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This study explored the changes in the structure and α-glucosidase inhibitory 
activity of a non-starch polysaccharide derived from Anemarrhena asphodeloides 
Bunge, AABP-1B, during digestion in vitro and its effect on host intestinal microbiota. 
Simulations of digestion in the upper digestive tract showed that the reducing 
sugar content and molecular weight of AABP-1B changed slightly, though no 
monosaccharides were detected. AABP-1B was resistant to degradation in the 
simulated upper gastrointestinal environments, retained strong α-glucosidase 
inhibitory activity after digestion, which may be related to the lack of structural 
changes. In in vitro fermentation, AABP-1B enhanced the growth of commensal 
microorganisms, including Bacteroides, Megasphaera, and Prevotella, while inhibiting 
the proliferation of pathogenic bacteria, such as Escherichia-Shigella. Fermentation 
of AABP-1B by gut microbes resulted in a notable increase in short-chain fatty 
acid contents and a decrease in pH levels. Our findings showed that AABP-1B 
promotes intestinal health and may serve as a prebiotic in the development of 
functional food.
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1 Introduction

Human health and the gut microbiome are shaped by factors such as diet, gastrointestinal 
conditions, and genetics, which influence bacterial composition. Genome-wide association 
studies have linked genetic loci, including LCT (lactase persistence) and FUT2 (secretor 
status), to the abundance of specific microbial taxa (1, 2). Alterations in intestinal microbiota 
composition have been associated with the development of type 2 diabetes mellitus (3, 4). 
Diabetes, primarily type 2 (95% of cases), is a chronic disease linked to abnormal insulin 
function and poses a significant global health threat. Normal intestinal flora helps maintain 
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the integrity of the intestinal mucosa (5). However, in diabetic 
patients, the imbalance of intestinal flora may lead to impaired 
intestinal barrier function, allowing harmful substances such as 
endotoxins in the intestine to enter the blood circulation, triggering 
chronic inflammatory responses. This chronic inflammation will 
interfere with insulin signaling, reduce the effect of insulin, and 
further aggravate the condition of diabetes (6, 7). In addition, 
intestinal flora can produce metabolites such as short-chain fatty 
acids, which can participate in the regulation of host glucose 
metabolism. For example, butyric acid can promote the uptake and 
utilization of glucose by intestinal cells, while the excessive growth of 
certain harmful bacteria may reduce the production of short-chain 
fatty acids, affecting the normal progress of sugar metabolism. Dietary 
polysaccharides may be  used as natural bioactive prebiotics for 
enhancing intestinal health (8, 9). Regulating intestinal microbiota, 
and inhibiting glucose metabolism-related enzyme (such as 
α-glucosidase and α-amylase) activities, thereby improving blood 
glucose regulation and ameliorating diabetic symptoms (10, 11). Floris 
et al. (12) suggested that inhibiting α-glucosidase activity reduced the 
breakdown of dietary carbohydrates into monosaccharides, aiding in 
the management of postprandial blood glucose surges. The 
physicochemical properties of some non-starchy carbohydrates are 
influenced by bile salts, digestive enzymes, and pH during digestion 
in  vitro (13). Nonetheless, the breakdown of polysaccharides into 
oligosaccharides or monosaccharides in the human upper 
gastrointestinal tract is limited by the low levels of carbohydrate-active 
enzymes (CAZymes). Subsequently, polysaccharides come into 
contact with a wider range of CAZymes in the colon and are 
metabolized by gut microbiota to generate short-chain fatty acids 
(SCFAs) (14, 15), which provide various health benefits (16, 17). These 
acids mitigate inflammation, and diabetes while also influencing brain 
function (18–20). Polysaccharides from Grifola frondosa (21) and 
other mushrooms (22) are resistant to digestion but can be broken 
down through intestinal fermentation, producing SCFAs along with 
other metabolites. These polysaccharides promote the proliferation of 
beneficial bacteria and impede the growth of spoilage bacteria, thereby 
modulating gut microbiota composition. The biological activity of 
polysaccharides has been widely studied in animal models, 
demonstrating their potential to influence gut health, immune 
function, and metabolism (23–27). FTZPs exert protective effects by 
modulating the gut microbiota, reducing the abundance of 
Gammaproteobacteria, and increasing the abundance of 
Dehalobacteraceae and Dehalobacterium, while also restoring 
intestinal barrier function (28). Additionally, FTZPs enhance the level 
of asparagine, further contributing to their protective effects. Similarly, 
Stevia rebaudiana root polysaccharides promote the growth of 
beneficial bacteria such as Lactobacillus and Bifidobacterium, 
modulating gut health and improving liver metabolism, thereby 
alleviating the symptoms of non-alcoholic fatty liver disease (NAFLD) 
(29). Given their various benefits and roles in human physiology, it is 
important to characterize the prebiotic activity of polysaccharides.

