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Objective: We aim to investigate the factors influencing enteral nutrition feeding 
intolerance (ENFI) in critically ill patients and develop a risk prediction model 
for ENFI in intensive care unit (ICU) patients, utilizing three machine learning 
algorithms. This model will serve as an assessment tool for preventing and 
managing ENFI in ICU patients.

Methods: A total of 487 ICU patients from a tertiary hospital in Zhejiang Province 
between January 2021 and December 2023 were selected as the study subjects. 
The patients were randomly divided into a training set and a test set in an 8:2 
ratio. Three machine learning algorithms—logistic regression (LR), support 
vector machine (SVM), and random forest (RF)—were used to construct the risk 
prediction model for ENFI in ICU patients. The predictive performance of the 
three models was compared using metrics such as AUC (area under the ROC 
curve), accuracy, precision, recall, and F1 score.

Results: The logistic regression model achieved an AUC of 0.9308, with an 
accuracy of 94.3%, precision of 95.4%, recall of 88.6%, and an F1-score of 
0.9185  in correctly identifying ENFI risk in ICU patients. The random forest 
model attained an AUC of 0.9511, with an accuracy of 96.1%, precision of 97.7%, 
recall of 91.4%, and an F1-score of 0.9446. The support vector machine (SVM) 
model yielded an AUC of 0.9241, with an accuracy of 94.1%, precision of 96.8%, 
recall of 86.4%, and an F1-score of 0.9132.

Conclusion: The random forest model performed the best in this study, 
demonstrating superior predictive performance.
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1 Introduction

Early enteral nutrition (EN) support is a crucial component of 
comprehensive treatment for ICU patients. It provides essential 
nutrients and helps maintain the integrity of the intestinal mucosal 
barrier, reduces hypercatabolism, and prevents secondary infections 
(1). However, the occurrence of enteral nutrition feeding intolerance 
(ENFI) severely impacts the delivery of enteral nutrition (2). ENFI (3) 
is a term for gastrointestinal problems like abdominal distension, 
diarrhea, and constipation during EN. These problems cause the 
patient to stop or suspend enteral nutrition, which keeps them from 
meeting their target caloric intake within 72 h. This increases the 
incidence of malnutrition and prolongs the duration of mechanical 
ventilation and ICU stay, thereby increasing the medical burden (4).

Recently, with in-depth research on EN, it has been found that 
early identification and precise prevention of ENFI can optimize EN 
management and improve clinical outcomes (5). Most existing ENFI 
risk prediction models are based on traditional logistic regression 
analysis, which assumes a linear relationship between independent 
and dependent variables (6, 7). However, in real-world scenarios, 
many independent variables have nonlinear or locally approximate 
linear effects on individual risk functions, which can reduce the 
model’s effectiveness to some extent (8). With the advancement of 
computer science, machine learning algorithms are increasingly being 
applied in the medical field (9). Machine learning-based prediction 
models can fully exploit data characteristics and explore complex 
relationships and patterns within the data, providing strong support 
for disease prevention, diagnosis, and treatment (10). In this study, 
three ML algorithms widely used in the medical field are selected, and 
this class of algorithms demonstrates strong analytical processing 
capabilities in handling medical data. The LR algorithm is simple in 
principle, effective at dealing with linear classification problems (e.g., 
disease diagnosis), with small sample size requirements, but easy to 
overfit (11). The algorithmic principle of the RF algorithm is more 
complex, and it is susceptible to overfitting problems due to the 
influence of training data noise, but its performance is stable in solving 
the classification problem, and the results have a certain degree of 
interpretability (12). SVM has better generalization ability and 
robustness and can achieve better classification results with a limited 
training set, but the computational cost is high and the memory 
demand is large (13).

Considering the limitations of the aforementioned models, this 
study will use three machine learning algorithms to construct a risk 
prediction model for ENFI in ICU patients. It aims to help clinicians 
identify high-risk patients, enabling timely preventive interventions 
to reduce EFI incidence.

