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As economy is growing, the number of patients living with obesity has rapidly 
increased globally. Patients with obesity or diabetes have become a serious global 
health issue that requires the attention and participation of society as a whole. 
The ketogenic diet, as an emerging nutritional therapy for improving obesity, takes 
into consideration the differences between sexes in genetic variation, hormonal 
balance, and body fat distribution. The aim is to elucidate the effectiveness of sex 
differences in ketogenic dieting for weight loss and to explore suitable weight 
loss strategies. In this review, we delve into the physiological sexual differences 
between men and women in terms of fat and muscle tissue and discuss the sex-
specific potential mechanisms underlying the differential effects of the ketogenic 
diet for weight loss. Based on this foundation, we further propose brief weight 
loss recommendations beneficial for both men and women. It is hoped that, in 
this direction, the optimization of short-term or long-term clinical weight loss 
programs can be developed based on sexes.
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Introduction

Obesity is globally recognized as a significant public health challenge and is closely linked 
to diseases such as type 2 diabetes, cardiovascular disorders, and various cancers. It is also one 
of the main reasons for the high prevalence and mortality rates of metabolic diseases (1). As 
of March 2023, the “World Obesity Map” indicated that in 2020, out of the global population 
aged over 5, 2.6 billion people were obese or overweight. By 2035, this number is projected to 
exceed 4 billion, rising from 38% in 2020 to over 50% in 2035 (2). In recent years, dietary 
interventions for obesity have become a point of contention, with many different weight-loss 
methods being promoted (3). Among them, the traditional low-fat diet is widely used, but it 
also has its drawbacks. While it can promote the consumption of carbohydrates, this might 
exacerbate weight issues and encourage lipid abnormalities (4), especially in individuals with 
insulin resistance. In contrast to the classic low-fat, high-carbohydrate diet, the KD is a high-
fat, ultra-low-carbohydrate, and moderate-protein dietary approach. Its core objective is to 
induce a state of ketosis, in which the body primarily relies on ketone bodies rather than 
glucose as its main energy source. Today, KD has gained widespread popularity as an effective 
weight-loss method. In a randomized controlled clinical trial where subjects were randomly 
assigned to a 6-month KD or a high-carb, low-fat diet under controlled variables, results 
showed that the KD group lost weight faster and shed more weight throughout the trial, 
without associated cardiovascular risks emerging within the 6 months (5). Studies suggest that 
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the KD not only helps patients with obesity or diabetes lose weight (6) 
but also aids in increasing insulin sensitivity in type 2 diabetes patients 
and improves blood sugar control (7). In a 45-day study of very-low-
energy ketogenic therapy (VLEKT) involving 21 premenopausal 
women and 21 men, men experienced a significantly greater weight 
loss than women, with a mean percentage decrease of 11.63% 
(11.63 ± 1.76 kg) compared to 8.95% (8.95 ± 1.65 kg) in women (8). 
In another two-diet period clinical intervention study, researchers 
found that, compared to a low-fat diet, ketogenic diet offered a distinct 
advantage for men in terms of weight loss, total fat loss, and trunk fat 
loss (despite a significantly higher energy intake) (9).

Although the KD shows significant results in weight loss, there is 
a noticeable sex difference in its effects. Epidemiological, physiological, 
and clinical therapy research has reported sex differences in the KD’s 
treatment of obesity (10). While social and psychological factors 
undoubtedly play roles in the observed discrepancies in prevalence 
and incidence, biological differences in heredity, gonadal hormone, 
such as testosterone and estrogen, and lipid metabolism might 
underlie these observed effects. This review synthesizes current 
literature discussing the mechanisms of the KD in treating obesity and 
the sex disparities arising from interactions between innate factors 
and hormones under the KD. We  believe that by enhancing our 
understanding of the challenges in this field, we  will lay the 
groundwork for urgently needed research, paving the way for more 
personalized and targeted treatments in obesity.

Review methodology

A comprehensive literature search was conducted using databases 
such as PubMed, Scopus, Embase, Web of Science, and the Cochrane 
Library. The search strategy was tailored with specific keywords to 
ensure relevance; for example, in PubMed, these included (“Ketogenic 
Diet”[Mesh] OR “ketogenic diet” OR “low carbohydrate diet” OR 
“high fat diet”) AND (“Weight Loss”[Mesh] OR “weight loss” OR 
“body weight reduction” OR “fat loss” OR “obesity”[Mesh]) AND 
(“Sex Characteristics”[Mesh] OR “sex differences” OR “gender 
differences” OR “male” OR “female” OR “men” OR “women”), along 
with other similar terms and phrases relevant to the topic.

Inclusion criteria: Studies specifically addressing the effects of KD 
on weight loss and those involving gender differences were included. 
Preference was given to recent research articles, randomized 
controlled trials, cohort studies, case–control studies, and clinical 
trials, while human and animal studies, as well as in vitro studies, were 
considered if relevant to the research topic.