Anemarrhena asphodeloides Bunge (AAB) is a perennial herb of 
the genus Asphodeloides, which has antitumor, antiviral, antimicrobial, 
antioxidant, anti-inflammatory, anti-osteoporosis, anti-skin-aging, 
and cytoprotective properties. AAB-derived polysaccharides have 
been reported to protect nerve function and reduce blood glucose 
levels. We previously isolated a non-starch polysaccharide (AABP-1B, 
105 kDa) from AAB that contained 4)-2-O-acetyl-β-d-Manp-(1 and 

4)-β-d-Manp-(1 glycosidic bonds and showed strong inhibitory 
activity against α-glucosidase. Structural analysis of AABP-1B 
suggested that it may resist degradation in the upper gastrointestinal 
tract, potentially reaching the colon for metabolism by gut microbiota 
(30). However, the digestion and transformation of polysaccharides 
are complex, and it remains unclear whether AABP-1B retains its 
α-glucosidase inhibitory activity post-digestion and whether its 
fermentation by intestinal microbiota benefits the host.

The purpose of this study was to investigate the effects of simulated 
upper gastrointestinal digestion on the structural properties and 
α-glucosidase inhibitory activity of AABP-1B. Subsequently, the 
effects of AABP-1B on intestinal microbiota and SCFAs were studied 
by simulating in vitro fermentation models. Our findings provide 
valuable insights into the potential application of AABP-1B as a 
prebiotic in functional foods for modulating the gut microbiota and a 
useful reference for developing clinical strategies against diabetes.

2 Materials and methods

2.1 Materials and reagents

The AAB was purchased from a local pharmacy in Guangzhou 
(Guangdong, China). Calcium chloride, chloroform, sodium 
hydroxide, anhydrous ethanol, trifluoroacetic acid, and methanol were 
purchased from Xilong Scientific (Guangdong, China). α-glucosidase 
(100 U/mg) and short-chain fatty acid standards were sourced from 
Sigma-Aldrich (St. Louis, MO, United  States). Other chemical 
reagents used were of analytical grade.

2.2 Extraction and purification

The extraction and isolation of AABP was performed as previously 
described (30). The dried AAB powder was first reflux-extracted with 
95% ethanol at 80°C for 4 h to remove pigments and lipids. After 
filtration and drying, the residue was extracted with distilled water 
(1:25 w/v) at 90°C for 3 h. This hot-water extraction was repeated 
three times, and the combined aqueous extracts were collected. The 
water-based extract was then centrifuged, and the supernatant was 
concentrated for further processing. Anhydrous ethanol was added 
dropwise to the supernatant up to a concentration of 60% and left for 
24 h at 4°C before centrifugation. The precipitate was deproteinized 
using the Sevag method and subsequently dialyzed and freeze-dried 
to obtain crude polysaccharide (AABP). AABP was dissolved in 
distilled water and filtered using a 5-μm membrane. The filtrate was 
purified using a DEAE-52 column (2.6 × 40.0 cm) and eluted with 0, 
0.1, 0.2, 0.4, and 0.5 mol/L NaCl at a flow rate of 1.0 mL/min. The 
0.2-mol/L NaCl elution peaks were collected and subjected to dialysis 
and lyophilization to generate AABP-1B.

2.3 In vitro simulation of AABP-1B digestion

2.3.1 Simulated salivary digestion of AABP-1B
Artificial saliva was prepared following the previously described 

method, with appropriate modifications (31). Artificial saliva was 
formulated by dissolving 0.7644 g/L NaCl, 1.491 g/L KCl, and 
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0.1332 g/L CaCl₂ in 1 L distilled water. The pH was precisely adjusted 
to 6.9 ± 0.05 using 1 M HCl. The oral digestive solution was 
formulated by supplementing 150 mL artificial saliva with 1% (w/v) 
α-amylase. We combined 30 mL AABP-1B (20.0 mg/mL) with 30 mL 
artificial saliva for incubation (37°C, 100 rpm). Samples (2.0 mL) were 
extracted at 0 h and 0.5 h, subsequently subjected to enzyme 
inactivation by boiling for 5 min, and the remaining liquid was 
reserved for gastric digestion simulation.

