929 (80.11) 12,426 (79.90) 503 (85.40) 0.0013 902 (84.1) 448 (83.6) 454 (84.7) 0.676

Norepinephrine (%) 4,717 (29.23) 4,399 (28.29) 318 (53.99) <0.0001 546 (50.9) 281 (52.4) 265 (49.4) 0.359

Age (median [IQR]) 68.188 

[56.882, 

78.956]

68.156 [56.843, 

78.986]

68.812 [58.290, 

78.280]

0.7369 69.12 [58.59, 

78.80]

68.79 [58.54, 

78.84]

69.30 [58.60, 

78.74]

0.891

SOFA (median [IQR]) 7.000 [5.000, 

10.000]

7.000 [5.000, 

10.000]

9.000 [6.000, 

12.000]

<0.0001 8.50 [6.00, 

12.00]

8.50 [6.00, 

12.00]

8.50 [6.00, 

12.00]

0.684

Lods (median [IQR]) 6.000 [4.000, 

8.000]

6.000 [4.000, 

8.000]

7.000 [5.000, 

8.000]

<0.0001 6.00 [4.00, 

8.00]

6.00 [4.00, 9.00] 6.00 [4.00, 8.00] 0.502

Charlson (median 

[IQR])

5.000 [3.000, 

7.000]

5.000 [3.000, 

7.000]

5.000 [4.000, 

8.000]

0.0932 5.00 [4.00, 

8.00]

5.00 [4.00, 7.00] 5.00 [4.00, 8.00] 0.933

Sapsii (median [IQR]) 41.000 

[32.000, 

51.000]

40.000 [32.000, 

51.000]

43.000 [34.000, 

53.000]

0.0011 42.00 [34.00, 

53.00]

42.00 [34.00, 

53.00]

42.00 [34.00, 

52.00]

0.992

(Continued)
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TABLE 1 (Continued)

Covariate

Unmatched patients

p-value

Propensity-score-matched patients

P-value
Total

No Vitamin 
C

Vitamin C Total
No Vitamin 

C
Vitamin C

Temperature (median 

[IQR])

36.720 

[36.390, 

37.110]

36.720 [36.390, 

37.110]

36.780 [36.390, 

37.170]

0.1652 36.78 [36.39, 

37.11]

36.78 [36.44, 

37.11]

36.72 [36.39, 

37.11]

0.321

Heart_rate (median 

[IQR])

89.000 

[77.000, 

104.000]

89.000 [77.000, 

104.000]

90.000 [78.000, 

105.000]

0.2443 90.00 [78.00, 

106.00]

90.50 [78.75, 

107.00]

89.00 [78.00, 

105.25]

0.474

SBP (median [IQR]) 120.000 

[104.000, 

138.000]

120.000 

[104.750, 

139.000]

117.000 

[102.000, 

134.000]

0.0005 118.00 

[102.00, 

136.00]

119.00 [102.00, 

136.00]

118.00 [102.00, 

134.25]

0.458

DBP (median [IQR]) 66.000 

[55.000, 

78.000]

66.000 [55.000, 

78.000]

63.000 [53.000, 

75.000]

0.0006 64.00 [53.00, 

76.00]

65.00 [54.00, 

78.00]

63.00 [53.00, 

75.00]

0.152

MBP (median [IQR]) 81.000 

[70.000, 

94.000]

81.000 [70.000, 

94.000]

78.000 [69.000, 

90.000]

0.001 79.00 [69.00, 

92.00]

80.00 [69.00, 

93.00]

78.00 [69.00, 

90.00]

0.222

Pao2/Fio2 (median 

[IQR])

240.000 

[150.000, 

348.000]

240.000 

[151.000, 

348.333]

223.333 

[126.667, 

340.000]

0.0086 229.17 

[136.19, 

338.08]

226.75 [141.92, 

332.50]

230.50 [129.14, 

343.50]

0.962

SO2(median [IQR]) 97.000 

[95.000, 

98.000]

97.000 [95.000, 

98.000]

97.000 [95.000, 

98.000]

0.0228 97.00 [95.00, 

98.00]

97.00 [94.75, 

98.00]

97.00 [95.00, 

98.00]

0.729

Lactate (median [IQR]) 1.600 [1.100, 

2.500]

1.600 [1.100, 

2.500]

1.600 [1.100, 

2.600]

0.4185 1.60 [1.10, 

2.60]

1.50 [1.10, 2.60] 1.60 [1.10, 2.62] 0.599

WBC (median [IQR]) 11.800 [8.300, 

16.500]

11.800 [8.300, 

16.500]

11.600 [7.800, 

16.400]