2 Methods

2.1 Study population

A total of 3,179 patients admitted to the ICU of a tertiary hospital 
in Zhejiang Province from January 2022 to December 2023 were 
selected as the study subjects by convenience sampling, and 487 
patients were finally included after screening. The specific process is 
detailed in Figure 1. The study was approved in written form by the 
Ethics Committee of the Second Affiliated Hospital of Zhejiang 

Chinese Medicine University under the approval number No. 050–01 
of 2024, The Second Affiliated Hospital of Zhejiang Chinese Medical 
University. We de-identified the records for this study and waived 
informed consent, as outlined in the Declarations. Inclusion criteria: 
age ≥ 18 years; enteral nutrition initiated within 48 h of ICU 
admission. Exclusion criteria: history of gastrointestinal diseases or 
gastrointestinal surgery; enteral nutrition initiated before ICU 
admission; intra-abdominal pressure (IAP) ≥ grade III at ICU 
admission; inability to place a urinary catheter due to bladder or 
urethral conditions. This is a predictive modeling study using 
retrospective data, designed and reported following the TRIPOD+AI 
guideline for developing and validating multivariable 
prediction models.

2.2 Data collection

2.2.1 Questionnaire on influencing factors of 
ENFI in ICU patients

To identify risk factors for ENFI in intensive care unit patients, 
this study conducted a systematic search of the databases PubMed, 
Web of Science, and China Knowledge Network (CNKI) from the 
inception of the databases to January 30, 2024, using the Medical 
Subject Headings (MeSH) and free-text terms. Two members of the 
research team independently screened the literature based on the 
Joanna Briggs Institute (JBI) checklist and the Johns Hopkins 
University Evidence Assessment Criteria, with disagreements 
adjudicated by a third party. The literature-specific screening 
process is shown in the PRISMA flowchart (Figure 2). Eighteen 
candidate risk factors were extracted from 18 selected high-quality 
articles. These risk factors were refined through two rounds of the 
expert meeting method, resulting in the identification of 26 
potential risk factors for enteral nutrition intolerance. These factors 
included clinical baseline data, biochemical markers, and 
intervention-related variables, and the specific entries are detailed 
in Tables 1, 2. This multistage approach ensured the methodological 
rigor and clinical relevance of the study. To ensure the accuracy and 
stability of the model, the sample size was calculated based on the 
requirement that it should be at least 5–10 times the number of 
independent variables. Considering 26 influencing factors, an ENFI 
incidence rate of 38%, and a 10% sample attrition rate, at least 376 
samples were required. In practice, this study included 487 samples, 
meeting the sample size requirement. We divided the samples into 
a training set and a test set in an 8:2 ratio.

2.2.2 Assessment of ENFI
According to the diagnostic criteria for enteral nutrition feeding 

intolerance (ENFI) established by the Abdominal Problems Working 
Group of the European Society of Intensive Care Medicine (15), 
combined with clinical practice, the diagnostic criteria for ENFI in 
ICU patients were defined as follows: (1) Failure to achieve the target 
caloric intake of at least 20 kcal/(kg·d) within 72 h after initiating 
enteral nutrition; (2) Suspension or discontinuation of enteral 
nutrition due to gastrointestinal symptoms including abdominal 
distension (IAP ≥ 12 mmHg), vomiting (expulsion of gastric contents 
through the mouth occurring once or more), or diarrhea (≥3 episodes 
of loose watery stools per 24-h period, with each stool volume >200 g); 
or (3) Gastric residual volume (GRV) monitoring every 6 h, with 
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either a single GRV measurement ≥200 mL or cumulative GRV 
exceeding 500 mL within 24 h. In this study, GRV was established as 
a secondary observational indicator, which is not used alone to assess 
enteral nutrition intolerance, but needs to be used in conjunction with 
other outcome indicators. This indicator was retained based on 
institutional research protocols, but according to the American 
Society for Parenteral and Enteral Nutrition (ASPEN) 
recommendations, GRV needs to be  interpreted with caution and 
weighted strictly in the assessment system to ensure the scientific 
validity of the study conclusions. The assessment, based on the 
medical records from the first 7 days of enteral feeding, was uniformly 
applied to both the training and validation sets. It was conducted 
independently by a nutrition nurse specialist, a critical care specialist, 
and the researcher, with the diagnosis of ENFI requiring agreement 
from at least two of the evaluators.