2.3.2 Gastric digestion simulation of AABP-1B
Artificial gastric fluid was prepared following an established 

protocol (32). The electrolyte base (pH 2.0 ± 0.1) contained 1.1 g/L 
KCl, 3.1 g/L NaCl, 0.15 g/L CaCl₂, and 0.6 g/L NaHCO₃. Gastric 
digestive fluid was subsequently generated by integrating lipase 
(0.19 mg/mL), pepsin (0.18 mg/mL), and sodium acetate (0.75% v/v) 
into the electrolyte matrix. Saliva-digested samples were mixed with 
the gastric digestive fluid in equal volumes and shaken (37°C, 
100 rpm). Gastric digestive samples (2.0 mL) were obtained at 2, 4, 
and 6 h and subsequently subjected to enzyme inactivation by boiling 
for 5 min. After 6 h of gastric digestion, the pH of the digestive juice 
was adjusted to 7.5 using NaOH solution (0.2 M).

2.3.3 Simulated intestinal digestion
Artificial small intestinal fluid was prepared following an 

established protocol with appropriate modifications (32). The simulated 
intestinal electrolyte was formulated by dissolving 0.65 g/L KCl, 5.4 g/L 
NaCl, and 0.33 g/L CaCl₂ in 1 L distilled water, with pH adjusted to 
7.0 ± 0.1 using 1 M NaOH. Digestive fluid was prepared by 
supplementing 250 mL electrolyte with pancreatic enzyme (0.4 mg/
mL) and 4% bile solution (31.25 mL, 12.5% v/v). Gastric-digested 
samples were mixed with intestinal digestion solution at equal volumes 
and incubated in a shaker (37°C, 100 rpm). Samples (2.0 mL) were 
collected at 2, and 4 h and heat-treated in boiling water for 5 min to 
deactivate the enzymes. We determined the reducing sugar, dissociated 
monosaccharide contents, and molecular weight of inactivated 
digestive samples collected from the saliva, stomach, and intestine.

2.4 Molecular weight (mw), reducing sugar 
(CR) and monosaccharide composition 
during AABP-1B digestion

High-performance gel permeation chromatography (HP-GPC) 
was employed to ascertain the Mw of AABP-1B during digestion. 
Digestive fluid samples were filtered before analysis. The molecular 
weight was determined by HP-GPC using different dextran standards 
(13.05, 36.80, 64.65, 135.35, 300.60, and 670.00 KDa) as the calibration 
reference. The chromatographic column and detection conditions 
adhered to those previously described (32). The reducing sugar content 
test is performed according to the method provided in the reducing 
sugar test kit (BC0230, Solarbio, Beijing, China). The monosaccharide 
composition of the digested AABP-1B samples was analyzed using 
high-performance liquid chromatography (HPLC). Both the standard 
monosaccharides and the digested AABP-1B solution were derivatized 
with 1-phenyl-3-methyl-5-pyrazolone (PMP). The PMP-derivatized 
samples were chromatographically resolved using a Waters Symmetry 
C18 column (5 μm particle size, 4.6 × 250 mm) maintained at 30°C 
(30). The chromatogram was recorded using a Waters 2,998 system 

(Waters, United  States) equipped with a 2,489 UV–vis detector at 
245 nm. The mobile phase consisted of 0.05 mol L−1 KH2PO4 (0.05 M, 
pH 6.8) and acetonitrile (83: 17, v/v), delivered at a flow rate of 1.0 mL/
min. The column temperature was maintained at 30°C, and the 
injection volume was set to 20 μL.

2.5 Inhibition of α-glucosidase activity by 
AABP-1B before and after digestion

The inhibitory activity of AA on α-glucosidase was assessed before 
digestion and after simulated intestinal digestion, as previously 
described (33). AABP-1 solutions were mixed with 100 μL 
α-glucosidase solution (0.8 U/mL), incubated at 37°C for 10 min, 
treated with 100 μL p-Nitrophenyl-α-d-glucopyranoside (pNPG, 
10 mM), and reacted for 30 min at 37°C. The reaction was terminated 
using 100 μL Na2CO3 (1 M). The absorbance of the reaction solution 
was detected at 405 nm using a microplate reader. The α-glucosidase 
inhibition rate (%) was calculated using the following formula:

Inhibition rate (%) = [1 − (Es − Ec)/Eb] × 100.

where Es is the absorbance of the reaction solution containing 
polysaccharide sample, pNPG (substrate), and α-glucosidase; Ec is the 
absorbance of the reaction solution in which phosphate buffer replaces 
the polysaccharide sample; Eb is the absorbance of the solution in 
which phosphate buffer replaces α-glucosidase.