0.2182 11.80 [8.10, 

16.00]

12.10 [8.38, 

16.00]

11.60 [7.77, 

16.10]

0.298

Neutrophils_abs (median 

[IQR])

9.860 [6.520, 

14.291]

9.870 [6.530, 

14.293]

9.547 [6.207, 

14.190]

0.4147 9.93 [6.53, 

14.38]

10.49 [6.76, 

14.29]

9.53 [6.20, 

14.43]

0.254

Monocytes (median 

[IQR])

4.600 [3.000, 

7.000]

4.600 [3.000, 

7.000]

5.000 [3.000, 

7.500]

0.012 5.00 [3.10, 

7.40]

5.00 [3.18, 7.40] 5.00 [3.00, 7.50] 0.854

Platelet (median [IQR]) 186.000 

[129.000, 

256.000]

186.000 

[129.000, 

256.000]

200.000 

[131.000, 

281.000]

0.0163 200.00 

[128.75, 

268.00]

200.50 [128.00, 

263.25]

196.50 [129.00, 

274.50]

0.821

Albumin (median [IQR]) 3.000 [2.600, 

3.500]

3.000 [2.600, 

3.500]

3.000 [2.500, 

3.400]

0.0015 3.00 [2.50, 

3.40]

2.90 [2.50, 3.40] 3.00 [2.50, 3.40] 0.96

Creatinine (median 

[IQR])

1.100 [0.800, 

1.700]

1.100 [0.800, 

1.700]

1.200 [0.800, 

2.100]

<0.0001 1.20 [0.80, 

2.00]

1.20 [0.80, 2.00] 1.20 [0.80, 2.00] 0.942

BUN (median [IQR]) 22.000 

[14.000, 

36.000]

22.000 [14.000, 

36.000]

26.000 [17.000, 

47.000]

<0.0001 25.00 [16.00, 

44.00]

24.00 [16.00, 

44.25]

26.00 [16.00, 

44.00]

0.536

Calcium total (median 

[IQR])

8.300 [7.700, 

8.800]

8.300 [7.700, 

8.800]

8.300 [7.800, 

8.800]

0.8552 8.20 [7.70, 

8.80]

8.20 [7.70, 8.80] 8.30 [7.80, 8.80] 0.587

PT (median [IQR]) 14.500 

[12.800, 

17.400]

14.500 [12.700, 

17.400]

14.800 [13.100, 

18.000]

0.0021 14.80 [13.00, 

18.00]

14.70 [12.80, 

18.00]

14.85 [13.10, 

18.00]

0.348

PTT (median [IQR]) 31.300 

[27.300, 

39.400]

31.300 [27.300, 

39.300]

32.100 [28.300, 

40.600]

0.0253 31.95 [27.80, 

40.15]

31.75 [27.50, 

40.02]

32.10 [28.40, 

40.35]

0.42

(Continued)
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4 Discussion

Our study demonstrates that in-hospital vitamin C 
supplementation is associated with a reduced short-term mortality 
risk in SA-AKI patients, consistent with previous observational 
studies. The multifaceted renoprotective mechanisms may involve 
several canonical and recently elucidated pathways. Recent single-
cell transcriptomic studies have revealed that vitamin C can restore 
electron transport chain complex assembly in proximal tubular 
cells through the upregulation of mitochondrial chaperones 
(HSP60/70) and prohibitin-1 (PHB1), which are crucial for cristae 
morphogenesis during sepsis-induced bioenergetic crisis (23). In 
addition, vitamin C enhances TET2-mediated 5hmC modification 
at GPX4 promoter regions, counteracting sepsis-induced DNA 
hypermethylation (mean methylation level decreased by 37.2%, 
p = 0.009), thereby preserving glutathione peroxidase 4 (GPX4) 
activity and significantly reducing renal lipid peroxidation markers 
such as 4-HNE by 54% compared to controls (23). Dynamic 
contrast-enhanced ultrasonography provides further evidence that 
vitamin C treatment increases the renal cortical microvascular flow 

index (MFI) by 1.8-fold (p < 0.01), an effect mechanistically linked 
to the suppression of PAD4-dependent histone citrullination (62% 
reduction) and subsequent limitation of neutrophil extracellular 
trap (NET) formation, thus improving microvascular perfusion 
heterogeneity (24). Moreover, recent animal model data indicate 
that vitamin C reverses sepsis-induced gut dysbiosis, increasing the 
abundance of short-chain fatty acid–producing bacteria such as 
Roseburia spp. by 3.2-fold, which, through GPR43 receptor 
activation, enhances tubular autophagic flux (LC3-II/I ratio 
increased by 2.1-fold) (25, 26).