Exclusion criteria

Non-English articles, reviews, editorials, and those without 
accessible full text were excluded. While literature reviews were 
generally excluded, exceptions were made if they provided substantial 
insights or unique perspectives not found in original research articles.

Potential articles identified through this process were initially 
checked for duplicates by two reviewers (Y. J. and Y. M.). The 
applicability of titles and abstracts was then screened by three 
reviewers (L. L., Y. L., and M. G.), and full-text reviews were conducted 
by three reviewers (Y. J., Q. W., and X. C.) based on the results of this 

stage. The resulting article set was thoroughly examined by all 
reviewers, with important findings extracted, summarized, 
and analyzed.

The background of the KD

The history and definition of the ketogenic 
diet

Originating from a dietary strategy rich in fats, moderate in 
protein, and scarce in carbohydrates, the KD has a legacy that 
dates back to the time of Hippocrates (460–370 BCE) (11). 
Initially, its potential was harnessed in the realm of medicine, 
particularly as a remedy for refractory epilepsy. The pioneering 
utilization of the KD was in 1911 when two Parisian physicians, 
Gulep and Marie, recognized its therapeutic advantages for 
epilepsy (12). Their observations highlighted a reduced severity 
of seizures in both children and adults, though the specifics 
remained largely uncharted. By the 1920s, the KD was championed 
by Dr. Hugh Conklin, bringing relief to countless young epilepsy 
patients (13). The diet became a cornerstone treatment during the 
1920s and 1930s. However, with the introduction of the 
groundbreaking antiepileptic drug phenobarbital (Dilantin), the 
KD’s prominence faded, overshadowed by challenges like 
patient adherence.

Traditional ketogenic diets (KD) adhere to a 4:1 ratio of fat to the 
combined total of carbohydrates and protein (grams) (14–16). The 
stringent ratio requirement presented challenges with regards to 
adherence to the ketogenic diet, spurring subsequent researchers to 
refine the ratios, such as the introduction of the medium-chain 
triglyceride (MCT) diet, which elevates the proportion of MCTs to 
enhance ketone production efficiency (17). Subsequently, the modified 
Atkins Diet (MAD) ratio was proposed in the 1970s by American 
cardiologist Robert C. Atkins as a low-carbohydrate dietary regimen. 
MAD entails a ketogenic ratio of 0.9:1 (fat: carbs to protein), which is 
slightly lower than that of the classic KD, with the primary goal of 
increasing urinary ketones to achieve the secondary endpoint of 
weight loss (18). Overall, there is currently no standardized definition 
of the KD. Different versions of KD adhere to the same core principle: 
high fat and low carbohydrate intake, with approximately 50% or more 
of total caloric intake derived from fat (19).

The mechanism behind the KD

In a typical diet, carbohydrates stand as the primary energy pillar, 
metabolizing into glucose, which further transforms into pyruvate. 
This pyruvate, upon oxidation, gives rise to Acetyl-CoA, an integral 
player in the tricarboxylic acid cycle (TCA cycle). Parallelly, fats, when 
metabolized, break down into glycerol and fatty acids. These fatty 
acids, after undergoing β-oxidation, also produce Acetyl-CoA, fueling 
the TCA cycle to generate energy. Under standard dietary conditions, 
only minimal ketones are produced, too insignificant to elicit notable 
metabolic reactions (20). Embracing the KD tricks the body into 
mimicking a fasting state, with carbohydrate scarcity leading to a 
significant accumulation of acetyl-CoA. This surfeit propels the liver 
into overdrive, churning out an excess of ketones (21), which is a term 
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encompassing β-hydroxybutyrate (β-OHB), acetoacetate, and 
acetone—the by-products of fat metabolism.

The blood–brain barrier restricts energy sources for the brain 
mainly to glucose and ketones (22). In situations like fasting, ketones 
can cater to a considerable 25–75% of the brain’s energy demands (23). 
Therefore, the KD can maintain normal brain energy supply while 
keeping peripheral blood glucose levels and decreasing insulin 
sensitivity, thereby reducing lipogenesis and promoting fat breakdown 
(24–26).

In the peripheral circulation, the KD primarily promotes weight 
loss through several key mechanisms. First, it reduces food intake. KD 
suppresses appetite by increasing peptide neurotransmitters such as 
peptide (PYY) and glucagon-like peptide-1 (GLP-1) while decreasing 
levels of appetite-regulating hormones like cholecystokinin (CCK) 
and stomach ghrelin concentrations, thereby reducing caloric 
consumption (27–29). Second, it enhances the breakdown of existing 
visceral fat. KD reduces the storage of liver glycogen and water as well 
as the accumulation of visceral fat. The lipolytic effect is amplified in 
the ketogenic state, and the decomposed fatty acids can be further 
converted into ketone bodies for energy. Additionally, a high-sugar 
diet exacerbates inflammatory responses (30, 31), affecting the energy 
demands of central nervous system (CNS) neurons. A low-sugar diet 

significantly improves this condition (29). Finally, KD alters the 
structure and function of the gut microbiota, reducing the production 
of short-chain fatty acids (SCFAs), which in turn affects the signaling 
of the gut-brain axis (32). This modulation may further suppress 
appetite and promote weight loss (33) (Figure 1).