2.6 Simulated in vitro fermentation

The in vitro fermentation of AABP-1B was simulated as previously 
described (34). Fresh fecal samples were collected from five healthy, 
asymptomatic adults (three males and two females, aged 25–40 years) 
who had not taken antibiotics or probiotics for at least 3 months. A 
10% fecal slurry. The fermentation medium was prepared by dissolving 
the following components in 1 L distilled water: 10 mg/L 
MgSO₄·7H₂O, 2.0 g/L yeast extract, 0.1 g/L NaCl, 40 mg/L KH₂PO₄, 
10 mg/L CaCl₂, 40 mg/L K₂HPO₄, 2.0 g/L peptone, 2.0 g/L NaHCO₃, 
20 mg/L heme, 0.5 g/L cysteine hydrochloride, 0.5 g/L bile salt, 
2.0 mL/L Tween 80, 1.0 mL/L 1% (w/v) resazurin solution, and 
10 μL/L vitamin K. The culture medium was treated with 0.1 mol/L 
HCl solution to a pH of 7.0 and sterilized at 121°C for 20 min. In the 
carbon-source group, 2 mL of fecal suspension was added to 18 mL 
fermentation medium containing 10 mg AABP-1B. Inulin (IN) and 
sterile water were utilized as positive and blank (BLK) controls, 
respectively. The treated samples were cultured in an anaerobic 
incubator at 37°C. Samples were taken at 0, 6, 12, and 24 h to assess 
the SCFA content, pH, and microbial composition.

2.7 pH and SCFA content analyses

The pH of the fermentation supernatant was determined using an 
acidity meter (PHSJ-3F, Leici, Shanghai, China). To extract SCFAs, 
1.0 mL of the fermentation broth was mixed with 1.0 mL of distilled 
water, followed by the addition of 1.0 mL of diethyl ether for 
extraction. The extraction was conducted twice and the ethyl ether 
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FIGURE 1

(A) Changes in Mw of AABP-1B during simulated digestion in saliva; (B) stomach; (C) and intestinal fluid; (D) changes in free monosaccharide contents 
during digestion.

phase was combined and concentrated to 1.0 mL for gas 
chromatography–mass spectrometry (GC–MS) performed with the 
following conditions: carrier gas (nitrogen) flow rate, 19 mL/min; 
initial column temperature, 100°C for 1 min, increased at 4°C/min to 
180°C for 4 min; detector and inlet temperatures, 250°C; electron 
beam energy, 70 eV, ion source temperature, 200°C, m/z range, 40–800.

2.8 Gut microbiota analysis

The total DNA of bacteria in the fermentation samples was extracted 
using a E. Z. N. A. Stool DNA Kit (Omega Bio-Tek, Jiangsu, China) 
according to the manufacturer’s protocols. An appropriate sample 
quantity was placed in a centrifugation tube for PCR amplification of 
the V3–V4 variable sequence area using 806R and 338F primers. Gel 
electrophoresis was conducted with fluorescently labeled nucleic acids, 
and target bands were selected in accordance with the cartridge 
instructions. DNA purification and recovery from gels were performed 
using DNA Gel recovery kits, including a QIAquick Gel Extraction Kit 
(QIAGEN, Hilden, Germany). DNA concentration was determined 
using a fluorometer. MiSeq high-throughput sequencing (Illumina, San 
Diego, CA, United  States) was employed for quality control and 

sequencing analysis. The α- and β-diversity indices were estimated using 
Quantitative Insights into Microbial Ecology based on the sequencing 
reads and operational taxonomic units (OTUs).

2.9 Statistical analysis

All experiments were repeated three times and the data are 
expressed as the mean ± standard deviation. Statistical analysis and 
graphical representation of the data were performed using SPSS 27 
and OriginPro 2019 software.

3 Results

3.1 Changes in Mw, free monosaccharide, 
and reducing sugar (CR) concentrations of 
AABP-1B during digestion

The oral cavity serves as the initial site of food digestion, where 
salivary amylase enzymatically cleaves α-1 → 4 glucoside bonds in 
starch and other carbohydrates. However, non-starch polysaccharides 

https://doi.org/10.3389/fnut.2025.1603237
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2025.1603237

Frontiers in Nutrition 05 frontiersin.org

are not susceptible to hydrolysis by salivary amylases. The release of 
free monosaccharides from AABP-1B during gastrointestinal 
digestion is presented in Figure 1D. However, comparative analysis 
with standard monosaccharide profiles revealed that no free 
monosaccharides were detected throughout the entire digestion 
process. Non-starch polysaccharides from snow chrysanthemum (31) 
and wolfberry (34) are resistant to degradation by human saliva, likely 
due to the absence of α-1 → 4 glucoside bonds limiting their 
hydrolyzation by α-amylase. Our findings suggested that the stability 
of the 4)-2-O-acetyl-β-d-Manp-(1 and 4)-β-d-Manp-(1 glycosidic 
bonds is not affected by salivary amylase (30).