These novel insights complement established mechanisms 
whereby vitamin C activates the Nrf2/ARE pathway, enhancing the 
expression of phase II detoxifying enzymes (HO-1, NQO1), 
particularly in proximal tubular epithelial cells where oxidative 
damage is most severe (27). Vitamin C also promotes mitochondrial 
biogenesis through PGC-1α upregulation, restores ATP production 
during ischemic injury (28), and inhibits ferroptosis via 
preservation of GPX4 activity, effectively reducing lipid 
peroxidation markers like 4-HNE in renal tissue (29). Notably, the 
immunomodulatory effects of vitamin C exhibit temporal 

TABLE 1 (Continued)

Covariate

Unmatched patients

p-value

Propensity-score-matched patients

P-value
Total

No Vitamin 
C

Vitamin C Total
No Vitamin 

C
Vitamin C

Inr (median [IQR]) 1.300 [1.200, 

1.600]

1.300 [1.200, 

1.600]

1.300 [1.200, 

1.600]

0.0012 1.30 [1.20, 

1.60]

1.30 [1.20, 1.60] 1.30 [1.20, 1.60] 0.327

Fibrinogen (median 

[IQR])

275.000 

[191.000, 

434.000]

273.000 

[190.000, 

430.500]

325.000 

[215.000, 

502.000]

<0.0001 320.00 

[213.75, 

497.50]

324.00 [217.75, 

508.00]

315.50 [209.00, 

480.50]

0.153

Alt (median [IQR]) 29.000 

[17.000, 

67.000]

30.000 [17.000, 

67.000]

27.000 [17.000, 

56.000]

0.0556 27.00 [17.00, 

57.00]

28.50 [17.00, 

58.00]

27.00 [16.00, 

54.00]

0.478

Ast (median [IQR]) 45.000 

[25.000, 

101.000]

45.000 [25.000, 

102.000]

44.000 [26.000, 

87.000]

0.3697 44.00 [25.00, 

86.25]

45.00 [25.00, 

86.00]

43.00 [25.00, 

87.25]

0.667

Bilirubin_total (median 

[IQR])

0.700 [0.400, 

1.400]

0.700 [0.400, 

1.400]

0.700 [0.400, 

1.400]

0.5773 0.70 [0.40, 

1.40]

0.70 [0.40, 1.40] 0.70 [0.40, 1.40] 0.863

Glucose (median [IQR]) 130.000 

[105.000, 

171.000]

130.000 

[105.000, 

171.000]

131.000 

[106.000, 

168.000]

0.9255 132.00 

[107.00, 

170.00]

132.00 [108.75, 

171.25]

131.00 [104.00, 

169.00]

0.385

Urine output (median 

[IQR])

326.000 

[150.000, 

600.000]

330.000 

[150.000, 

600.000]

285.000 

[115.000, 

560.000]

0.0004 280.00 

[120.00, 

550.00]

270.00 [125.00, 

521.25]

297.50 [120.00, 

580.00]

0.665

BMI (median [IQR]) 27.888 

[24.088, 

33.025]

27.845 [24.074, 

32.976]

28.466 [24.587, 

34.937]

0.0087 28.47 [24.42, 

34.67]

28.82 [24.54, 

34.72]

28.06 [24.25, 

34.44]

0.144

Aki stage (%) <0.0001 0.813

  1 2,833 (17.55) 2,764 (17.77) 69 (11.71) 142 (13.2) 73 (13.6) 69 (12.9)

  2 7,461 (46.23) 7,231 (46.50) 230 (39.05) 440 (41.0) 215 (40.1) 225 (42.0)

  3 5,846 (36.22) 5,556 (35.73) 290 (49.24) 490 (45.7) 248 (46.3) 242 (45.1)

AKI, acute kidney injury; CRRT, continuous renal replacement therapy; SOFA, sequential organ failure assessment; SAPS II, simplified acute physiology score II; MBP, mean arterial pressure; 
PaO₂/FiO₂, partial pressure of arterial oxygen to fraction of inspired oxygen ratio; SpO₂, peripheral oxygen saturation; WBC, white blood cell count; BUN, blood urea nitrogen; PT, 
prothrombin time; PTT, partial thromboplastin time; INR, international normalized ratio; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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specificity—early enhancement of M1 macrophage bactericidal 
capacity (evidenced by IL-12 elevation within 24 h) is followed by 
M2 polarization promoting tissue repair (increased IL-10 at 72 h) 

(30). This biphasic regulation may explain the reduced vasopressor 
duration observed in our cohort. Furthermore, vitamin C’s ability 
to suppress NETosis through PAD4 inhibition could mitigate 

FIGURE 2

Kaplan–Meier survival curve for in-hospital mortality according to different groups.

