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Obesity has been implicated as the driving force of many diseases including cancer 
through multiple biological mechanisms, including gut microbial imbalances, 
compromised intestinal barrier integrity, persistent low-grade inflammation, and 
alterations in energy uptake. As lifestyle factors such as diet, physical activity, and 
sleep are known to influence disease susceptibility, understanding the role of the 
gut microbiome in these interactions is critical. A deeper understanding of the 
intricate connections between gut microbiota, obesity, and various cancers could 
be used to better inform effective strategies for disease prevention and treatment. 
Investigating the microbiome’s influence on tumor progression and systemic 
metabolic health may be the way forward for novel diagnostic and therapeutic 
approaches. It is essential to investigate how lifestyle factors are linked to both 
obesity and cancer, and what role the microbiome is playing. This review synthesizes 
current research on the mechanistic role of the gut microbiome in obesity and 
cancer, highlighting its potential role in early detection, prognosis, and its use as 
a targeted intervention to restore gut eubiosis.
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1 Introduction

Obesity, as defined as those with a BMI > 30 represents a complex chronic disease that is 
one of the most important public health challenges of the 21st century. The WHO (World 
Health Organization) reported that obesity rates have seen a vast growth, almost tripling since 
1975, with over 650 million adults classified as obese in 2022 (1). Characterized by excessive 
adipose tissue accumulation, the health significance of obesity proceeds beyond the immediate 
and obvious impact on body weight, physical immobility and skeletal issues that comes with 
carrying an excess of weight. It serves as a risk factor for several complex health conditions, 
one of which is cancer. Obesity is known to induce chronic, low-level inflammation in the 
body which creates a pro-tumour environment. Obesity is linked to numerous types of cancers 
including breast, colorectal, esophageal, kidney, gallbladder, uterine, pancreatic, and liver (2).

In 2022 there were approximately 20 million new cases of cancer diagnosed globally and 
9.7 million deaths from cancer (3) Female breast cancer is now the most diagnosed cancer, 
closely followed by lung, colorectal (CRC) and prostate cancer (4). Cancer represents a 
complex disease characterized by the uncontrolled growth of abnormal cells that have the 
ability to change their surrounding environment to make it more favorable, destroy 
surrounding tissues and spread to distant parts of the body through metastasis. At the most 
basic level, cancer is caused by changes to the genes that disrupt normal cellular mechanisms 
of growth, division, and apoptosis. This change is often brought about by environmental 
determinants and lifestyle factors including obesity.
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The human gut microbiome is a complex ecosystem composed of 
trillions of microorganisms, including bacteria, viruses, fungi, and 
protozoa, that reside in the gastrointestinal tract. This microbial 
community contains over 100 trillion cells and plays a far bigger role 
than previously thought. The gut microbiome is now known to 
influence host metabolism, immune function, neurological processes, 
and overall health (5). Scientific advances have revealed that the gut 
microbiome plays an active part in a number of physiological 
processes, with the composition and diversity linked to a wide range 
of health conditions, from metabolic disorders and inflammatory 
diseases to cancer and neurological pathologies (6, 7). This review 
examines the nexus between lifestyle factors – obesity – cancer and 
proposes a mechanism involving gut microbes to explain how lifestyle 
can relate to obesity and cancer. Mechanistic relationships between the 
gut microbiome and both obesity and cancer, with particular emphasis 
on how lifestyle factors, specifically diet, physical activity, and sleep 
patterns influence microbial communities. While previous reviews 
have explored these topics separately, our analysis uniquely integrates 
these interconnected elements to address a critical gap in the literature: 
the comprehensive understanding of how lifestyle modifications alter 
the gut microbiome to potentially mitigate disease progression.

2 Methods

Before the initial search, key terms and concepts were decided to 
ensure a concise and accurate search of the available literature. 
Keywords were chosen based on our search questions: 1/ causes of 
obesity; 2/ link between diet and microbiome; 3/ link between gut 
microbes, metabolites and cancer/obesity/epigenetics; 4/ association 
between obesity and physical activity; 5/ gut metabolites and sleep/
hunger/psychiatric disorders; 6/ link between physical activity/sleep/
psychiatric disorders and diet.; 7/ probiotics and fecal transplant and 
microbiome. Using the pre-decided key terms and Boolean operators 
PubMed was searched to identify relevant studies. Specific filters were 
applied to narrow the results (e.g., publication date, language). A 
manual search of the reference lists from key articles was performed 
to identify additional studies not captured in the initial database search.

3 Obesity and cancer

Obesity is one of the most significant modifiable risk factors for 
cancer development, second only to tobacco use in preventable cancer 
causes. Excess adipose tissue increases the risk for at least 13 different 
types of cancers, including endometrial, esophageal adenocarcinoma, 
colorectal, postmenopausal breast, prostate, and renal cell cancers (2, 
8). The biological mechanisms underlying this relationship are 
multifaceted. As global obesity rates continue to rise, understanding 
these connections has become increasingly urgent.

The microbiome was reported to play an important role in some 
cancers including CRC. CRC is the most common cancer for both 
sexes in the US and the third most prevalent cancer worldwide: 
previously a cancer of high economic countries, an increase in cases 
from low-income countries is thought to be due to the rapid change 
in diet from traditional foods to one that more closely resembles the 
Western Diet (WD) (9, 10). The sharp rise in CRC, particularly early-
onset CRC, is linked to obesity and a diet high in saturated fats and 

low in fibre (11, 12). Multiple studies have highlighted the change in 
bacterial species in cases of CRC as compared to healthy individuals, 
with the most noted differences being a loss of diversity, and the 
presence in the colon of bacteria normally associated with the oral 
cavity in healthy individuals, notably genotoxin-producing 
Fusobacterium nucleatum (13). Indeed, it has even been suggested (14) 
that the gut microbiota could be used as a tool to identify colonic 
lesions, as CRC patients contained higher levels of bacterial taxa 
traditionally thought of as oral pathogens, notably Fusobacterium, 
Porphyromonas, Peptostreptococus, Gemella, Parvimonas, and 
Prevotella. This increase in pathogenic bacterial species and decrease 
in butyrate-producing bacteria leads to a change in the local immune 
response and a shift in mucosal state to one that supports tumor 
progression (12). The relationship between dysbiosis of the gut 
microbiome and cancer is best studied for CRC (15, 16), but there is 
some evidence for the role of the microbiome in other cancers. Breast 
cancer is the most common cancer of women worldwide. It has been 
shown that women with breast cancer have a different gut microbiota 
than women without breast cancer (17).

Fusobacterium nucleatum has also been implicated in promoting 
tumor progression in pancreatic ductal adenocarcinoma, the most 
prevalent form of pancreatic cancer through triggering chronic 
inflammation and the increased release of cytokines (18, 19). 
Additionally, gut microbiota-derived bile acids have been shown to 
suppress immune surveillance, and antibiotic intervention in mouse 
models of liver cancer has demonstrated the potential to inhibit tumor 
growth. The lung microbiome, influenced by microbial communities 
from the oral, nasal, and gastrointestinal tracts, has also emerged as a 
contributing factor in lung cancer (20–22). Notably, individuals with 
lung cancer often exhibit reduced microbial diversity within lung 
tissue (23).