Most polysaccharides are resistant to breakdown in the upper 
gastrointestinal tract. The Mw changes of AABP-1B during oral 
digestion is shown in Figures 1A–C. Following 0.5 h of simulated 
salivary digestion, the Mw of AABP-1B did not change significantly 
and the CR concentration remained constant (Figures 1A, 2). After 2 h 
of simulated gastric digestion, the Mw of AABP-1B declined 
significantly from 105.8 ± 0.43 KDa to 98.2 ± 0.24 KDa (Figure 1B) 
while the CR concentration increased from 0.511 ± 0.021 mmol/L to 
0.732 ± 0.011 mmol/L (Figures  1B, 2). Following the simulated 
intestinal digestion, no significant changes were observed in the 
molecular weight or concentration of CR, and no free monosaccharides 
were detected (Figures  1C, 2). Detailed data are provided in 
Appendix Table 1 for reference. Collectively, these results demonstrate 
that simulated gastric digestion induced slight degradation of 
AABP-1B, leading to a marginal reduction in its molecular weight. 
The gastrointestinal digestibility of natural polysaccharides may vary 
depending on the source. The structure of some polysaccharide 
changes during in vitro simulated digestion in the stomach and small 
intestine, thereby decreasing the molecular weight of polysaccharides 
and increasing the contents of reducing sugars (35, 36). During 
digestion of food, intestinal fecal microbiota consumes carbohydrates 
to varying degrees, leading to the breakage of glycosidic bonds in 

polysaccharides and exposure of reducing end-groups, resulting in the 
production of several reducing sugars, which are then used as a carbon 
source for the growth of intestinal microbiota. Collectively, AABP-1B 
showed obvious resistance to both gastric and small intestinal 
digestion, and its structural integrity remained basically unchanged 
during transportation through the upper gastrointestinal tract. During 
subsequent fermentation phases, thereby potentiating its 
bioavailability for gut microbiota-mediated metabolic utilization.

3.2 Inhibitory effect of AABP-1B on 
α-glucosidase activity after digestion

The inhibition of α-glucosidase can attenuate postprandial high 
blood sugar levels by delaying the release of glucose in the small intestine. 
AABP-1B exhibited significant α-glucosidase inhibitory activity both 
before and after simulated digestion, showing a clear dose-dependent 

FIGURE 2

Changes in reducing sugar contents in simulated digestion. Values 
were mean ± SD (n = 3). Different superscript letters within columns 
indicate differences (p < 0.05).

FIGURE 3

Inhibitory activity of AABP-1B on α-glucosidase before and after 
digestion; Values represent mean ± standard deviation. Different 
superscript lowercase letters indicated significance (p < 0.05) in each 
column.

FIGURE 4

Variations in pH during fermentation of AABP-1B; values represent 
mean ± standard deviation; different superscript lowercase letters 
indicated significance (p < 0.05) in each column.
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FIGURE 5

Variations in SCFA concentrations during fecal fermentation; values were mean ± SD (n = 3); different superscript letters within columns indicate 
differences (p < 0.05).

effect with no significant differences observed between pre- and post-
digestion activity levels (Figure 3). Non-linear curve fitting revealed an 
IC₅₀ value of 61.5% ± 0.0527, with no significant difference before and 
after digestion. The stability of its inhibitory activity of AABP-1B may 
also be  associated with specific glycosidic linkages and molecular 
conformations that safeguard the active sites of AABP-1B against 
enzymatic hydrolysis, thereby pre-serving its functional integrity. Hence, 
AABP-1B can potentially be used as a therapeutic agent in the treatment 
of diabetes or impaired glucose metabolism.