2.3 Data processing

All predictor variables (e.g., APACHE II scores, IAP) were 
collected before or at the time of enteral nutrition initiation, while 
ENFI outcomes were assessed within the subsequent 7 days. This 
temporal sequence ensures the model’s applicability for early risk 
prediction. Data with missing rates exceeding 50% were excluded 

from the analysis (14), while data with missing rates below 50% were 
imputed using the random forest method via the “missForest” package 
in R (Handling missing data in a rheumatoid arthritis registry using 
a random forest approach—PubMed, no date).

2.4 Statistical methods

SPSS 25.0 statistical software was used for data analysis. For 
continuous variables with a normal distribution, descriptive statistics 
were shown as mean ± standard deviation (mean ± SD), and t-tests 
were used to see if there were any differences between the groups. For 
continuous variables without a normal distribution, we  used the 
median and interquartile range to present descriptive statistics. The 
Mann–Whitney U test was used to compare differences between 
groups that were not parametric. For categorical variables, frequencies 
and percentages were used for descriptive statistics, and chi-square 
tests were used to analyze differences between groups. Binary logistic 
regression was used to further screen influencing factors, with 
variables with p < 0.05 included in subsequent analyses. Python 3.9 
was used to build and evaluate the prediction models, with the dataset 
divided into an 80% training set and a 20% test set. The predictive 
performance of the three models (LR, SVM, and RF) was compared 
using the training and test sets.

FIGURE 1

Flowchart of ICU patient enrollment and predictive model development.
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3 Results

3.1 Incidence of ENFI in ICU patients

The incidence of ENFI in the ICU patients in this study was 35.9%, 
with 175 out of 487 patients experiencing it. Among the 487 patients, 325 

were male (66.7%) and 162 were female (33.3%). The average age was 
76.76 ± 13.71 years, with a minimum age of 22 and a maximum age of 
101. The average BMI was 21.78 ± 1.82, with a minimum of 16.4 and a 
maximum of 29.3. The top three primary diagnoses were respiratory 
diseases (243 cases, 49.9%), neurological diseases (185 cases, 37.9%), and 
circulatory system diseases (26 cases, 5.3%).

FIGURE 2

PRISMA flowchart of literature selection for ENFI risk factors.

TABLE 1 Comparison of factors influencing ENFI in ICU patients (non-normal distribution, N = 487).

Item ENFI (N = 175) Non-ENFI (N = 312) Z(P)

Age (years) 84(75, 89) 77.5(67, 85.8) −4.823(<0.001)

BMI 21.5(20.4, 22.5) 21.6(20.4, 22.7) −0.828(0.408)

APACHE II score 34(25, 43) 20(14, 23) −13.386(<0.001)

NRS-2002 5(4, 6) 4(4, 5) −7.753(<0.001)

IAP (mmHg) 12(9, 12) 8(6, 9) −15.44(<0.001)

CPOT pain score 3(2, 4) 2(1, 3) −7.854(<0.001)

Albumin (g/L) 26.5(23.1, 30.2) 30.75(27.5, 33.4) −7.849(<0.001)

Blood glucose (mmol/L) 8.9(6.7, 11.3) 6.3(5.2,8.3) −7.275(<0.001)

Data are expressed as median P50(P25, P75); p < 0.05 is considered a statistically significant difference.
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TABLE 2 Comparison of factors influencing ENFI in ICU patients (categorical variables, N = 487).