4 Factors affecting the gut 
microbiome

The composition of diet plays a role in obesity. Highly processed 
carbohydrates can cause rapid glucose absorption, triggering insulin 
spikes and promoting adipose storage; added sugars are associated 
with visceral adiposity; and a reduced fibre intake can lead to 
constipation and affect gut microbiome health (5). Excessive 
consumption of saturated and trans fats is linked to inflammation and 
metabolic dysregulation (24), while the quality of protein consumed 
in a diet can affect satiety, muscle protein synthesis, and body 
composition (25). One dietary factor now recognized as playing a 
major role is the high consumption of ultra-processed foods that are 
designed to be  hyperpalatable but have a poor nutrient profile 
(Figure 1). Lane, Gamage (26) found that energy from ultra-processed 
foods ranges from between 42 to 58% in countries such as Australia 
and the US. Other factors that play a role in diet and obesity are 
hormonal regulation, chrononutrition, physical activity levels, and 
sleep (27). The quality of the food consumed can impact the signalling 
of the hunger and satiety hormones leptin and ghrelin, as well as the 
stress hormone cortisol (28). Irregular eating patterns, fasting and 
late-night snacking have also been associated with an increased risk 
of obesity due to the effect of meal timing on cell cycle regulation (29).

While diet is a major contributing factor in obesity, it is crucial to 
recognize that other environmental factors, such as antibiotic 
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exposure, medications, and pollutants, also play significant roles. 
Accumulating evidence suggests that these factors may contribute to 
the development of obesity by influencing the gut microbiota (7). 
Early-life antibiotic exposure has been associated with an increased 
risk of obesity due to its effects on the intestinal microbial community 
(30). This may be due to dramatic changes in the intestinal microbiota 
in response to oral antibiotic treatments: a study of Finnish children 
(31) found those who had consumed antibiotics belonging to the 
macrolide group had a long-lasting shift in the microbial composition 
that included a depletion of Actinobacteria and increases in 
Bacteroidetes and Proteobacteria. Similarly, environmental pollutants 
and certain medications can disrupt the delicate balance of the gut 
microbiome, promoting dysbiosis and potentially impacting energy 
metabolism and weight regulation (32). The role of hormones in 
obesity has also gathered interest recently, due to the changing 
environment and the inclusion of Endocrine Disrupting Chemicals 
(EDC) in everyday products such as food packaging. These EDC are 
thought to alter lipid metabolism and alter the hormonal pathway for 
satiety leading to weight gain and alteration in the gut microbiome 
(33, 34).

Studies have shown that the gut microbiomes of lean and obese 
individuals differ significantly in their composition (6, 35–37). Obese 
individuals tend to have a higher abundance of Firmicutes and a lower 
abundance of Bacteroidetes, a microbial profile that has been 
associated with increased energy harvesting and storage (38). This 
shift in the gut microbiome composition is thought to be driven, in 
part, by the WD, which is typically high in fat and low in fibre. While 
earlier research suggested a consistent pattern of higher Firmicutes 
and lower Bacteroidetes in obese individuals, more recent studies 
reveal a more complex picture (39). The ratio of Firmicutes to 

Bacteroidetes may not be as consistent as initially thought, and specific 
changes at the species level seem more relevant. Alterations to the 
ratio of Firmicutes to Bacteroidetes is affected by diet and weight loss 
can impact the diversity found in an individual’s gut. Obese individuals 
often exhibit reduced microbial diversity and an altered abundance of 
specific bacterial groups (40). For instance, some studies have reported 
a depletion of Blautia species in obese children, which correlates with 
intestinal inflammation and worsened metabolic phenotype (41). 
Akkermansia muciniphila, a bacterium known for its mucin-degrading 
properties, has gained attention for its potential role in modulating 
metabolism and improving gut health (42). In addition, although most 
studies focus on bacteria, some studies also suggest obesity changes 
the human gut mycobiome (43). It’s important to consider that the 
relationship between specific microbial changes and obesity can 
be influenced by various factors, including diet, genetics, and even 
geographical location (44).

5 The microbiome -metabolome- 
obesity-cancer link

The gut microbiome’s influence goes beyond that of energy 
homeostasis, shaping the host’s metabolic landscape through 
interactions with various physiological pathways, influencing cancer 
risk. Obesity-related shifts in the gut microbiome led to altered 
production of key metabolites, including short-chain fatty acids 
(SCFAs), which play a crucial role in modulating inflammation, 
immune responses, and metabolic regulation. These microbial 
changes influence cytokine production, promoting a pro-inflammatory 
environment that can contribute to tumorigenesis (Table  1). 

FIGURE 1

The effect of an unhealthy diet and obesity on gut microbiome and cancer initiation. Created in BioRender.
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Additionally, disruptions in gut-derived hormones and 
neurotransmitters affect metabolic signaling, further exacerbating 
obesity and increasing cancer susceptibility. Epigenetic modifications 
induced by microbial metabolites further regulate gene expression, 
reinforcing the complex interplay between the gut microbiome, 
obesity, and cancer.

5.1 Short chain fatty acids

A number of metabolomic changes observed in obesity have been 
directly linked to the gut microbiome composition. Microbial 
fermentation of dietary fibre found in foods such as vegetables 
produce short-chain fatty acids (SCFAs) such as acetate, propionate, 
and butyrate (55). In particular, Bacteroidetes in the Firmicutes are 
responsible for producing butyrate and propionate. Firmicutes have 
both a harmful effect, through pro-inflammatory response and a 
beneficial response depending on the bacteria species. Butyrate in 
particular may play a number of roles in reducing inflammation or 
reducing cancer risk. It serves as the main energy source for the cells 
of the colon (56) and plays a crucial role in maintaining intestinal 
barrier integrity by facilitating tight junction assembly (57) as well as 
being an anti-inflammatory agent, inhibiting pro-inflammatory 
cytokines, and supporting regulatory T-cell function (58). Butyrate 
produced by gut bacteria also regulates gut mucus barrier repair, 
potentially by polarizing macrophages into a M2 state (59). SCFAs also 
act to down-regulate fatty acids synthesis and lipolysis, leading to a 
decrease in body weight and reduced likelihood of obesity (56, 60). 
Butyrate has been observed in  vitro to inhibit proliferation and 
promote apoptosis in some cancer cell lines (61).

5.2 Cytokines

A dysbiosis in the gut microbiome as the result of obesity leads to 
a change in metabolites such as SCFA that cause a pro-inflammatory 
state characterized by increased levels of pro-inflammatory cytokines 
such as IL-1, IL-6, and TNF-α, the so-called “inflammatory triad” 

(62). This systemic inflammatory state may be initiated or enhanced 
through multiple adipose tissue-dependent mechanisms. Adipose 
tissue, particularly in the context of obesity, undergoes pathological 
expansion characterized by adipocyte hypertrophy, hypoxia, and stress 
responses that trigger the production of pro-inflammatory cytokines 
including TNF-α, IL-6, and IL-1β. These mechanisms are described 
further in the following sections (62, 63).

There are two forms of adipose tissue in the human body, white 
adipose tissue (WAT) and brown adipose tissue (BAT) (64). It is now 
known that WAT is an active endocrine organ, responsible for the 
production and secretion of various adipokines, with leptin and 
adiponectin being among the most physiologically significant. Leptin 
regulates appetite and energy balance by influencing the 
hypothalamus, while adiponectin is responsible for enhancing 
insulin sensitivity and is known to have anti-inflammatory 
properties, with lower levels associated with obesity, diabetes, and 
increased cancer risk (65–67). In contrast, resistin, primarily 
produced by circulating monocytes in human adipose tissue, plays a 
significant role in metabolic dysfunction by impairing insulin 
signaling and promoting systemic inflammation. By interfering with 
insulin action, resistin contributes to the development of insulin 
resistance, a key factor in metabolic disorders such as type 2 diabetes, 
and cancers such as breast, colorectal, pancreatic and endometrial 
(68–70). Additionally, it enhances the release of pro-inflammatory 
cytokines from mononuclear cells, further exacerbating chronic 
low-grade inflammation. This inflammatory response not only 
disrupts glucose homeostasis but also contributes to the progression 
of obesity-related complications, cardiovascular diseases, certain 
cancers and other metabolic syndromes. Visfatin is also involved in 
glucose metabolism and immune response, functioning both as a 
cytokine and an adipokine (67). Visfatin exhibits insulin-like 
properties by binding to insulin receptors at a site distinct from 
insulin itself, thereby promoting glucose uptake in peripheral tissues. 
Furthermore, visfatin plays a crucial role in inflammation, with 
elevated levels observed in various inflammatory conditions and 
obesity (65). Its expression increases in response to proinflammatory 
cytokines, and it subsequently stimulates the production of 
inflammatory mediators such as IL-6, TNF-α, and IL-1β, creating a 

TABLE 1 Species and phylum of bacteria and its relation to obesity and cancer.