3.3 AABP-1B affects pH in fecal fermentation

Polysaccharides that remain undigested by gastric or intestinal 
fluids may traverse the colon and serve as carbon substrates for 

intestinal microbiota, leading to the production of SCFAs, which play 
a crucial role in regulating intestinal pH and physiological 
homeostasis. As illustrated in Figure 4, the initial pH values of the 
AABP-1B group, inulin control group (IN), and blank control group 
(BLK) showed no statistically significant differences (P > 0.05). During 
the fermentation process, both the AABP-1B group and inulin groups 
demonstrated a significant pH decrease over the first 12 h (p < 0.05), 
followed by stabilization between 12 h and 24 h. Specifically, the pH 
values of the polysaccharide and inulin groups experienced a sharp 
decline within the first 6 h, eventually plateauing at approximately 4.86 
and 4.95, respectively, by the 12 h. This finding is consistent with those 
of previous studies on the effects of Pleurotus eryngii-derived 
polysaccharides (37). The observed decrease in pH in the AABP-1B 
and inulin-treated groups may be attributed to their conversion to 
SCFAs. Lower pH levels may influence bacterial composition by 
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promoting and suppressing the growth of beneficial and pathogenic 
bacteria, respectively (38).

3.4 Impact of AABP-1B on SCFA production 
in fecal fermentation

As shown in Figure 5F, in the BLK group, the total concentration 
of SCFAs increased from 1.18 ± 0.24 (0 h) to 19.48 ± 0.30 mmol/L 
(24 h). In the AABP-1B group, total SCFAs concentration increased 
significantly (p < 0.05), from 1.14 ± 0.27 mmol/L (0 h) to 
37.15 ± 0.27 mmol/L (24 h). SCFAs produced by the fermentation 
of polysaccharides by intestinal microbiota are essential for 
maintaining intestinal health and regulating systemic metabolism. 
These effects extend beyond nutrient provision, and include 
immune regulation, antibacterial properties, and metabolic control 
(39, 40). SCFAs content in the fermentation solution of the 
AABP-1B and inulin groups were significantly (p < 0.05) higher 
than that in the BLK group at each time point, reflecting the 
effective production of SCFAs by intestinal microbiota through the 
fermentation of carbohydrates (Figure 5). Acetic, propionic, and 

butyric acids were identified as the primary metabolites in the 
AABP-1B group. Intestinal microorganisms can produce acetic, 
propionic, and n-butyric acid using hexose and pentose as energy 
substrates (41, 42). Additionally, propionic acid can be  derived 
from deoxyhexose sugars such as rhamnose. Mannose (Man), 
Rhamnose (Rha), Galacturonic acid (GalA), Glucose (Glc), 
Galactose (Gal), and Arabinose (Ara). Components of AABP-1B 
serve as the primary substrates for SCFA synthesis. After 
fermentation for 24 h, acetic acid, propionic acid and n-butyric 
acid concentrations in AABP-1B group were significantly increased 
(p < 0.05) compared with the control group, which were 3.69-, 
1.35-, and 1.67- times, respectively. Detailed data are provided in 
Appendix Table  2 for reference. Acetic acid regulates intestinal 
homeostasis, inhibits the invasion of harmful and opportunistic 
pathogenic microorganisms, and promotes the abundance and 
diversity of butyrate-producing bacteria (43). Butyrate maintains 
intestinal epithelial cell integrity, whereas propionate has been 
shown to reduce liver and plasma fatty acid levels, potentially 
enhancing tissue insulin sensitivity (43–45). Overall, AABP-1B 
exerted a prebiotic effect by promoting the synthesis of acetic, 
propionic, and n-butyric acids by gut microbiota.

FIGURE 6

(A) Rank abundance; (B) Shannon curves; (C) hierarchical clustering tree based on OTUs; (D) PCoA.
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FIGURE 7

Phylum-level distribution of gut microbiota. OR was blank medium fermentation for 0 h; BLK-6, BLK-12, BLK-24, IN-6, IN-12, IN-24, AABP-1B-6, AABP-
1B-12 and AABP-1B-24 were blank medium, Inulin medium, AABP-1B medium fermentation for 6 h, 12 h and 24 h, respectively.

3.5 Effects of AABP-1B on microbiome 
composition

Maintaining a balanced microbiome is essential for host health, 
particularly in terms of energy regulation, gut metabolism, and 
immune function. During anaerobic fermentation, polysaccharides 
act as carbon sources for gut microbiota growth, stimulate the growth 
of beneficial microbial populations, and facilitate the production of 
metabolites that enhance host health (14, 46). The effects of AABP-1B 
on the diversity, composition, and function of gut microbiota were 
investigated using high-throughput 16S rRNA sequencing. The rank-
abundance curves (Figure  6A) and Shannon curves (Figure  6B) 
collectively demonstrated sufficient sequencing depth and effective 
coverage of microbial diversity (>99.88%). The rank-abundance 
curves showed a gradual flattening, particularly in the AABP-1B 
group at 24 h, indicating improved richness and evenness. 
Concurrently, the Shannon diversity index exhibited a decreasing 
trend from 6 to 24 h, suggesting a transition toward structural 
stabilization and the selective enrichment of microbial taxa capable of 
efficiently utilizing AABP-1B. The Bray–Curtis method indicated a 
marked divergence in the intestinal microbiota of the BLK and 
AABP-1B groups (Figure 6C), consistent with the principal coordinate 
analysis (PCoA) (Figure 6D), which demonstrated distinct clustering 
of intestinal microbiota among the experimental groups.