Sex differences in body composition

Adipose tissue

In humans and other mammals, there is a striking divergence in 
how body fat is distributed between the sexes. Men tend to accumulate 
fat centrally, presenting a pronounced visceral fat profile that deposits 
in the chest, abdomen, and buttocks, leading to an ‘apple-shaped’ 
physique. Conversely, premenopausal women generally store more 
subcutaneous fat, particularly in areas like the breasts, hips, legs, and 
waist, creating a ‘pear-shaped’ silhouette (34–36).

Many women fall into the category of “metabolically healthy 
obesity” (with higher insulin sensitivity/absence of insulin resistance; 
more body fat but normal amounts of abdominal fat tissue; relatively 
less visceral and ectopic fat, primarily accumulating subcutaneously; 

FIGURE 1

The overview of the KD’s mechanism. Under normal metabolic conditions, glucose serves as the primary energy substrate and is metabolized into 
pyruvate. This pyruvate is then converted to acetyl CoA, generating oxaloacetate, which enters the TCA cycle to produce ATP. However, under 
ketogenic dietary states, the synthesis of oxaloacetate is restricted, impeding the normal progression of the TCA cycle. Consequently, a substantial 
consumption of fat occurs, with processes such as fatty acid activation and β-oxidation generating acetyl-CoA, which promotes the production of 
ketone bodies. Subsequently, this ketogenesis process yields energy and inhibits appetite, while also shifting the brain to a “fat-fueled” energy mode. 
Some parts created with Figdraw.com.
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normal metabolic indicators such as blood lipids, blood pressure, and 
blood glucose; and low levels of inflammation and oxidative stress), 
while men are more likely to experience metabolically unhealthy 
obesity (37). This central fat accumulation, combined with more 
significant hormonal shifts, predisposes men to endocrine disruptions 
and increases their risk for cardiovascular diseases, insulin resistance, 
hypertension, and diabetes (38). On the other hand, compared to the 
metabolically slower subcutaneous fat, visceral fat, particularly 
abdominal fat, is more easily burned by the KD, resulting in significant 
weight loss in men.

Muscle tissue

Engaging in muscle exercise can enhance basal metabolic rates, 
facilitating efficient calorie consumption. Research underscores that 
muscle augmentation is positively correlated with increased basal 
metabolic rates, expediting energy expenditure. The pronounced sex 
disparity in muscle development becomes evident during puberty 
(39); boys tend to have more pronounced muscle development than 
girls. In adulthood, for a given body weight, males generally possess a 
greater muscle mass compared to females. During endurance 
exercises, females might also exhibit an increased release and uptake 
of fatty acids (FA) in skeletal muscles (40). A study gauging ketone 
concentrations post-exercise revealed that female mice had serum 
ketone levels approximately 45% higher than their male counterparts 
after endurance activities. Consequently, female mice produce more 
exercise-induced ketones.

Human muscle fibers can be generally classified into three types: 
Type I, Type II and Type IIx, with the first two being the most 
predominant. Type I fibers are rich in mitochondria at their periphery 
and are proximal to the intramuscular capillaries. Consequently, they 
possess a strong aerobic metabolism capacity for glucose and free fatty 
acids (FFA), exhibit heightened insulin sensitivity (41), and are more 
resistant to fatigue. On the other hand, Type II fibers have a lower 
capillary density and mitochondrial concentration compared to Type 
I fibers. They rely less on aerobic metabolism and more on anaerobic 
energy production (42), resulting in faster contraction speeds and 
higher force output per contraction unit but tending to fatigue more 
quickly. Studies indicate that, compared to males, females are more 
inclined toward oxidative metabolism (43). Within the same muscle, 
females also have a higher proportion of Type I  fibers, naturally 
translating to a higher capillary density (44). This, to some extent, 
indicates that perhaps women are more suited to aerobic exercise 
rather than the ketogenic diet for weight loss.