Gut bacteria species Phylum Effect in relation to obesity Effect in relation to cancer

Bacteroides fragilis Bacteroidetes Increase in IL-10 production in women increasing 

several pro-inflammatory cytokines (38)

Increase in IL-17 levels which has Pro angiogenesis 

effects (45)

Akkermansia muciniphilia Verrucomicrobia Regulates metabolism and energy hemostasis and 

improves insulin sensitivity (46)

Degrades mucin as a main source of carbon and 

contributes to increasing intestinal barrier integrity (47)

Escherichia Coli Proteobacteria Increases energy harvest and impairs glucose 

homeostasis (48)

Promotes intestinal inflammation (45)

Bifidobacterium adolescentis Actinobacteria Decreases visceral fat accumulation and increases 

insulin sensitivity (49)

Alleviates the symptoms of cancer and maintains gut 

wall integrity (50)

Faecalibacterium prausnitzil Firmicutes Modulates systemic inflammation and enhances gut 

barrier integrity (51)

Therapeutic effect in induced colon inflammation (52)

Staphylococcus aureus Firmicutes Creates low grade inflammation (38) Tumour promoting, causes DNA damage and disrupts 

signaling pathways (53)

Fusobacterium nucleatum Fusobacteria Pro inflammatory properties (54) Promotion of tumour microenvironment through 

inhibition of NK or T cells (45)
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potential feedback loop that may exacerbate chronic low-grade 
inflammation (65, 71, 72).

Whilst both lean and obese individuals have WAT present, the 
quantity and composition differ with obese individuals having a 
dysregulated configuration leading to an increased pro-inflammatory 
state and a reduction in adiponectin (64). Adiponectin, a 247-amino 
acid peptide has been shown in multiple studies to enhance insulin 
sensitivity in muscle and adipocytes, it improves endothelial health 
through local nitric oxide production and promotes weight loss through 
increased oxidation of lipids. Adiponectin’s ability to suppress tumor 
growth and angiogenesis while triggering apoptosis indicates that lower 
circulating levels of adiponectin as found in obese individuals could be a 
mechanism linking excess weight to tumor development (65).

Within the WAT, fat-storing adipocytes are responsible for a host 
of responses within the body such as metabolism of lipids and glucose, 
inflammation, blood pressure and angiogenesis (67). An increase in 
body fat that causes an increase in the volume of the adipocyte is 
referred to as hypertrophy (73); hypertrophy can lead to adipocyte 
hypoxia when blood vessels do not grow quickly enough to match the 
expansion of the adipocytes. This leads to a low-oxygen environment 
causing the cells to produce cytokines and chemokines that attract 
circulating monocytes (Figure 2).

Upon infiltration of the hypoxic adipose tissue, M1 macrophages 
become major initiators of a pro-inflammatory cascade of cytokines, 

particularly TNF-α, which is that is responsible for disrupting insulin 
signaling, reducing adiponectin, and increasing free fatty acids. It also 
stimulates other inflammatory molecules (74) which work in parallel 
with TNF-α to promote inflammation by affecting insulin sensitivity, 
fat metabolism, and appetite regulation, and deregulating expression 
of genes involved in tumor growth via JAK/STAT pathways (64).

While TNF-α is produced as a result of tissue stress in WAT, it has 
also been reported that one third of total circulating IL-6 originates 
from adipose tissue (73). Maqoud, Calabrese (75) also found that in 
individuals placed into three groups (group 1 – overweight; group 2 – 
obese; group 3 – morbidly obese) there was a significant increase in 
IL-6 levels between group 1 and group 3 (but no change in levels 
between the groups for TNF-α).

Together, increasing levels of these cytokines create a harmful 
feedback loop, with TNF-α and IL-6 recruiting more M1 macrophages, 
whilst also causing adipocyte dysregulation. The malfunctioning 
adipocytes produce more inflammatory signals that attract even more 
M1 macrophages, and the cycle continues.

A study by Xue et al. (76) investigated the association between gut 
microbiota and inflammatory cytokines, finding seven significant 
associations between bacteria phyla such as Euryarchaeota with IL-2 
and IL-8. This is of particular interest in the case of gastric cancer in 
which Helicobacter pylori is known to induce the production of IL-8, 
driving inflammation with the potential to lead to cancer (77).

FIGURE 2

Change in monocytes to M1 and M2 macrophages. Created in BioRender.
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5.3 Hormones

Gut dysbiosis can directly affect hormone production and 
signaling, including that of hormones involved in appetite regulation, 
satiety, and stress response. Altered gut hormone levels can lead to 
increased food intake, cravings for unhealthy foods, and decreased 
energy expenditure, contributing to weight gain and obesity.

The relationship between dysbiosis of the gut microbiome and 
cancer is best studied for CRC (15, 16), but there is some evidence for 
the role of the microbiome in other cancers. Breast cancer is the most 
common cancer of women worldwide. It has been shown that women 
with breast cancer have a different gut microbiota than women 
without breast cancer (17).

As highlighted in the previous section, adipose tissue is an 
active endocrine organ that influences hormone metabolism. 
Excess adipose tissue is a core attribute of obesity and can 
significantly affect the levels and balance of various sex hormones, 
including estrogen, androgens, and progesterone, all of which play 
critical roles in the development and progression of hormone-
sensitive cancers such as breast, endometrial, and prostate cancer. 
Additionally, adipose tissue is a significant source of aromatase, 
an enzyme that catalyzes the conversion of androgens into 
estrogens, further contributing to the elevated estrogen levels 
associated with obesity (78). This positive relationship between fat 
mass, aromatase expression, and higher estrogen levels is 
particularly prominent in the post-menopausal state (79). The 
complex interplay between obesity, metabolic dysregulation, and 
altered sex hormone levels creates an inflammatory state that can 
promote a tumorigenic environment, thereby increasing the risk 
of hormone-sensitive cancers (80–83). If gut microbiome 
alterations play a role in breast cancer, the mechanism is still not 
fully understood, and Baker, Al-Nakkash (84) note that estrogen 
receptor-positive (ER+) breast cancer has been linked to a 
hyperactive estrobolome – a collection of genes in commensal 
bacteria responsible for estrogen metabolism that causes increased 
intestinal absorption of free estrogen leading to an elevated risk of 
developing breast cancer. The gut microbiota is also responsible 
for modulating the estrogen-metabolizing enzyme beta-
glucuronidase which influences estrogen metabolism (85).