Item Form ENFI (N = 175) Non-ENFI (N = 312) χ2(P)

Sex
Male 60(34.3) 210(67.3)

0.128(0.72)
Female 12(6.9) 102(32.7)

Primary diagnosis

Circulatory System 103(58.9) 14(4.5)

16.696(0.019)

Respiratory system 1(0.6) 140(44.9)

Digestive system 1(0.6) 6(1.9)

Endocrine system 50(28.6) 8(2.6)

Nervous system 1(0.6) 135(43.3)

Urinary System 7(4) 2(0.6)

Blood System 92(52.6) 7(2.2)

Hemodynamics
Stable 83(47.4) 271(86.9)

69.449(<0.001)
Unstable 90(51.4) 41(13.1)

Sedation
Yes 85(48.6) 73(23.4)

39.561(<0.001)
No 34(19.4) 239(76.6)

Early activity
Yes 141(80.6) 82(26.3)

2.902(0.088)
No 149(85.1) 230(73.7)

Use of mechanical ventilation
Yes 26(14.9) 208(66.7)

20.145(<0.001)
No 38(21.7) 104(33.3)

Use of CRRT
Yes 137(78.3) 39(12.5)

7.151(0.007)
No 90(51.4) 273(87.5)

Use of sedation
Yes 85(48.6) 75(24)

37.546(<0.001)
No 68(38.9) 237(76)

Use of analgesics
Yes 107(61.1) 29(9.3)

61.427(<0.001)
No 61(34.9) 283(90.7)

Use of vasoactive drugs
Yes 114(65.1) 56(17.9)

17.561(<0.001)
No 131(74.9) 256(82.1)

Use of antibiotics
Yes 44(25.1) 220(70.5)

1.051(0.305)
No 64(36.6) 92(29.5)

Use of Potassium
Yes 111(63.4) 39(12.5)

38.954(<0.001)
No 67(38.3) 273(87.5)

Use of probiotics
Yes 108(61.7) 167(53.5)

10.432(0.001)
No 54(30.9) 145(46.5)

Use of gastrointestinalstimulants
Yes 121(69.1) 145(46.5)

11.316(0.001)
No 71(40.6) 167(53.5)

Use of laxatives
Yes 104(59.4) 53(17)

32.858(<0.001)
No 68(38.9) 259(83)

Early enema
Yes 107(61.1) 34(10.9)

52.933(<0.001)
No 23(13.1) 278(89.1)

Types of nutritional solution

Beplix 39(22.3) 32(10.3)

12.899(0.115)

Nutriforce 3(1.7) 105(33.7)

Kangquan 29(16.6) 6(1.9)

Risen 47(26.9) 51(16.3)

Ridai 1(0.6) 68(21.8)

Risperdal 6(3.4) 2(0.6)

Rexall 27(15.4) 2(0.6)

Renesas 111(63.4) 46(14.7)

(Continued)
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3.2 Univariate analysis of influencing 
factors of ENFI in ICU patients

Univariate analysis was conducted on the influencing factors of 
ENFI in ICU patients. Continuous variables were tested for normal 
distribution using the Kolmogorov–Smirnov (K-S) test, and the 
results indicated that none of the continuous variables followed a 
normal distribution. Therefore, rank-sum tests were used for 
comparison, as shown in Table 1.

3.3 Binary logistic regression analysis of 
influencing factors of ENFI in ICU patients

Based on the results of the univariate analysis, 21 risk factors with 
p < 0.05 were selected as independent variables, including seven 
continuous variables and 14 categorical variables. Among the seven 
continuous variables, one was related to general information, and six 
were related to observational data. Among the 14 categorical variables, 
one was related to general information, and the rest were related to 
observational data. These variables were included in the logistic 
regression analysis, and the results are detailed in Tables 2, 3.

3.4 Model construction and evaluation

3.4.1 Model construction
We used Python 3.9 to build and evaluate the prediction models 

based on the results of the influencing factor analysis. The first step in 
the machine learning process was to import the model-selection 
module and initialize the environment by defining the data frame, 
target variable (feeding tolerance/intolerance), training set (80%), and 
test set (20%). Bootstrap stability verification was performed on the 
included features. The stability of the selected frequency for each feature 
in the resampling is greater than 95%, indicating that the importance 
of the selected feature is highly confident. To ensure the generalization 
ability of the model and avoid data leakage, the hierarchical random 
segmentation strategy was used to divide the dataset to ensure that all 
preprocessing (e.g., imputation, normalization) was only fitted on the 
training set. We used grid search and cross-validation on the training 
set to enhance the model’s performance and lower the likelihood of 
overfitting. We divided the dataset into an 80% training set and a 20% 
test set. Models were built using three algorithms: LR, SVM, and RF.