Underlying mechanisms of sex 
variations in the KD weight loss

Heredity

Although no studies have yet systematically delved into the 
genetic underpinnings of sex differences induced by the KD, a 
synthesis of the extant literature suggests that these genetic sex 
disparities under the KD might be  intricately associated with 
neurotransmitter levels, individual sensitivity to varied environmental 
stimuli, and certain intermediate phenotypes. Specifically, the KD is 

found to diminish the concentrations of central nervous system 
neurotransmitters like norepinephrine (NE) and dopamine (DA), as 
well as serotonin (5-HT), subsequently influencing feeding behaviors. 
Catecholamines can inhibit appetite and reduce food intake and 
appetite through neural pathways (45). This helps to control diet and 
decrease the total calorie intake. Dopamine accounts for approximately 
80% of the brain’s catecholamine content. Studies have found that 
among all food categories, carbohydrates are typically considered the 
most addictive, and high-carbohydrate diets stimulate the mesolimbic 
dopamine pathway, leading to excessive food intake and obesity (46). 
The ketogenic diet, to some extent, can prevent this from happening. 
In the non-fasting Mediterranean diet state, the brain’s primary fuel is 
glucose, and fluctuations in blood sugar levels trigger changes in the 
firing of dopamine neurons in the striatum (47). Every time 
you  consume sweets, the brain’s reward system—the mesolimbic 
dopamine system—is activated (48).

In the realm of catecholamine-mediated lipolysis, variations are 
more salient in males than in females. For instance, NE’s lipolytic 
prowess in abdominal adipocytes surpasses that in gluteal adipocytes. 
As previously noted, men tend to accumulate fat around their 
abdominal organs, while women predominantly store fat 
subcutaneously in the buttocks and thighs. This sex-specific difference 
in fat distribution may be  linked to the distinct effects of 
norepinephrine (NE) on regional adipose tissue, potentially 
accounting for the observed variations in the weight loss effects of the 
ketogenic diet (KD) between males and females (49).

Another intriguing discovery comes from a study that showcased 
a consistent density of α2-adrenergic receptors across various tissues. 
However, in female specimens, the affinity of clonidine (a targeted 
α2-adrenergic agonist) in abdominal adipocytes was discernibly 
lower—by 10–15 times—than in their gluteal counterparts. This 
region-specific disparity in catecholamine-induced lipolysis can 
be  attributed to the site-specific variations in the density of 
β-adrenergic receptors. The modulations in the affinity of 
α2-adrenergic receptors in females provide, at the very least, a partial 
rationale for the augmented catecholamine-induced lipolytic response 
observed in males (50).

Sex hormone

Estrogen
The differential response to the KD across sexes may, in part, 

be attributed to the modulatory effects of estrogen. In a study where 
both male and female murine models were subjected to the KD for a 
duration of 15 weeks, male subjects effectively maintained glycemic 
homeostasis and exhibited weight reduction (51). In contrast, the 
female cohort manifested a minor weight augmentation, coupled with 
delayed onset of insulin resistance and compromised glucose 
tolerance. Intriguingly, following oophorectomy to eradicate 
endogenous estrogen production, females on the KD demonstrated a 
reduction in adiposity and improved glycemic control, paralleling the 
metabolic effects observed in males.

Additionally, preliminary findings suggest that short-term 
adherence to the KD may induce a surge in serum cortisol 
concentrations to transition the body to utilizing fat as its principal 
energy source (52), a glucocorticoid synthesized in the adrenal cortex. 
Elevated cortisol can potentiate estrogenic activity. The interaction 
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between estrogen and cortisol may enhance women’s craving for high-
sugar and high-fat foods, particularly during the luteal phase (53). 
However, testosterone may partially counteract cortisol’s appetite-
stimulating effects of men (54). Exorbitant estrogen levels in females 
can impede thyroid hormone synthesis, potentially inducing 
bidirectional interference between estrogen and the hypothalamic–
pituitary–adrenal (HPA) axis. Notably, recalcitrant adipose tissues are 
enriched with α-adrenergic receptors. While α-receptors play an 
inhibitory role in lipase activity, modulating muscular energy 
provision during exertion and curtailing lipolysis, β-receptors 
stimulate lipase, facilitating muscular contractility and fostering lipid 
catabolism (55). Estrogen is known to amplify both the sensitivity and 
abundance of α-adrenergic receptors, attenuating the adrenergic-
mediated lipolytic response in subcutaneous adipocytes (56). This 
physiological complexity may offer new insights into why women 
experience relatively greater difficulties than men in achieving fat 
reduction through a ketogenic diet.

Testosterone
Testosterone is a hormone pivotal in the metabolism of 

carbohydrates, fats, and proteins. Given that its concentration in males 
is typically about 10 times higher than in females, it is often termed 
the “male hormone.” Accumulating evidence suggests that testosterone 
orchestrates the expression of key regulatory proteins involved in 
glycolysis, glycogenesis, lipid, and cholesterol metabolism at the 
molecular level (57). Metabolic shifts driven by testosterone in 
adipocytes lead to a reduction in the production of free fatty acids 
(FFA), subsequently mitigating insulin resistance (58). Early studies 
demonstrated that testosterone amplifies norepinephrine 
(NE)-induced lipolysis in isolated adipocytes from normal male rats 
(59) and can enhance lipolysis by increasing the number of 
β-adrenergic receptors (60).