The discussion around obesity and breast cancer in women 
considers two distinct groups: postmenopausal and premenopausal. 
This is due to the differences in circulating hormone profiles in the 
different stages of a woman’s life (86). In postmenopausal women, an 
increased BMI is linked to an increased incidence of breast cancer; 
however, in premenopausal women, obesity has been shown to have 
the opposite effect and play a protective role (82, 87, 88). Adipose 
tissue produces excess estrogen, which is implicated in hormone-
sensitive cancers such as breast and endometrial cancer. Adipose 
tissue becomes the main source of estrogen production in 
postmenopausal women with obesity. This is due to androgens that 
are released from the adrenal glands being converted into estrogens 
by adipocytes, in a process called aromatization. As a result, the 
greater the levels of adipose tissue, the more androgens are converted, 
and the greater the circulating levels of estrogen. Adipose tissue also 
secretes cytokines, growth factors, and inflammatory molecules that 
further impact aromatization, leading to increased estrogen levels. 
Elevated estrogen levels interact with hormone-sensitive breast tissue, 
increasing the risk of estrogen receptor-positive (ER+) breast cancer 

(65) via an increased cell proliferation and reduction in apoptosis 
(89). In contrast, estrogen production in premenopausal women 
occurs mostly in the ovaries: this results in obesity having a lesser 
impact on estrogen production as estrogen levels in premenopausal 
women tend to be lower because of significant absorption of estradiol 
into fat tissue and an increased rate of estrogen metabolism and 
clearance by the liver (86). Loh et  al. (90) found that obesity in 
premenopausal women had a protective effect for ER + breast cancer. 
Choi, Choi (87) also found that obesity and/or higher waist 
circumference was linked to an increased incidence of gastric cancer 
in postmenopausal women, although no association was found 
between obesity and or waist circumference and gastric cancer in 
premenopausal women. Changes to the microbiome diversity 
involved in estrogen and hormone metabolism can also lead to an 
increased level of circulating estrogen, increasing the risk of breast 
cancer. Additionally, a decreased abundance of Methylobacterium in 
breast cancer patients has been associated with more invasive 
tumors (91).

In the case of endometrial cancer, there are interactions between 
hormonal fluctuations, disturbances in gut microbial balance, and 
chronic inflammation. Post-menopausal women exhibit a heightened 
cancer risk, potentially linked to shifts in gut microbial composition 
and intestinal environment that accompany hormonal changes (92). 
The menstrual cycle also plays a role in the cyclical timing of the 
proliferation on the endometrium. Estrogen increases cell 
proliferation as a normal stage in the cycle and is counter-balanced by 
progesterone (81). Obese women have a lower circulating level of 
progesterone which leads to continued cell proliferation. Once 
menopause has occurred, ovarian estrogen production starts to 
decline rapidly and is replaced as previously described by production 
in adipose tissue (83). Sex Hormone-Binding Globulin (SHBG) levels 
are lowered in those with obesity, meaning more estrogen and 
testosterone are circulating. Lowering of SHBG occurs due to 
hyperinsulinemia increasing insulin growth factor-1 (IGF-1) levels, 
creating a potentially cancer inducing environment (78, 93). There are 
alterations in the diversity and structure of the microbial community 
in endometrial cancer compared to healthy controls. Patients with 
endometrial cancer had a reduction in alpha diversity, with a shift 
from anti-inflammatory Firmicutes and Clostridia to a 
pro-inflammatory Proteobacteria-dominated microbiome (94). This 
dysbiosis appears connected to estrogen metabolism disruption, 
suggesting the gut microbiome as a critical mediator of endometrial 
cancer risk (95).

Geographical variations in endometrial cancer show that Europe 
and North America have the highest rates which may be  due to 
lifestyle factors that impact gut microbial health. Unhealthy dietary 
patterns, sedentary behaviors, and extensive antibiotic use contribute 
to microbial imbalances (95). The microbiome’s role extends beyond 
passive observation, actively participating in hormonal regulation, 
inflammation modulation, and potentially cancer progression.

Prostate cancer is linked to an imbalance between estrogen 
and androgens. As men age their testosterone levels decline but 
estrogen levels normally increase (96): this increase is brought 
about by an increase in the activity of aromatase, which converts 
testosterone to estrogen. The subsequent shift in hormone levels 
can lead to inflammation, cell proliferation and a decrease in 
apoptosis causing a tumor-creating environment. However, 
research findings are contradictory regarding the association of 
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obesity and prostate cancer. Several studies have found that BMI 
did not have a significant effect on prostate cancer total risk (90, 
97–99). Although it has been noted by Agalliu et al. (97) that cases 
with aggressive prostate cancer had a lower BMI, they postulated 
it to be a result of weight loss due to the effects of the cancer. In 
contrast, a randomized trial by Chau, Till (98) found that 
increased BMI was associated with high-grade prostate cancer. 
Vidal, Oyekunle (100) also found obesity to be linked to high-
grade prostate cancer, and those with obesity to be at a younger 
age for surgical treatment of prostate cancer. An explanation for 
the differences observed in the studies is the availability of 
prostate cancer screening: Agalliu et al. (97) involved participants 
who had received a positive histological diagnosis of prostate 
cancer up to 6 months before the date of enrollment, whereas 
participants in Hurwitz, Dogbe (99) were required to undergo 
screening for prostate cancer every six years, influencing detection 
rates, with earlier detection having a better prognosis. A pilot 
study by Golombos, Ayangbesan (101) investigated the gut 
microbiome of 20 men with high-risk prostate cancer, the study 
revealed a higher abundance of Bacteroides massiliensis in prostate 
cancer patients compared to the controls and a higher level of 
Faecalibacterium prausnitzii and Eubacterium rectalie in the 
control group.

5.4 Neurotransmitters

The gut microbiome acts as a neurochemical factory, directly 
producing or modulating the production of key neurotransmitters 
responsible for appetite and mood (102). These include serotonin, 
gamma-aminobutyric acid (GABA), dopamine and norepinephrine. 
Almost all of the body’s serotonin is produced within the gut (103), 
and it acts on the hypothalamus to regulate hunger and satiety, with 
deficiencies in serotonin being linked to cravings for high calorie 
foods and overeating (104). Specific spore-forming bacteria found in 
both mouse and human gut microbiota stimulate serotonin 
production from enterochromaffin cells (ECs) in the colon, 
influencing the gut mucosa and the platelets in the circulating blood 
effect gastrointestinal motility as well as platelet function (105). This, 
plus the further influence of serotonin on sleep (see Section 5.3), 
highlights the fact that the effects of the gut microbiome are not only 
local but systemic.

An imbalance in GABA, which is an inhibitory neurotransmitter, 
has been linked to a number of neurological disorders that include 
stress, anxiety, and Parkinsons disease. A number of gastrointestinal 
bacteria such as Bifidobacterium, Lactobacillus, and Bacteroides have 
the genetic code for glutamic acid decarboxylase (GAD), the enzyme 
responsible for synthesizing (GABA). In fact, Bacteroides are thought 
to be the driving force in the influence of gut microbiota on mental 
health by regulating GABA production (106). GABA helps regulate 
dopamine and serotonin, and disruptions in its production may lead 
to increased cravings for high-calorie foods, further promoting weight 
gain (107). Ma, Yan (108) tested white-to-beige adipocyte conversion 
using GABA supplementation as a potential treatment for obesity. 
They found GABA supplementation successful in not only reducing 
body weight but also adipose inflammation. Analysis of gut microbiota 
composition revealed that GABA supplementation increased 
beneficial bacteria such as Bacteroidetes and Akkermansia, while 
decreasing the levels of Firmicutes levels that are linked to obesity and 

inflammation. This highlights a potential gut-brain axis mechanism 
in obesity management.

In individuals with obesity, dopamine signaling is often 
dysregulated, leading to reduced dopamine receptor availability 
(especially D2 receptors) in the brain. This can result in overeating to 
compensate for reduced reward sensitivity, similar to addiction 
mechanisms. Additionally, dopamine influences energy expenditure 
and physical activity, with lower dopamine levels being linked to 
reduced motivation for exercise (109). Norepinephrine’s role in 
obesity is through the regulation of metabolism, appetite, and energy 
expenditure. It influences the sympathetic nervous system, which 
controls thermogenesis and lipolysis (110). High norepinephrine 
activity stimulates BAT to burn calories, promoting weight loss. 
Norepinephrine also affects appetite regulation by acting on the 
hypothalamus, contributing to increased hunger and food intake 
(111). Chronic stress has been known to elevate norepinephrine 
levels, perhaps leading to stress-induced overeating and weight 
gain (112).