FIGURE 3

Forest plot shows HRs of in-hospital mortality in vitamin D group using a variety of models.
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microvascular thrombosis, a critical pathomechanism in 
SA-AKI (31).

Vitamin C, which exists in multiple biological forms and is 
primarily obtained through dietary intake, undergoes hepatic 
metabolism as its central regulatory pathway. Its deficiency has been 
mechanistically linked to heightened infection susceptibility, 
particularly during bacterial and viral challenges (32). Beyond its 
canonical antioxidant properties, vitamin C exerts pleiotropic effects 
through enzymatic cofactor roles in tissue repair (33) and endothelial 
function modulation via oxidative stress mitigation (34). Clinical 
evidence suggests that intravenous vitamin C administration in 
critical infections (e.g., sepsis) reduces organ dysfunction and 
improves survival (35), while enhancing immune cell-mediated 
pathogen clearance (36). Paradoxically, vitamin C deficiency may 
exacerbate cardiovascular risks through dyslipidemia and vascular 
dysregulation (37), underscoring its systemic importance in critical 
illness (38).

Vitamin C exerts critical immunoregulatory effects in sepsis 
pathophysiology, mediating the balance between initial pathogen 

clearance and subsequent hyperinflammation-induced organ failure 
(30). Experimental models confirm its dual capacity to attenuate 
cytokine storms while maintaining antimicrobial defenses through 
three mechanisms: enhanced neutrophil phagocytosis, endothelial 
barrier stabilization, and NLRP3 inflammasome suppression (39–41). 
Clinical meta-analyses reveal geographical heterogeneity in mortality 
outcomes (42), with developing regions showing 28% risk reduction 
(43) contrasting with neutral effects in multicenter RCTs (44). Clinical 
evidence from septic shock patients reveals profound vitamin C 
depletion with preferential accumulation in immune cells (monocytes: 
80 × plasma concentration; granulocytes: 25×). Intravenous 
supplementation achieves rapid plasma concentration elevation 
followed by swift decline, indicating active cellular uptake (45). A 
randomized controlled trial demonstrate combination therapy 
(vitamin C + hydrocortisone + thiamine) significantly reduces SOFA 
scores, shortens vasopressor dependence duration, and improves 
28-day survival rates, particularly in developing regions (46). Notably, 
early high-dose regimens (3–4 days) show survival benefits in 
predefined subgroups (47).

FIGURE 4

Forest plot shows HRs of in-hospital mortality in vitamin D group in subgroup analyses.
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Sepsis-associated AKI (SA-AKI), a prevalent complication with 
mortality exceeding 40% (48), arises from synergistic hemodynamic, 
inflammatory, and immunometabolic insults (49). Our findings align 
with emerging paradigms of SA-AKI as a distinct entity involving 
mitochondrial dysfunction and immunothrombosis (50). Vitamin C 
deficiency may exacerbate SA-AKI through impaired redox 
homeostasis and neutrophil extracellular trap dysregulation (51), 
compounded by micronutrient interactions in malnourished critically 
ill patients (52). Early intervention bundles—including antimicrobial 
stewardship, goal-directed resuscitation, and micronutrient 
repletion—remain cornerstone strategies (53).

4.1 Limitations and future directions

Our study has several limitations requiring cautious interpretation, 
The MIMIC-IV database lacks detailed records on vitamin C 
administration patterns (bolus vs. continuous infusion) and 
concomitant antioxidants use, preventing analysis of dose–response 
relationships. Previous pharmacokinetic studies suggest plasma 
concentrations >100 μmol/L require >3 g/d continuous infusion (54), 
which our data cannot verify. Particularly, the predominance of 
Caucasian participants (63.6%) raises concerns about generalizability, 
given ethnic differences in CYP450-mediated vitamin C metabolism 
(55). Future RCTs should stratify by AKI stage and infection type, 
while incorporating biomarkers like urinary 8-OHdG to quantify 
oxidative stress modulation.

5 Conclusion

This large-scale retrospective cohort study establishes vitamin C 
supplementation as an independent predictor of reduced 28-day 
mortality in ICU-admitted SA-AKI patients, with robust validation 
through advanced causal inference methods. The intervention’s cost-
effectiveness and safety profile support consideration of protocolized 
vitamin C status monitoring and supplementation in critical care 
settings. However, therapeutic optimization requires prospective 
evaluation of dose–response relationships, administration timing, and 
combination therapies. Large-scale randomized controlled trials are 
urgently needed to confirm these observational findings and establish 
evidence-based clinical guidelines.
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