Visceral fat converts testosterone into estrogen in males through 
the action of the aromatase enzyme. Consequently, when body fat 
percentages are elevated, men tend to exhibit increasing estrogen 
levels, while their muscle-building and fat-burning testosterone 
concentrations decline, as seen in Figure 2. A recent clinical study 
presented at the European Endocrinology Conference revealed that 
the KD benefits overweight males by enhancing testicular hormone 
profiles and reducing overall obesity markers. After 4 weeks on the 
KD, 17 male participants showed significant reductions in body 
weight, fat mass, and BMI. Concurrently, total testosterone and sex 
hormone-binding globulin (SHBG) levels saw notable increases. As 
males with obesity or diabetes often suffer from low testosterone and 
SHBG levels, the data suggests that further investigation into the 
effects of calorie-restricted KD on male testosterone and SHBG levels 
is a promising area for additional research (61). Another study divided 
20 male participants randomly into two groups: one following a very 
low-carb KD and the other a low-carb, high-fat, and high-protein diet 
coupled with strength training. After an 8-week trial period, both 
groups exhibited significant elevations in baseline and free testosterone 
levels (62). Moreover, a systematic review and meta-analysis indicate 
that both conventional KD and extremely low-calorie KD can elevate 
testosterone levels in men. The beneficial effects on testosterone 
appear more pronounced in older participants and those who lose 
more weight post-ketosis (63). Consuming adequate high-quality fats 
aids in maintaining healthy cholesterol levels, a precursor is essential 
for testosterone synthesis. Systematic reviews and meta-analyses 
suggest that, compared to men on high-fat diets, those on low-fat diets 
experience testosterone level decreases of 10–15%. Especially striking 
is the 26% reduction in vegan males on low-fat diets (64), suggesting 
that a KD centered on lipid metabolism may be more beneficial for 
male fat reduction, enhancing testosterone levels, and promoting 
lipid metabolism.

FIGURE 2

The metabolic role of testosterone in the KD. The KD can increase testosterone secretion, and testosterone can enhance the lipid breakdown effect of 
norepinephrine by increasing the number of β-adrenergic receptors. Visceral fat also fights testosterone by converting testosterone into estrogen 
through the action of aromatase.
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Furthermore, appropriate testosterone levels promote muscle 
repair and the reconstruction of muscle tissue, simplifying muscle 
growth. From puberty onward, males display evident athletic 
performance disparities owing to an increase in circulating 
testosterone concentrations. At any age, males produce up to 30 times 
more testosterone post-puberty and have 15 times more circulating 
testosterone than females (65, 66). The substantial sex disparity in 
circulating testosterone concentrations has a reproducible dose–
response relationship with muscle mass, strength, and circulating 
hemoglobin. This dichotomy largely elucidates the sex differences in 
muscle mass, strength, and circulating hemoglobin levels, conferring 
an energy production advantage of at least 8–12% in males (67). It is 
plausible to hypothesize that under the KD conditions, males might 
accelerate muscle gain and subsequently hasten fat metabolism due to 
higher testosterone levels compared to females. Thus, this speculation 
warrants further comprehensive research.

Menstrual cycle
The metabolic response to ketones in females can differ across the 

various phases of the menstrual cycle. Studies demonstrate that during 
the luteal phase (days 14–28 post-ovulation), there is a subdued 
ketone metabolic response, whereas, in the follicular phase (days 1–14 
pre-ovulation), this response is more pronounced. Elevated levels of 
progesterone, predominant in the luteal phase, can impair insulin 
sensitivity (68), resulting in premenstrual hyperglycemia and 
augmented insulin secretion. However, this phenomenon might 
be modulated by other factors, such as the intake of oral contraceptives. 
Variability in insulin sensitivity and blood glucose levels suggests that 
ketone concentrations in females may be  reduced during specific 
periods within the menstrual cycle. An enhanced predilection for 
food and carbohydrates premenstrually in some women can lead to 
transient weight increments (69). Research postulates that during a 
natural menstrual cycle, there is a heightened preference for 
carbohydrates as the primary substrate for oxidative metabolism (70), 
which might hinder the attainment of ketosis. In summary, the 
metabolic fluctuations of the menstrual cycle may hinder the 
achievement and maintenance of ketosis in premenopausal women. 
Conversely, the absence of such hormonal oscillations in menopause 
women likely contributes to a more stable metabolic response 
to ketosis.