3.4.2 Evaluation of training set models
Table 4 shows the performance metrics on the training set for the 

three models built using different methods. Among them, the AUC of 
the RF model is 0.9511, and the F1 score is 0.9446, achieving the 
highest scores among the three groups of models. The ROC curves for 

each model on the training set are shown in Figure 3. We evaluated the 
model’s calibration using the calibration curve Brier score. Figure 4 
displays the results of the calibration curve, which visualizes the model’s 
calibrability. The Brier score (0.0463) is a direct measure of probabilistic 
prediction accuracy, indicating that the model is well calibrated overall.

3.4.3 Model validation and evaluation
We used resampling methods to validate the three models. The 

results of the test set showed that the RF model AUC of 0.982. 
Comprehensive analysis indicated that the RF model performed the 
best on the test set, as detailed in Table 5. The ROC curves for each 
model in the test set are shown in Figure 5.

3.5 Feature importance ranking of ENFI 
influencing factors in ICU patients

Based on the comparison of the models, the RF model 
demonstrated the best overall performance and provided a ranking of 
feature importance. The seven influencing factors for ENFI 
occurrence, ranked in descending order of importance, include intra-
abdominal pressure, APACHE II score, blood glucose level, and use 
of analgesics, among others, as illustrated in Figure 6.

4 Discussion

4.1 Incidence of ENFI

This study included 487 ICU patients, of whom 175 experienced 
ENFI, accounting for 35.9% of the total. This figure is close to the 38% 
incidence rate reported by other scholars (16). This high rate 
highlights the urgent need for proactive identification and 
management of ENFI to mitigate complications such as prolonged 
ICU stays and malnutrition.

4.2 Influencing factors of ENFI

There are numerous factors influencing ENFI in ICU patients, and 
continuous exploration is needed. This study identified the following 
conclusions: The APACHE II score, intra-abdominal pressure, blood 
glucose level, mechanical ventilation, and several other factors 
independently influence early ENFI in ICU patients.

4.2.1 APACHE II score
The APACHE II score is an authoritative indicator for assessing 

the severity of illness and predicting prognosis in ICU patients. It is 
widely used in clinical practice, with higher scores indicating more 

TABLE 2 (Continued)

Item Form ENFI (N = 175) Non-ENFI (N = 312) χ2(P)

Route of enteral nutrition

Transgastric tube route 61(34.9) 249(79.8)

27.994(<0.001)Transintestinal Tube Route 3(1.7) 56(17.9)

Transgastric fistula route 7(2.2)

Data are expressed as number of cases (%); *P < 0.05 is considered a statistically significant difference.
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severe illness and a worse prognosis (17). The more severe the patient’s 
condition, the more intense the systemic stress response, leading to 
pronounced vasoconstriction of splanchnic vessels, gastrointestinal 
mucosal ischemia, and even erosion, thereby impairing gastrointestinal 
function. On the other hand, the body enters a hypercatabolic state, 
triggering the breakdown, consumption, and loss of tissue proteins, 
resulting in hypoalbuminemia. This condition induces gastrointestinal 
mucosal edema, further exacerbating mucosal injury and ultimately 
reducing enteral nutrition tolerance in ICU patients (18). It was found 
that the intolerance group’s APACHE II score (33.29 ± 10.41) was 
significantly higher than the tolerance group’s (18.98 ± 6.41). Statistical 
analysis also confirmed that the APACHE II score is a separate risk 
factor for ENFI in ICU patients (p < 0.05), which is in line with what 
other research has found (2). Routine APACHE II scoring within 24 h 
of ICU admission can stratify high-risk patients, prompting closer EN 
monitoring and early interventions.

4.2.2 Intra-abdominal pressure
In this study, the IAP in the tolerance group was 

7.29 ± 1.70 mmHg, while in the intolerance group, it was 

11.02 ± 1.96 mmHg. In the intolerance group, 82 patients (46.86%) 
had intra-abdominal hypertension (IAP > 12 mmHg), but no cases of 
abdominal compartment syndrome (IAP > 20 mmHg) were observed. 
The fact that most patients suffered from respiratory or neurological 
diseases may explain this phenomenon. Compared to patients with 
gastrointestinal diseases, the increase in IAP in these patients was 
relatively mild, but the IAP in the intolerance group was still 
significantly higher than that in the tolerance group.