The classification of the microbial composition at the phylum 
levels changed at 0, 6, 12, and 24 h of fermentation (Figure 7). The 
primary phyla detected among the gut microbiota were Bacteroidetes, 
Firmicutes, Proteobacteria, and Actinobacteria (Figure 7), consistent 
with prior findings (47). Proteobacteria is the most diverse bacterial 
phylum, encompassing both anaerobic and aerobic bacteria (48). The 

richness of Proteobacteria in the BLK, AABP-1B, and IN groups 
increased and decreased significantly after 6 and 24 h of 
fermentation, respectively. This may be due to the presence of trace 
amounts of oxygen during the initial stages of the fermentation 
process, despite stringent control of anaerobic conditions throughout 
the experiment, which promoted the proliferation of aerobic 
Proteobacteria. As fermentation time increased, trace oxygen was 
depleted, and Proteobacteria abundance in each experimental group 
decreased significantly. These results indicated that the fermentation 
process maintained robust anaerobic conditions. Proteobacteria 
comprise various pathogenic bacteria, including Escherichia coli, 
Shigella, Salmonella, and Campylobacter, which may disrupt 
intestinal microbiota balance, induce inflammation, and lead to 
chronic colitis (49, 50). Consequently, a lower abundance of 
Proteobacteria may be advantageous. Proteobacteria abundance was 
significantly lower in the AABP-1B or IN group after 24 h of 
fermentation compared with that in the BLK group. This suggests 
that fermentation of AABP-1B and IN can inhibit the proliferation 
of Proteobacteria. Certain Bacteroidetes and Actinobacteria can 
degrade and utilize polysaccharides to produce metabolites that 
promote the growth and proliferation of intestinal microbiota and 
maintenance of intestinal homeostasis (51). The relative abundance 
of Bacteroidetes was higher in the AABP-1B and IN groups than that 
in the BLK group at 24 h post-fermentation (p < 0.05). Body fat 
content is strongly associated with the Firmicutes to Bacteroidetes 
ratio, with lean individuals exhibiting a markedly lower ratio than 
obese individuals (52, 53). After 24 h of fermentation, the 
Firmicutes–Bacteroidetes ratio in the AABP-1B group was 
significantly lower than that in the BLK group (p < 0.05). These 
findings underscore the potential of AABP-1B in mitigating obesity 
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and the associated intestinal inflammation. AABP-1B can also 
modulate gut microbiota composition by promoting beneficial 
bacterial growth while suppressing pathogenic species.

Compared with the BLK group, the AABP-1B group showed 
higher levels of the genera Bacteroides, Prevotella, Lactobacillus, 
Megamonas, Megasphaera, and Faecalibacterium (Figure 8). High-
fiber diets are associated with high Prevotella levels, which may 
mitigate glucose intolerance induced by Bacteroides and enhance 
glycogen storage in certain demographic groups (54). Thus, the 
clinical augmentation of Prevotella abundance within the intestinal 
microbiota may aid in the management of blood sugar levels and 
reduce the likelihood of developing diabetes (55). Lactobacillus can 
improve intestinal barrier integrity and reduce inflammation (56). 
Megasphaera can promote the formation of butyric acid (57, 58). 
Notably, Phascolarctobacterium, a genus within the phylum 
Firmicutes, was enriched at 24 h. This genus is known to produce 

propionic acid via the succinate pathway and may contribute to the 
observed increase in propionic acid levels (59) and is negatively 
correlated with oral ulcer occurrence (60). These findings align with 
those of previous studies on SCFAs. Compared with the BLK group, 
the AABP-1B group showed significantly lower levels of pathogens: 
the abundances of Escherichia-Shigella, Blautia, Lachnoclostridium, 
and Romboutsia decreased after 24 h of fermentation. Previous studies 
have linked these detrimental Gram-negative bacteria to intestinal 
infections, type 2 diabetes, and intestinal complications. Escherichia-
Shigella has been shown to cause serious diseases by producing various 
toxins. A strong association has been observed between type 2 
diabetes occurrence and Blautia abundance (61). Lachnoclostridium 
abundance has been linked to obesity (62). Overall, these findings 
suggest that AABP-1B may improve intestinal health by altering the 
composition and diversity of beneficial and pathogenic 
intestinal bacteria.