Energy metabolism

Sex differences exist in immediate energy sources in postprandial 
and resting states. Women are more prone to incorporate postprandial 
free fatty acids (FFA) into triglycerides, promoting fat storage and using 
carbohydrates as an immediate energy source. In contrast, men tend to 
produce energy through plasma FFA oxidation and store carbohydrates 
as glycogen (71). Thus, women on KD may be more likely to store fat 
and face greater difficulties in fat mobilization and consumption, 
although the exact mechanisms of this sexual dimorphism require 
further study. During aerobic exercise, women are more inclined to use 
fat oxidation for energy, while men tend to rely more on carbohydrate 
oxidation to meet exercise-induced energy demands (72, 73). A study 
investigating fuel metabolism differences between males and females 
during prolonged endurance exercises (40 ± 70% of VO₂ max) found 
that men derive more energy from carbohydrate oxidation during 

physical activity (74). Therefore, compared with KD, women may more 
easily utilize fat through exercise, but this hypothesis still needs to 
be confirmed by large-scale clinical studies.

Sex differences also exist in lipid metabolites. A study illustrated 
a gender-dependent pattern in lipid metabolite levels of 
lysophosphatidylcholine (lysoPC), phosphatidylcholine (PC), and 
sphingomyelin (SM) between female and male rats (75). Relative to 
male rats, PC and lysoPC tend to be  significantly elevated in the 
plasma of female rats. LysoPC is a biologically active, pro-inflammatory 
lipid produced by pathogenic activity. It can induce hepatocyte stress, 
cellular damage, and death, leading to inflammation and fibrosis (76). 
This implies that, to some extent, the lipid metabolism of females in 
the resting state is more inclined toward inflammatory rather than 
oxidative responses, indicating that the ketogenic diet may be less 
suitable for weight loss in women.

Muscle metabolism

Engaging in muscle training can enhance basal metabolism, making 
it easier to burn calories. Numerous academic studies have confirmed 
that the KD may be  particularly effective for muscle growth. In a 
randomized controlled trial involving 20 male participants, 12 switched 
from their regular diet to the KD, while the remaining 8 continued with 
their regular diet. After 6 weeks, those in the KD group had gained 2 
pounds of muscle, while the control group gained just under 1 pound 
of muscle (77). However, in a study focusing on the relationship between 
the KD and muscle in women, 24 female participants were randomly 
divided into two groups. Twelve underwent a 4-week KD, and the other 
12 adopted a 4-week control diet. Using a mixed-model evaluation for 
treatment efficacy, the study found that the KD might have adverse 
effects on muscle fatigue in young and healthy women, potentially 
influencing their sense of fatigue in daily life (78). This trial suggests that 
the negative impact of the KD on female muscle endurance could be a 
factor affecting its weight loss efficacy. Perhaps prolonged adaptation to 
the KD can circumvent these effects. It is crucial to further explore the 
long-term effects of this diet on muscle fatigue.

Intestinal structure and gut microbiota

Ketone metabolism refers to the process by which the human body 
utilizes ketones produced from fat metabolism for energy. Regarding 
sex differences, studies indicate that there are some disparities between 
males and females in ketone metabolism. 3-Hydroxy-3-
Methylglutaryl-CoA Synthase 2 (HMGCS2) is a rate-limiting enzyme 
that encodes for the breakdown of FA into ketones, catalyzing the 
second rate-limiting step in ketogenesis by adding a third acetyl group 
to acetoacetyl-CoA (79). A high-glucose diet reduces HMGCS2 at the 
base of the mouse small intestinal crypt and lowers β-OHB levels in 
the small intestinal crypt (12). Female mice with Slfn3 knockdown 
showed a more significant reduction in adipogenic genes Fabp4 and 
Lpl than their male counterparts. Furthermore, the study found 
sex-specific increases in the ketogenic gene Hmgcs2. Compared to 
wild-type female mice, female mice with Slfn3 knockdown exhibited 
a significant increase in Hmgcs2, while no significant change was 
observed in males (80). The effect of HMGCS2 on energy metabolism 
under the KD is as shown in Figure 3. As Slfn3 is one of the essential 
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genes regulating intestinal epithelial differentiation, variations in 
intestinal structure and microbial metabolism might influence weight 
loss outcomes under ketogenic conditions. However, there is limited 
research in this domain, warranting further exploration.

The interplay between gut microbiota and adipose distribution 
showcases distinct sex dichotomies. In a seminal study involving 222 
participants, subjects were stratified into four cohorts based on the 
dichotomy of ‘pear-shaped’ versus ‘apple-shaped’ physiologies and sex 
distinctions. Astoundingly, certain bacterial strains emanating from the 
same two genera, “Holdemanella” and “Gemella,” manifested divergent 
associations with adipose patterning between males and females (81). 
Within these sex delineations, identical genera could elicit varying 
correlations with fat distribution, contingent on the constituent bacterial 
strains. This posits an intriguing query: Under the milieu of the KD, 
might the microbial interplay exhibit sex-specific nuances? Empirical 
evidence suggests that the KD might proffer salubrious advantages to 
those with obesity by orchestrating shifts in the gut microbial landscape, 
notably by enhancing the Bacteroidetes to Firmicutes ratio and 
amplifying Prevotella concentrations (82). Throughout one’s ontogeny, 
concomitant with the maturation of both immune and neural 