IAP (19) refers to the pressure within the abdominal cavity, and 
its increase can be  attributed to factors such as increased organ 
volume, increased fluid volume, and the use of mechanical ventilation. 
The gastrointestinal tract is one of the most sensitive organs to 
increased IAP. As IAP rises, mesenteric blood flow decreases, and 
venous return is obstructed, leading to intestinal edema and impaired 
intestinal function, resulting in gastrointestinal adverse effects (20). 
Clinically, we often estimate IAP by measuring gastric, superior vena 
cava, inferior vena cava, or bladder pressure. Bladder pressure is 
considered the “gold standard” for IAP monitoring due to its 
simplicity, non-invasiveness, accuracy, and minimal influence by 
human factors or the disease itself (21). This study also used bladder 
pressure as a proxy for IAP. Healthcare providers should regularly 
monitor IAP in clinical practice and actively seek causes and 
interventions for patients with high IAP.

4.2.3 Blood glucose level
In this study, the blood glucose level in the intolerance group was 

9.34 ± 3.50 mmol/L, higher than that in the tolerance group 
(7.34 ± 3.33 mmol/L). For critically ill patients, hyperglycemia may 
result not only from pre-existing diabetes but also from various other 
factors (22). Stress-induced hyperglycemia refers to elevated blood 
glucose levels in patients without a history of diabetes, occurring in 
response to severe trauma, shock, cardiovascular accidents, or other 
stressors (23). Elevated blood glucose levels can reflexively reduce the 
tension of the gastric antrum smooth muscle, leading to decreased 
gastric motility and symptoms such as gastric retention. Furthermore, 
high blood glucose can make the pylorus work harder, which can 
make the contractions of the stomach and duodenum not work 
together properly. Such conditions can cause problems with emptying 
the stomach and greatly raise the risk of ENFI (18, 28). Therefore, 
healthcare providers should pay close attention to blood glucose 
monitoring in critically ill ICU patients. When hyperglycemia occurs, 
appropriate measures should be  taken to maintain blood glucose 
within a relatively stable range, which can help reduce the incidence 
of ENFI.

TABLE 3 Logistic regression analysis of factors influencing ENFI in ICU patients (N = 487).

Risk factor Regression 
coefficient

Standard error OR 95%CI P

Lower limit Upper limit

APACHEIIscore 0.239 0.05 1.27 1.152 1.4 <0.001

IAP (mmHg) 1.338 0.198 3.811 2.586 5.617 <0.001

Blood glucose (mmol/L) 0.247 0.073 1.28 1.109 1.478 0.001

Mechanical ventilation −3.172 0.774 0.042 0.009 0.191 <0.001

Early enema 1.516 0.612 4.554 1.372 15.113 0.013

Use of analgesics 2.051 0.613 7.772 2.339 25.831 0.001

Use of probiotics −1.499 0.639 0.223 0.064 0.781 0.019

FIGURE 3

ROC curves of three models in the training set.
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4.2.4 Mechanical ventilation
The results of this study indicate that ICU patients on mechanical 

ventilation are more likely to experience ENFI, and the use of 
mechanical ventilation is a risk factor for ENFI in ICU patients 
(p < 0.05). Mechanical ventilation is an artificial support system that 
controls or alters a patient’s spontaneous breathing movements. Its 
purpose is to maintain airway patency, improve ventilation and 
oxygenation, and prevent carbon dioxide retention and hypoxia. It is 
a common treatment method for critically ill patients in clinical 
practice (24). High levels of positive end-expiratory pressure (PEEP) 
can cause organs around the heart to have poor blood flow, lower 
cardiac output, and gastrointestinal ischemia. Such condition can slow 
the movement of food through the digestive tract or damage the 
mucosa, which can set off ENFI. On the other hand, mechanical 
ventilation can cause gas to enter the stomach or lead to bile reflux, 
further increasing IAP and affecting the patient’s tolerance to enteral 
nutrition. Therefore, in real life, IAP monitoring should be  done 
regularly on patients on mechanical ventilation before and after they 
start enteral nutrition so that targeted measures can be taken in time 
if ENFI happens. Additionally, energy expenditure can be estimated 
based on carbon dioxide production calculated by the ventilator, and 

individualized feeding plans can be developed based on the patient’s 
energy expenditure to reduce the occurrence of ENFI (25).