The dysbiosis brought about by obesity disrupts not only the 
production of these neurotransmitters but also their regulation due to 
the reduction of the diversity in the gut microbiome. Obesity-
associated neurotransmitter dysfunction has the potential to lead to 
metabolic disturbances that create a cancer inducing environment, 
that may act in concert with the effect of altered hormone levels (see 
Section 4.3). A neurotransmitter imbalance can directly influence 
cancer cell behavior as seen in the imbalance of serotonin which 
stimulates cell proliferation in colorectal and breast cancers (113). An 
imbalance in norepinephrine leads to activation of β-adrenergic 
signaling promoting tumor growth as well as inducing anti-apoptotic 
activity (114).

Emerging data suggest that cancer cells take advantage of the 
neurotransmitters-initiated signaling pathway to activate uncontrolled 
proliferation and dissemination. The gut microbiome influences 
neurotransmitter levels, including serotonin, dopamine, gamma-
aminobutyric acid (GABA), and norepinephrine, which not only 
regulate mood and cognition but also affect immune function, 
inflammation, and tumor growth (115). Norepinephrine and 
dopamine have been linked to stress-related tumor growth, with 
chronic stress activating beta-adrenergic receptors, leading to 
increased inflammation, immune suppression, and enhanced tumor 
cell survival (116). Gut dysbiosis may alter the balance of these 
neurotransmitters, creating a tumor-promoting microenvironment, 
particularly in cancers such as colorectal, breast, and prostate 
cancer (117).

5.5 Epigenetics, the tumor 
microenvironment and the microbiome

Metabolomic alterations can impact gene expression and 
contribute to both obesity and cancer through several mechanisms 
which involve either changing the availability of molecules used for 
DNA modifications or directly blocking the function of enzymes that 
regulate these genetic control mechanisms (118). Gut microbial 
metabolites influence epigenetic modifications such as DNA 
methylation, by silencing tumor suppressor genes, activating 
oncogenic pathways, and/or modifying gene expression related to 
metabolism. Bacterial-derived metabolites can also cause alterations 
to histone acetylation and methylation, creating changes in the 
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chromatin structure that impacts gene expression. Additionally, the 
modulation of non-coding RNA populations can influence gene 
regulation and cellular signaling pathways (119).

The altered metabolic environment in obesity can influence the 
tumor microenvironment, promoting cancer development and 
progression (120). This is seen in the elevated levels of free fatty acids 
that activate inflammatory pathways and increase cancer risk (121). 
Adipokines, originating from body fat and within the tumor capsule, 
can exert both proinflammatory and anti-inflammatory effects, 
impacting tumor growth (122). The tumor microenvironment has 
been compared to that of a wound healing site, with the production of 
proinflammatory molecules and growth factors. It is also affected by 
the gut microbiota through the previously highlighted epigenetic 
modifications (120).

5.6 Microbial influence of tumors

The relationship between microbiota and cancer goes beyond the 
intestinal environment, with studies showing associations between 
microbial dysbiosis and the onset and progression of multiple cancer 
types such as pancreatic, prostate, endometrial, and brain cancers 
(123–126).

There are two routes of microbial influence on tumors. The first is 
microbial presence at the tumor site, where specific bacteria interact 
with tumor and immune cells directly within the tumor 
microenvironment. For example, Fusobacterium nucleatum, 
commonly found in colorectal tumors and increasingly identified in 
pancreatic cancer tissue, has been shown to promote tumor growth 
and resistance to therapy through enhancement of inflammatory 
signaling (127, 128).

The second route involves the gut-derived microbial metabolites 
short-chain fatty acids, bile acids, and lipopolysaccharides. These 
metabolites circulate through the bloodstream and lymphatics, 
affecting the immune responses, influencing systemic inflammation, 
and endocrine pathways. In prostate and endometrial cancers, 
metabolites are thought to contribute to a pro-tumorigenic systemic 
environment by impacting hormone regulation and immune function 
(123, 129).

The microbial influence is highlighted in glioblastoma multiforme 
(GBM), where the gut-brain axis has emerged as a key area of interest. 
Gut microbiota-derived metabolites are believed to traverse the 
blood–brain barrier, potentially supporting the immunosuppressive 
microenvironment characteristic of GBM and modulating the 
phenotype of tumor-associated macrophages, which play a crucial role 
in tumor progression (130–132).

These interconnected findings across various cancer types point 
toward a shared underlying concept: both local and distant microbial 
communities can shape cancer development and progression through 
metabolic and immune-related mechanisms.

6 The gut-health nexus: how diet, 
sleep, and physical activity modulate 
dysbiosis, obesity, and cancer risk

Lifestyle factors significantly influence the composition and 
function of the gut microbiome, and the resulting dysbiosis can 

initiate a cycle that promotes obesity and, ultimately, increases cancer 
risk. This cycle is fueled by the interplay between dysbiosis, obesity, 
and lifestyle factors, further exacerbating dysbiosis. We will analyze 
how these factors interact.

6.1 Diet

There is a growing body of research examining the connection 
between diet, gut microbiota composition/diversity, and their impact 
on obesity and cancer development. There are three gut microbiome 
enterotypes according to high abundances of specific bacterial groups 
in healthy individuals: Bacteroides (Enterotype 1); Prevotella 
(Enterotype 2); and Ruminococcus (Enterotype 3). It is possible these 
broad profiles are associated with different dietary patterns: for 
instance, individuals with a diet high in protein and animal fat show 
a higher abundance of Bacteroides, compared to individuals who 
consume diets high in carbohydrates, who have a higher ratio of 
Prevotella (133).

Several diets have been investigated with regards to their 
association with nutrient intake and cancer. One of the most studied 
diets in relation to health and disease is the Mediterranean diet (MD), 
although it is now accepted that the MD is not so much a dietary 
pattern as a way of life (134). The MD is high in fruit, vegetables, olive 
oil (with anacidity rate lower than 0.8%), wholegrains, moderate 
consumption of fish, red wine and dairy, and low intake of red meats 
(135). The high consumption of fruit and vegetables means the diet is 
high in micronutrients and antioxidants with anti-inflammatory 
properties providing protection to the cell membranes from free 
radicals, reduction in the proliferation of cancer cells, the prevention 
of damage to DNA, and reducing pro-inflammatory signaling (136). 
With one third of cancer mortality being linked to diet and the 
associated inflammation caused by certain foods, the MD with its 
naturally anti-inflammatory properties shows promise in reducing the 
risk of certain cancers. A large study by (137), for instance, found a 
weak association between anti-inflammatory diet risk of cancer, 
although oddly, no evidence for protection from CRC. Ricceri, 
Giraudo (138) found that women who followed the MD had a 50% 
less risk of developing endometrial cancer than those who either did 
not follow the MD or had a low adherence to it. Shively, Register (139) 
found that monkeys who consumed an MD over a prolonged period 
of time (31 months) had a shift in the microbiome in their mammary 
glands tenfold in comparison to those consuming a Western-style diet.

In contrast to the MD, the WD is associated with increased risk of 
a number of non-communicable diseases (NCD) including cancer, 
and a sharp increase in obesity. The WD is characterized by a high 
intake of processed foods, meats, refined sugars, sweets and caloric 
drinks (140). A diet that is high in processed foods and refined sugars 
is associated with high levels of inflammation and an increased risk of 
CRC (11), and the low intake of dietary fibre and the increased intake 
of sugar and fats in the WD is hypothesized as being the leading cause 
of dysbiosis, notably an increased number of Bacterioides spp. (141). 
The WD has also been found to have an impact on the diversity of the 
gut microbiota, with a study on immigrants in the US showing a 
replacement of Prevotella, which is responsible for breaking down 
plant fibre, by dominant strains from the Bacteroides genus (142). This 
shift characterizes the first enterotype described by Güven Gülhan, 
Nikerel (143), which is marked by high Bacteroides levels and is 
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commonly observed in individuals following a long-term 
WD. Similarly, levels of Fusobacterium nucleatum, a bacterium linked 
with CRC, increased following a 2-week WD intervention that 
consisted of high-fat and low fibre (144). The dysbiosis brought about 
by the WD also causes the mucosal lining to become thinner and a 
low-grade persistent inflammation to occur (145).