architectures, the evolution of the gut microbiome demonstrates sexual 
dimorphism, culminating in divergent microbial assemblages in adult 
males and females. A meticulous denaturing gradient gel electrophoresis 
(DGGE) scrutiny of the Bacteroides genus revealed an enriched 
abundance of the polymorphic Bacteroides subtype in males (83). A 
4-week ketogenic diet intervention in 17 overweight adults led to a 
significant reduction in the abundance of Actinobacteria and Firmicutes, 
while the relative abundance of Bacteroidetes increased (84). These 
polymorphic Bacteroides, which represent a dominant contingent within 
the human intestinal milieu, excel at carbohydrate catabolism. They 
adeptly deconstruct complex plant-derived carbohydrates into glucose 
and other assimilable saccharides. Given the inherent male predilection 
to metabolize carbohydrates as a primary energy substrate under specific 
conditions, and juxtaposing this with the KD’s carbohydrate-sparse 
nature, this microbial disparity, rooted in carbohydrate metabolism, 
might potentiate enhance lipid oxidation in males.

The concept of gut microbiota α-diversity encapsulates the 
heterogeneity within an individual’s microbial communities, denoting 
the species richness within each assembly. Rodent-centric 
investigations unveiled a pronouncedly augmented α-diversity in 

FIGURE 3

The effect of HMGCS2 on energy metabolism under the KD. HMGCS2 can catalyze ketogenic reaction by acetoacetyl-CoA, while both high-glucose 
diet and Slfn3 inhibit the expression of this enzyme, thereby inhibiting ketogenic reaction. Elevated HMGCS2 was seen in Slfn3 knockout female mice.
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non-obese diabetic female mice during their post-pubertal phase, 
spanning 10 to 13 weeks, in stark contrast to their male counterparts. 
Males, however, manifested an elevated prevalence of bacterial families 
such as Porphyromonadaceae, Peptostreptococcaceae, 
Lactobacillaceae, and Enterobacteriaceae (85). The 
Porphyromonadaceae lineage correlates with diminished visceral 
adiposity and a more salubrious metabolic signature (86). Lactobacilli, 
with their remarkable capacity to modulate adipocytic mediators, 
present formidable anti-obesity properties when confronted with a 
high-fat dietary milieu (87). Notably, studies have emphasized the 
critical need to prioritize the source (omega-6/omega-3, PUFAs and 
MUFAs) and quality of fats in KD, as they may differently affect gut 
microbiota richness and diversity (88). Next-generation sequencing 
(NGS) or metagenomic sequencing technologies hold promise for 
enhancing the accuracy of future investigations. These sex differences 
in gut structure, HMGCS2 enzyme activity, and gut microbiota 
composition and function could underlie the greater benefits of the 
ketogenic diet for men. Further research into these factors is warranted.

Other aspects

Other factors like brain tissue structures and societal elements 
also play a pivotal role in dictating the differential weight loss 
responses between men and women. Researchers were able to 
transform obese male mice into healthier counterparts by curbing 
appetite and amplifying physical exertion. However, this strategy 
proved futile in female mice. The cerebral architecture governing 
caloric utilization showcases sex variances, steered primarily by the 
neuropeptide pro-opiomelanocortin (POMC) in specific brain 
regions. POMC peptides in this neural territory are cardinal 

regulators of appetite, physical activity, energy expenditure, and 
body weight. Yet, in female mice, the modulatory potency of 
POMC peptides over physical activity and energy expenditure is 
not as pronounced (89). Studies revealed that the metabolic 
glutamate receptor 5 (mGluR5) within steroidogenic factor 1 (SF1) 
neurons is not quintessential for energy balance regulation. 
Another investigation illuminated that in the ventromedial 
hypothalamus of female mice, mGluR5 within SF1 neurons is 
imperative for glucose homeostasis, whereas this is not the case for 
males (90). Consequently, when mGluR5 is absent, the neuronal 
activity of SF1 in female mice is compromised. This derangement 
flips the protective role of estrogen in glucose metabolism to a 
detrimental one, impinging on glucose regulation, ushering in 
glucose intolerance, and exacerbating obesity. Ketone bodies 
activate the cAMP/CREB pathway, which in turn boosts the 
expression of brain-derived neurotrophic factor (BDNF). Given 
that the functionality of mGluR5  in certain brain areas is 
modulated by BDNF (91), this proffers an explanation as to why 
males might find it more facile to shed weight on the KD under 
neuronal impairment conditions. Overall, these neurobiological 
differences suggest that men may be more suited to the ketogenic 
diet than women.

Conclusion and outlook

Overall, obesity manifests differently in men and women, and 
therefore, the efficacy of the KD in treating obesity is influenced 
by gender differences. We  have summarized the mechanisms 
underlying gender differences in weight loss induced by the 
ketogenic diet, as detailed in Table 1. Based on current literature, 

TABLE 1 The summaries of mechanisms about gender differences in weight loss caused by the KD.