4.3 Model evaluation

Research on enteral nutrition feeding intolerance (ENFI) prediction 
has been conducted for many years (27). This study developed prediction 
models for risk factor screening by using conventional clinical data, 
which were analyzed through univariate analysis and logistic regression, 

FIGURE 4

Calibration curve of the Random Forest model.

TABLE 4 Performance metrics of the three methods of model building for 
the training set.

Model AUC Accuracy Precision Recall F1 
score

RF 0.951 0.961 0.977 0.914 0.945

SVM 0.924 0.941 0.968 0.846 0.913

LR 0.931 0.943 0.954 0.886 0.919

FIGURE 5

ROC curves comparing model performance in the test set.
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while employing three machine learning algorithms. The three machine 
learning algorithms—LR, SVM, and RF—each exhibit distinct 
advantages and limitations in predicting enteral nutrition feeding 
intolerance (ENFI) in ICU patients. LR offers the best interpretability, 
providing clinically actionable odds ratios, but its linearity assumption 
may overlook complex interactions among risk factors. SVM captures 
nonlinear relationships through kernel functions, yet its “black-box” 
nature and sensitivity to class imbalance limit its clinical utility. Our 
Random Forest (RF) model achieves superior performance 
(AUC = 0.9511) by processing high-dimensional nutrient-specific data 
and automatically detecting feature interactions—albeit with the need 
for careful hyperparameter tuning due to its ensemble structure—
findings that are consistent with and extend the benefits of ML as 
demonstrated by Ong et al. (26) in the context of ventilator management, 
collectively underscoring the transformative potential of machine 
learning in different predictive domains in the ICU (26).

To enhance the clinical interpretability of RF, this study employs a 
feature importance ranking method, intuitively illustrating the 
contribution of each feature to individual patient predictions, thereby 
facilitating clinical comprehension. The analysis confirms intra-
abdominal pressure as the most critical predictor, aligning with 
established physiological mechanisms of ENFI pathogenesis. By bridging 
the gap between algorithmic predictions and clinical decision-making, 
this understandable AI framework enables clinicians to access not only 
risk scores but also their underlying determinants, fostering trust and 
promoting implementation in critical care settings. This approach adheres 
to current standards for transparent AI in healthcare, demonstrating a 
reproducible method for deploying machine learning tools in clinical 
environments where interpretability is paramount.

Simultaneously, we  fully acknowledge concerns about potential 
overfitting due to the high AUC values in clinical prediction models. To 
this end, we systematically optimize and validate the model development 
process, and the results show that we use grid search + 5-fold cross-
validation to tune the model parameters, and through parameter tuning 
and rigorous validation, the AUC of the training set decreases by 0.041, 
and the AUC of the test set maintains at 0.981, with the difference between 
the two values of 0.031, which is much lower than the threshold for 
hinting at overfitting in the clinical prediction model, and the model 
maintains high performance while overfitting.

These results indicate that the optimized model achieves high 
performance while minimizing the risk of overfitting. The stable 
performance on the test set further demonstrates that the model 
captures true predictive signals rather than noise.

In terms of clinical applicability, the Brier score (0.0463) and 
calibration curve of the optimized model demonstrated good overall 
calibration, especially in the high-risk interval (predicted probability 
> 0.8) where it was in high agreement with the ideal curve. This 
finding holds significant clinical relevance: when the model predicts 
an ENFI probability≥ 80%, clinicians can confidently initiate 
parenteral nutrition support to avoid complications from feeding 
intolerance. However, in the intermediate-risk range (0.4–0.6), 
deviations between predicted probabilities and observed frequencies 
suggest the need for integrating additional clinical indicators (e.g., 
gastric residual volume monitoring, bowel sound assessment) for 
comprehensive decision-making.