The documented benefits of fruits and vegetables would suggest 
adopting a plant-based diet pattern such as a vegan/vegetarian diet 
would be the best option for a healthy gut microbiome in relation to 
health and disease. However, a meta-analysis (146) found there was 
no evidence to support a vegetarian diet in the prevention of cancer 
mortality compared to a non-vegetarian diet, despite the anti-
inflammatory and anti-oxidative effects provided by fruits and 
vegetables against the development and progression of cancer. In 
contradiction to this, one study (147) found that Chinese people who 
consume four to five servings of fruit, vegetables and legumes daily 
had a reduced risk of cancer mortality, although this could be different 
for hormone dependent cancers. This is supported by a finding that 
the consumption of legumes and lentils was linked to a 49% reduction 
in the risk of cancer mortality (148).

Based on studies such as those above, some attempts have been 
made to change the gut microbiota with targeted dietary interventions. 
Wastyk, Fragiadakis (149) assessed the influence of two such dietary 
interventions in healthy adults, one a plant-based fibre diet, and the 
second a diet based on fermented foods. The plant-based fibre diet 
showed no change in alpha diversity but an increase in microbial 
proteins per gram of stool, possibly showing a change in microbial 
density due to the increased fibre consumption. Surprisingly, there 
was no change in the levels of SCFA such as butyrate, which had been 
reported in other studies. The participants who consumed the 
fermented food diet showed an increase in alpha diversity as well as a 
decrease in inflammatory proteins. In another study (6), the 
“Microbiome Enhancer Diet” (MBD) aimed to ensure more 
nutritional components reached the colon in order to influence the 
gut microbiome. The diet was centered around four key components: 
increased consumption of dietary fibre; increased resistant starch; 
larger food particle sizes; and as little processed food ingredients as 
possible. The findings reveled that when compared to the WD, 
participants on the MBD excreted significantly more calories in their 
feces meaning they absorbed a smaller percentage of the consumed 
energy on the MBD compared to the statistically significant 
(p < 0.0001) higher absorption rate seen in the participants on the 
WD. Notably, this difference was seen to occur in energy absorption 
without any changes in the individual’s energy expenditure, feelings 
of hunger or the amount of food consumed. This study suggests there 
is a possibility the MBD creates a gut environment where more 
calories pass through the digestive system unabsorbed, providing 
metabolic benefits without the need to eat less or experience increased 
hunger. The reduction in the calories absorbed appears to be as a result 
of how the gut microbiome interacts with food rather than through 
behavioral modifications. No change was observed in alpha-diversity, 
but beta-diversity highlighted a significant difference.

Attempts to modify the gut microbiome through dietary changes 
face several significant challenges due to the nature of existing 
microbial communities. The gut microbiome is usually well established 
in adults and is resilient to temporary changes, actively resisting 
modification (150). Long-term dietary patterns/ lifestyles of an 
individual create metabolic pathways and selective pressures that favor 

the growth of certain bacterial populations. Established microbial 
colonies are known to occupy niches in the gut. Thus, new beneficial 
microbes introduced through diet face competitive disadvantage 
against well-established populations that have optimized their 
environment over time. Research indicates that creating a change in 
the gut microbiome with diet requires a sustained intervention lasting 
a minimum of 6 months (151).

6.2 Physical activity

Dysbiosis and obesity can indirectly affect physical activity levels 
when obesity-related inflammation, fatigue, or discomfort reduce the 
individual’s motivation or ability to engage in physical activity. A 
sedentary lifestyle can further disrupt the gut microbiome, creating a 
vicious cycle of dysbiosis, reduced physical activity, and weight gain.

Physical activity is widely recognized as a key factor in promoting 
overall health, reducing the risk of chronic diseases such as obesity 
and cancer, and influencing gut microbiome composition. Research 
has demonstrated the connection between physical activity and 
increased diversity of the gut microbiota: athletes and individuals who 
partake in regular vigorous exercise exhibit a more diverse gut 
microbial population. The difference in diversity is not only seen in 
the number of species but in the types of species, with shifts in 
bacterial composition (152). Several studies (35, 36, 153) show that 
exercise has been associated with an increase in microbial richness 
and the proliferation of beneficial bacteria such as Bifidobacterium, 
Akkermansia muciniphila, and Faecalibacterium prausnitzii, which are 
known to have anti-inflammatory effects.

Physical activity has also been shown to increase levels of SCFAs, 
particularly butyrate, which supports gut barrier integrity (see 
Section 3.1). Exercise helps prevent the translocation of LPS – a key 
driver of chronic inflammation and metabolic dysregulation – from 
the gut into the bloodstream (154). The anti-inflammatory effects of 
physical activity have been shown to alter the composition of the gut 
microbiota, reducing circulating LPS, and decreasing the levels of 
IL-6 and TNF-α. However, not all exercise has the same outcomes 
with effects depending on intensity, duration, and type of physical 
activity. Aerobic exercises such as running and cycling have been 
shown to enhance microbial diversity more than resistance training. 
Further, a review by Clauss, Gérard (155) has shown that too much 
exercise can actually cause harm, and excessively high-intensity 
exercise can lead to an increased gut permeability, a decrease in gut 
mucus thickness, and dysbiosis. Physical activity is associated with 
a reduced risk of several types of cancer, including CRC, breast, and 
prostate cancer (156). There are a number of pathways by which this 
may come about, including reduction of inflammation and 
regulation of insulin and glucose metabolism. The cycle of diet-
induced dysbiosis, hormonal and sleep disruption, and reduced 
physical activity creates a self-reinforcing loop that promotes obesity. 
Obesity, in turn, further exacerbates dysbiosis and the risk of 
certain cancers.

Physical activity and exercise have been shown to influences gut 
transit time and motility, which in turn affects microbial composition 
and function. Physical activity and exercise accelerates the transit time 
in the gastrointestinal tract, reducing the opportunity for pathogenic 
bacterial colonization and promoting the growth of beneficial bacteria 
that can adapt to this environment Studies have shown that 
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moderate-intensity exercise enhances colonic motility and reduces 
transit time (157, 158). This altered motility affects substrate 
availability for different microbial populations, favoring the growth of 
specific bacterial communities that can thrive under these conditions. 
The enhanced gut motility also aids in the mechanical removal of 
potential pathogens, reducing their residence time in the gut.

Physical activity and exercise influence the stress response 
through effects on the hypothalamic–pituitary–adrenal (HPA) axis 
and the sympathetic nervous system. These neuroendocrine pathways 
influence gut physiology and microbial composition. Regular 
moderate exercise reduces chronic stress and cortisol levels (159), 
which have been associated with increased intestinal permeability and 
dysbiosis. In contrast, excessive or high-intensity exercise may induce 
acute stress responses that temporarily affect gut barrier function and 
microbial composition (160). The integrity of the intestinal barrier is 
crucial for preventing translocation of bacteria and bacterial products 
from the gut lumen into systemic circulation, and physical activity has 
been shown to enhance intestinal barrier function through multiple 
mechanisms. Moderate exercise upregulates the expression of tight 
junction proteins that maintain epithelial barrier integrity (161). 
Exercise also promotes the production of heat shock proteins (HSPs) 
and intestinal alkaline phosphatase (IAP), which protect against 
stress-induced damage to the intestinal epithelium and detoxify 
bacterial endotoxins (162). Improved barrier function prevents 
bacterial translocation and the subsequent inflammatory response, 
creating a more favorable environment for beneficial microbes.