Aspects Male Female Reference

Heredity Catecholamines induce a lipolytic reaction, which is more 

pronounced in men

The α 2-Adrenaline receptor affinity of women has specificity 

on different parts on their bodies

(44, 45)

Sex hormone

  Estrogen / Higher estrogen levels in women’s bodies suppress sensitivity 

of α adrenergic receptors to hinder lipolysis, which may lead 

to insulin resistance

(46–49)

  Testosterone More testosterone in men’s bodies increases muscle synthesis 

and the number of β adrenergic receptors to promote 

lipolysis in the ketogenic state

/ (50–60)

  Menstrual cycle / During the menstrual cycle, women may make it difficult for 

their bodies to enter the ketogenic state and lose weight.

(61–63)

Energy metabolism Men may accelerate the mobilization and consumption of fat 

more easily when going through a decrease in carbohydrates

Lipid metabolites produced by women are more damaging (64–69)

Muscle metabolism The KD can increase muscle synthesis in men and improve 

skeletal muscle mass

The KD may increase muscle fatigue and reduce muscular 

endurance in women

(70, 71)

Structure and flora of 

intestinal

Men may have a higher abundance of beneficial flora for fat 

metabolism

Women may more depend on certain regulatory factors such 

as SN in intestinal structure than men

(72–79)

Others Some driving medium such as POMC in the brain of men 

may play a bigger role on appetite, energy expenditure and 

body weight

Women have more precise requirements for neuronal 

regulation of glucose and lipid metabolism

(80–83)
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it can be concluded that KD is most effective for men, followed by 
postmenopausal women, while its efficacy is most limited in 
premenopausal women. Compared to men, women exhibit 
distinct characteristics in fat metabolism under KD: women have 
lower sensitivity to lipolytic agents such as catecholamines; they 
face greater challenges in mobilizing and utilizing fat when dietary 
carbohydrates are reduced; they encounter more difficulties in 
increasing muscle mass and promoting muscle metabolism; their 
gut microbiota contains fewer beneficial fat-metabolizing bacteria; 
their neural regulation of glucose and lipid metabolism is more 
complex; the menstrual cycle influences their metabolism; and 
KD may adversely affect muscle fatigue in young, healthy women. 
Consequently, KD may be more suitable for weight loss in men 
than in women. These differences may be attributed to factors 
such as genetics, immunity, gene expression, sex hormones (e.g., 
testosterone, progesterone, and estrogen), gut microbiota, and 
neurotransmitters. In summary, this review analyzes the 
differences in body composition and fat metabolism between the 
sexes, as well as the resulting variations in KD efficacy. This 
provides insights for improving existing weight loss strategies, 
facilitating personalized prevention and treatment measures, and 
helping to alleviate the public health challenges posed by obesity.

Limitations

Although a substantial body of literature has elucidated the 
physiological mechanisms underlying weight loss through the KD, 
and a considerable number of studies support the existence of sex 
differences in this phenomenon, several limitations remain. 
Notably, there is still a lack of long-term follow-up studies, large 
sample sizes, and high-quality large-scale clinical trials of a diverse 
population providing direct evidence to substantiate 
these differences.

Furthermore, research on the interaction between gut 
microbiota and sex differences in response to KD remains limited, 
highlighting the need for further exploration in this area. This 
suggests that sex-related differences in KD effects warrant deeper 
investigation and may represent a promising avenue for 
future research.

Nevertheless, there is optimism regarding the development of 
sex-specific short- and long-term clinical weight loss strategies 
based on this emerging field. It is also advisable to incorporate 
sex-stratified analyses when examining the effects of KD on 
various diseases.

However, it is crucial to acknowledge that most human studies on 
sex differences are deeply influenced by ethical considerations and 
have been predominantly conducted in Caucasian populations. The 
lack of research on sex-related differences in Asian and African 
populations is evident, underscoring an urgent need for more inclusive 
and diverse research efforts in the future.
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Glossary

KD - the ketogenic diet

TCA cycle - the tricarboxylic acid cycle

β-OHB - β-hydroxybutyrate

CCK - cholecystokinin

BMI - body mass index

FA - fatty acids

FFA - free fatty acids

TNF - tumor necrosis factor

GR - glucocorticoid receptor

DA - dopamine

5-HT - serotonin

HPA - the hypothalamic–pituitary–adrenal

NE - norepinephrine

SHBG - sex hormone-binding globulin

lysoPC - lys phosphatidylcholine

PC - phosphatidylcholine

SM - sphingomyelin

HMGCS2 - 3-hydroxy-3-methylglutaryl-CoA synthase 2

POMC - pro-opiomelanocortin

mGluR5 - metabolic glutamate receptor 5

SF1 - steroidogenic factor 1
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