While current static models have shown strong predictive 
performance, we recognize that these models may not fully capture 
the time-series dynamics inherent in the condition of ICU patients. 
To enhance the timeliness and clinical relevance of the models, future 
work will focus on developing a dynamic prediction framework that 
incorporates longitudinal parameters. This approach will take full 
advantage of the complementary strengths of the Long Short-Term 
Memory (LSTM) network for analyzing temporal patterns and the 
Random Forest (RF) algorithm for dealing with static features, while 
integrating real-time data collection through the Hospital Information 
System (HIS) to create a comprehensive closed-loop “monitor-
predict-intervene” management system.

FIGURE 6

Key predictors of ENFI in ICU patients in order of importance.

TABLE 5 Comparison of test set model performance (N = 98).

Model AUC Accuracy Precision Recall F1 
score

RF 0.982 0.959 0.943 0.943 0.943

SVM 0.975 0.980 0.971 0.971 0.971

LR 0.979 0.929 0.868 0.943 0.904
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5 Limitations and future directions

Although the risk of overfitting was reduced by parameter 
tuning and calibration analysis, this study was still a single-center 
retrospective analysis, and the generalization of the model for cross-
institutional and cross-population data needs to be further verified. 
The current model was developed using retrospective data from an 
ICU in a tertiary hospital in East China (N = 487), and its clinical 
application may be subject to several constraints. First, the training 
data predominantly originated from high-level medical centers in 
a specific region, potentially limiting its generalizability to diverse 
healthcare settings with varying institutional levels, heterogeneous 
population characteristics, and distinct clinical protocols. Second, 
while internal validation demonstrated satisfactory performance, 
the model’s robustness in real-world scenarios necessitates rigorous 
external validation. Therefore, we  suggest using this model as a 
secondary decision-support tool in clinical practice, complementing 
physicians’ clinical judgment.

To address these limitations, we  propose a multicenter 
prospective validation study to systematically evaluate the model’s 
external validity. This investigation will enroll ICU patients from 12 
hospitals of different tiers across five geographical regions (East, 
North, South, West, and Central China; projected sample size 
N = 1,500), implementing standardized prospective data collection 
protocols. The study will specifically examine: (1) predictive 
stability across varying healthcare resource allocations; (2) 
applicability in ethnically and geographically diverse populations; 
and (3) robustness in heterogeneous clinical practice environments. 
Scheduled for initiation in the second quarter of 2026 with an 
18-month duration, the study will employ standardized inter-center 
quality control measures and regular data coordination meetings to 
ensure data comparability and reliability.

After completing the external validation, the integration of the 
predictive model with the hospital electronic health record (EHR) system 
has a promising application, but still faces many challenges at the technical 
and clinical levels. In terms of technical implementation, it is necessary to 
develop standardized API interfaces to interface with mainstream EHR 
platforms (e.g., Epic) to achieve automatic extraction of key parameters 
such as APACHE II scores, and at the same time, adopt a containerized 
deployment scheme to take into account computational efficiency, 
compatibility of data architectures, and privacy compliance requirements 
such as the Protection of Individual Personal Information Law (PIPL). In 
the future, by integrating the time series analysis capability of LSTM 
network and the feature processing advantage of Random Forest (RF) 
algorithm, and combining with the real-time data collection function of 
Hospital Information System (HIS), we  can build a more complete 
dynamic prediction framework, and eventually form a closed-loop 
management system of “Monitoring-Prediction-Intervention,” which will 
significantly improve the timeliness and clinical relevance of the model. 
In terms of clinical implementation, the system will provide visual risk 
warning (e.g., traffic light indicators) and intelligent decision support (e.g., 
automated feeding regimen suggestions), and ensure the successful 
application of the prediction model in real-life healthcare scenarios 
through the seamless integration with existing clinical workflows, as well 
as the layered training program, system optimization feedback 
mechanism, and multidisciplinary collaboration mechanism.
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