While the focus has been on how exercise affects the gut 
microbiome, it’s important to acknowledge the bidirectional nature of 
this relationship. Evidence suggests that the gut microbiome may 
influence exercise performance and adaptations to training. For 
instance, microbially derived metabolites, particularly SCFAs, enhance 
energy harvesting, muscle function, and endurance capacity (88).

6.3 Sleep

Emerging research is revealing a complex relationship between 
gut microbiome composition and sleep patterns. Far from being 
independent biological processes as previously thought, gut dysbiosis 
and sleep demonstrate a bidirectional interaction that significantly 
impacts human health and metabolic function.

The gut microbiome plays an important role in the production of 
neurotransmitters (see Section 4.4), particularly serotonin and 
melatonin, which are fundamental to sleep regulation. Approximately 
95% of the body’s serotonin and a significant portion of melatonin are 
produced in the gut, highlighting the microbiome’s direct neurochemical 
influence (103). Disruptions in microbial composition can alter these 
critical neurotransmitter pathways, potentially compromising sleep 
quality and circadian rhythms. An imbalance in the microbial population 
can trigger increased production of pro-inflammatory cytokines, which 
disrupt normal sleep architecture. These inflammatory markers activate 
neural pathways that interfere with sleep onset, maintenance, and overall 
quality (163). The circadian rhythm governs not only sleep–wake cycles 
but also microbial populations, with disrupted sleep leading to shifts in 
microbial diversity, potentially reducing beneficial bacterial populations 
and promoting inflammatory microorganisms (164). Poor sleep has 
been shown to alter the gut microbiome composition: a decrease in sleep 
duration and quality associated with gut dysbiosis creates a negative 

feedback loop with sleep deprivation causing an increase in appetite 
hormones, cravings for calorie-dense foods, reduced metabolic efficiency 
and decreased physical activity (165). These factors contribute to weight 
gain and obesity, further exacerbating gut microbiome imbalances. 
Disrupted sleep patterns have been linked to cancer risk, with growing 
evidence suggesting that the gut microbiome may also play a role in this 
relationship. Sleep deprivation and disruptions to the circadian rhythm, 
such as those seen in shift can lead to gut dysbiosis with a reduction in 
abundance of species such as Bifidobacterium leading to inflammation 
(166). Furthermore, a lack of quality sleep is linked to increased levels of 
pro-inflammatory which create a pro-tumorigenic environment and 
accelerates cancer progression (167).

7 Stress, anxiety, and the gut: 
bidirectional interactions

The connection between psychological states and gut function is 
a strong example of mind–body interaction. The gut-brain axis, a well-
established network linking the central and enteric nervous systems, 
acts as the key pathway through which mental states impact digestive 
processes and vice versa. Understanding these interactions offers 
insights for developing integrated approaches to managing both 
psychological and gastrointestinal disorders. The gut-brain axis 
encompasses multiple pathways that enable bidirectional 
communication between the central nervous system and the 
gastrointestinal tract. For example, the vagus nerve is the primary 
component of the parasympathetic nervous system innervating the 
gut (the “second brain”), and 80–90% of its component nerve fibres 
are afferent carriers of information from the gut to the brain. The 
hypothalamic–pituitary–adrenal axis, a neuroendocrine system that 
controls stress responses and influences gut function through the 
release of corticotropin-releasing factor (CRF), adrenocorticotropic 
hormone (ACTH), and cortisol, and through microbial signaling that 
can affect brain function, including neurotransmitters such as 
serotonin, gamma-aminobutyric acid (GABA), and SCFAs.

Acute stress speeds up the transit time in the colon whilst delaying 
gastric emptying, a pattern mediated primarily by CRF. In animal 
models, CRF administration mimics stress-induced alterations in gut 
motility, while CRF antagonists block these effects (168). In humans, 
these changes to motility are thought to be an evolutionarily adaptation, 
preparing the organism for “fight or flight” by diverting resources away 
from digestion. However, chronic activation of this system can lead to 
motility issues. Stress and anxiety contribute to “leaky gut,” through 
alterations to the tight junction proteins and disruption of the intestinal 
mucus layer (169). Transferring fecal microbiota from depressed 
patients to microbiota-depleted rats showed an increase in intestinal 
permeability and depressive-like behaviors (170). These stress and 
anxiety-induced changes in turn induce significant alterations in gut 
microbial composition, with a reduction in microbial diversity, a 
decrease in beneficial species, an increase in pathogenic species, and an 
alteration in metabolite production. These changes have been noted as 
taking place within a relatively short period of time after the stressor has 
occurred in mice (171). Diets that have a particularly high intake of 
refined sugar, significantly influence the gut microbiome and, 
consequently, anxiety levels. This has been demonstrated in Western-
style diets, with their high refined sugars and associated selective 
promotion of pathogenic bacteria (e.g., certain Clostridia). High-sugar 
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diets decrease the abundance of bacteria that produce butyrate and other 
SCFAs, which are crucial for maintaining intestinal barrier integrity and 
have anti-inflammatory properties. Lower SCFA levels are associated 
with increased gut permeability and systemic inflammation. a reduction 
in beneficial SCFA-producing bacteria, decreased microbial diversity, 
and increased intestinal permeability (172, 173). Magnusson, Hauck 
(174) demonstrated that high-sugar diets promoted the growth of 
Proteobacteria while reducing beneficial Bacteroidetes, leading to 
intestinal dysbiosis. This dysbiosis was correlated with increased anxiety-
like behaviors in rodent models (175). Stress and depression have been 
seen to reduce physical activity through pathways such low energy 
levels, reduced pleasure in activities, and poor sleep pattern (27, 176). 
Studies have consistently shown that individuals with depression engage 
in significantly less physical activity than non-depressed controls (177). 
One meta-analysis (178) found that people with depression are 50–60% 
more likely to be physically inactive compared to the general population.

The interplay between depression, physical activity, and gut health 
appears to create a self-perpetuating cycle in which depression reduces 
physical activity, leading to alterations in gut microbiome composition 
and function. This gut dysbiosis contributes to intestinal inflammation 
and increased permeability, allowing inflammatory mediators and 
bacterial translocation to influence brain function. The resulting 
neuroinflammation exacerbates depressive symptoms, further 
deepening the cycle by reducing physical activity even more. Cancer 
diagnosis has a huge psychological impact on an individual. Lee, Nam 
(179) found that psychiatric disorders were common in patients with 
cancer and patients with cancer and a newly diagnosed psychiatric 
disorder had a higher mortality rate. This supports (180) who highlighted 
that between 30 and 60% of cancer patients had a psychiatric disorder 
such as extreme stress, depression, anxiety and insomnia. As of yet there 
are no studies showing how the mechanistic role of the gut microbiome 
influences stress, depression and anxiety in relation to cancer.

8 The promising potential of microbial 
reprogramming

The reprogramming of the gut microbiome through therapeutic 
interventions has recently been shown as a promising tool to address 
a number of diseases. This includes the use of probiotics to restore 
microbial balance and fecal microbiota transplant (FMT) which has 
been used to completely replace a recipient’s gut microbiome.

8.1 Microbial reprogramming via probiotics

Probiotics  – live microorganisms that, when administered in 
adequate amounts, confer a health benefit on the host – are another 
avenue for potentially reprogramming the gut microbiome (181). The 
idea is that introducing beneficial bacteria can help to restore balance 
to the gut, although the effects can be variable and depend on the 
specific strains used, the individual’s existing microbiome, and other 
factors such as diet. Probiotics can be  used to modulate the gut 
microbiota by releasing SCFA such as butyric or acetic acid, which can 
help restore balance to a microbiome in dysbiosis and help to improve 
intestinal permeability and gut barrier function (182). Probiotics such 
as Lactobacillus and Bifidobacterium can control obesity through 
regulating the functions of the hosts own gut microbiome (183). It has 

been shown in animal models that probiotics have the potential to 
produce anticancer effects through the regulation of the gut 
microbiota and thus achieve immune modulation to reduce chronic 
inflammation by modulating both Toll-like receptors (TLRs) and 
G-protein coupled receptors (GPRs), lowering intestinal pH, and 
inhibiting enzymes that produce carcinogens (184, 185). However, it 
is worth noting that the effects and results from the use of probiotics 
are strain-specific and so may vary from individual to individual (186).

8.2 Microbial reprogramming via fecal 
microbiota transplant

FMT is being explored as a strategy to reprogram the gut 
microbiome in the context of obesity and related metabolic disorders. 
It represents one of the most direct interventions for microbiome 
reprogramming currently available (187). While traditional dietary 
and probiotic approaches offer incremental changes to the gut 
ecosystem, FMT provides a complete microbial community transfer, 
potentially offering more rapid and comprehensive microbiome 
reprogramming. Although the use of fecal matter is not new, with 
ancient Chinese medicine using ‘yellow soup’ as a treatment for 
diarrhea, it was not until the early 21st century that FMT has gained 
recognition as a viable tool for treating gut dysbiosis and its associated 
diseases. A start has been made to use FMT to treat a number of 
diseases such as inflammatory bowel disease (IBD). A systematic 
review by Paramsothy, Paramsothy (188) found 41 studies with overall 
clinical remission rates of 36% for ulcerative colitis, 50.5% for Crohn’s 
disease, and 21.5% for pouchitis following FMT. Research investigating 
the gut-brain axis has also prompted exploration of FMT for 
neuropsychiatric conditions. Preliminary studies in autism spectrum 
disorder (ASD) have shown promising results: Kang, Adams (189) 
reported improved gastrointestinal and behavioral symptoms in 
children with ASD following microbiota transfer therapy, with benefits 
persisting two years post-treatment. In relation to obesity, a meta-
analysis looking at 10 studies for a total of 334 participants showed 
that individuals who received FMT showed a negative association with 
calorie intake, fasting glucose levels, and total cholesterol (190). 
Zhang, Zuo (191) showed minor weight loss in obese patients who 
received FMT and an increase in Bacteroides in the mucosal 
microbiome in the colon, but FMT appeared to have less influence 
over changing the composition of the microbiota of the small intestine.

While FMT may be a direct and potentially powerful intervention, 
there are still subtilties in its use. For instance, two studies (192, 193) 
showed no difference in fat mass, lean mass, or metabolic parameters 
in individuals who had received FMT after 12 weeks. In addition, a 
study comparing young mice (3 months) vs. older mice (24 months) 
found that key species were transferred between the mice despite the 
differences in age, with the older mice developing an increased 
intestinal barrier when receiving FMT from the young mice (194). 
However, when the young mice received FMT from the older mice the 
inflammatory cytokine levels of IL- and TNF- became elevated to 
match that of the older mice donors. This study shows the influence 
of the FMT on the recipient and why the screening and history of the 
donor is vital before considering any transplant. Despite these caveats, 
FMT is firmly established for treating recurrent C. difficile infection 
(195), and its potential extends to numerous conditions with emerging 
evidence supporting applications in inflammatory, metabolic, and 
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neuropsychiatric disorders. In the context of cancer, FMT has been 
seen as a way to improve the efficacy of immunotherapy and a 
reduction in associated toxic events. Species such as Bifidobacterium 
fragilis were found to have anti-cancer properties (196). As the 
interplay between gut microbiota, health and disease becomes more 
understood, FMT will likely play an increasingly important role in 
microbiome reprogramming across a number of diseases.

9 Conclusion

Lifestyle plays a role in the development of both obesity and 
cancer, with factors such as diet, physical activity, and sleep known 
to influence disease risk and progression. This review proposes a 
mechanistic model that places the gut microbiome at the 
intersection of these lifestyle factors and disease processes. 
Dysbiosis of the gut microbiota has been strongly associated not 
only with obesity but also with the development and progression of 
cancers such as colorectal and breast cancers where mechanistic 
pathways are best characterized, and there is emerging but 
compelling evidence for pancreatic and other malignancies (15, 17, 
128). Microbial species have been implicated in promoting obesity 
through mechanisms such as enhanced energy harvest from the 
diet, increased fat storage, modulation of appetite regulation, 
disruption of circadian rhythms, and the promotion of low-grade 
chronic inflammation (5, 38, 51, 53).

The review demonstrates a cycle of lifestyle-induced dysbiosis that 
promotes obesity, which further disrupts the microbial balance. These 
pathways offer promising targets for intervention, as shown by 
initiatives like the BE  GONE trial, which targeted microbiome 
modulation in obese patients with history of colorectal neoplasia to 
mitigate cancer risk. At the end of the 16 weeks trial the study reported 
an increased alpha diversity in the participants who consumed the 
prebiotics foods (197).

Studies have highlighted how physical activity can be an influential 
microbiome modulator with implications for cancer prevention. 
Beyond its established benefits for energy balance and systemic 
inflammation, exercise creates distinct alterations in gut microbial 
ecosystems through physiological mechanisms (198, 199). Regular 
physical activity enhances microbiome diversity, a key indicator of gut 
health whilst simultaneously enriching beneficial bacterial species 
associated with improved metabolic health and immune function 
(200, 201). Exercise-induced changes in transit time, mucosal 
immunity, and bile acid metabolism collectively help to shape the 
intestinal environment, promoting microbial profiles linked to a 
reduced cancer risk (202, 203).

While many studies report associations between physical activity, 
diet, and microbial diversity, only a few interventional trials have 
demonstrated causative links of lifestyle factors to cancer outcomes. 
One such trial was conducted by Wastyk, Fragiadakis (149), who 
found that diet significantly influenced the gut microbiome, which in 
turn affects immune function. In a 17-week randomized study 

FIGURE 3

A model of the complex interplay between lifestyle factors, gut microbiome composition, and metabolic outcomes that influence obesity and cancer 
development. Diet directly modulates the gut microbiome, which in turn produces various metabolites including short-chain fatty acids (SCFAs), 
hormones, cytokines, and neurotransmitters (NT). These metabolites mediate numerous physiological effects, including epigenetic modifications that 
can influence both obesity and cancer pathways. Sleep quality and physical activity both influence and are influenced by the microbiome-metabolite 
axis. Created in BioRender.
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involving healthy adults, the researchers compared the effects of two 
dietary interventions, a high-fibre diet, and a diet focused on 
fermented foods. The fermented food diet led to a steady increase in 
microbiota diversity and a reduction in inflammation. These findings 
suggest that fermented foods may be  particularly effective in 
improving microbiome health and lowering inflammation. A recent 
meta-analysis showed consumption of fermented dairy products such 
as yogurt was significantly linked with a decreased risk of cancers 
such as bladder, CRC and esophageal. Kefir, a fermented milk, has 
also been shown to have potential in the prevention and treatment of 
cancer through its anti-bacterial and anti-inflammatory properties 
(149, 204, 205).

Significant gaps remain in understanding the precise mechanisms 
and how they interact with modifiable lifestyle factors. Future research 
would benefit from studies that can establish causality rather than 
correlation, examining how physical activity, dietary patterns, and 
sleep quality can modulate microbiome composition over time. 
Additional to this is the importance of addressing individual 
variability by exploring how genetics, sex, age, and the individual’s 
environment can influence the microbiome in relation to lifestyle 
interventions (Figure 3).
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