FIGURE 8

Gut microbiota analysis of AABP-1B during in vitro fermentation based on heat map at genus level; OR was blank medium fermentation for 0 h; BLK-6, 
BLK-12, BLK-24, IN-6, IN-12, IN-24, AABP-1B-6, AABP-1B-12 and AABP-1B-24 were blank medium, Inulin medium, AABP-1B medium fermentation for 
6 h, 12 h and 24 h, respectively.
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FIGURE 9

The differences in gut microbes were compared based on LEfSe; LEfSe among Blank 0 (OR), Blank 24 (BLK-24), Inulin 24 (IN-24) and AABP-1B 24 
(AABP-1B-24) at OTUs level; Blank 0 was blank medium fermentation for 0 h, Blank 24, Inulin 24, AABP-1B 24 was blank medium, Inulin medium, 
AABP-1B medium fermentation for 24 h, respectively.

The LEfSe analysis at the genus level based on LDA scores was 
investigated to determine the specific gut microbiota affected by 
Blank 0 (OR), Blank 24 (BLK-24), Inulin 24 (IN-24) and AABP-1B 
24 (AABP-1B-24) groups. Different LDA scores were used to 
represent the significant effects of different species between groups, 
and the significant differences in species with LDA scores >4 were 
biomarkers with statistical differences. The results of LEfSe were 
shown in Figures 9, 10. We identified 49 taxa in the four groups with 
significant species differences (LDA > 4, Figure 10), including 10 
dominant taxa in the AABP-1B group, 11 dominant taxa in the IN 
group, and 18 dominant taxa in the BLK group. The dominant 
bacteria in the BLK group were Lachnospiracea, Fusobacteria, and 
Escherichia-Shigella. The IN group mainly comprised 
Selenomonadales, Lactobacillaceae, and Firmicutes. The AABP-1B 
group primarily comprised Megasphaera, Prevotella, and Bacteroidota. 
Therefore, AABP-1B and inulin affected the composition of the gut 
microbiota. The beneficial bacteria Bacteroidota and Prevotella were 
the dominant strains in the AABP-1B group (Figure 10), indicating 
that AABP-1B exerts a strong regulatory effect on microbial 
composition. These findings highlight the potential of AABP-1B for 
regulating the gut microbiome and promoting the growth of 
beneficial bacteria, ultimately promoting overall gut health.

4 Discussion

In this study, we simulated the in vitro environment of the oral, 
gastric, and small intestinal phases to evaluate the physicochemical and 
structural motif alterations of Anemarrhena asphodeloides Bunge 
polysaccharide (AABP-1B). These changes included monosaccharide 

composition, and molecular weight, which collectively influence its 
prebiotic potential. During the transition from oral to gastrointestinal 
phases, non-starch polysaccharides (NSPs) undergo sequential 
structural alterations driven by environmental and enzymatic factors. 
In the simulated oral digestion stage, salivary amylase is the main 
enzyme in the mouth, which mainly acts on polysaccharides such as 
starch and breaks them down into dextrins and oligosaccharides. The 
main chain of AABP-1 was composed of 4,6)-β-d-Galp-(1, 4)-β-d-
Manp-(1, 4)-β-d-GalAp-(1, 4)-α-l-Rhap-(1, T-α-d-Glcp-(1, T-α-l-
Araf-(1, and 3)-α-l-Araf-(1 and 4)-2-O-acetyl-β-d-Manp-(1, and did 
not contain α-1,4- glucosidic bonds, and thus was resistant to salivary 
amylase during the oral digestion phase (30). In the gastric phase, 
although pepsin mainly digests proteins, the strongly acidic 
environment (pH 1.5–3.5) may induce limited acid-catalyzed hydrolysis 
of acid-labile glycosidic bonds, including β-1,4 linkages (63). This could 
explain the slight reduction in molecular weight and the increase in 
reducing ends observed after gastric digestion. Similarly, polysaccharides 
from Asian plantain seeds showed decreased molecular weights during 
gastrointestinal digestion without the release of monosaccharides (64). 
In the simulated fermentation phase, different kinds of microorganisms 
carry out complex metabolic activities using AABP-1B as carbon source. 
In our study, AABP-1B showed the ability to regulate the composition 
of the gut microbiome, promoting the growth of beneficial microbiomes 
while inhibiting the proliferation of potentially harmful microbiomes. 
In addition, the metabolites of AABP-1B are mainly short chain fatty 
acids such as acetic acid, propionic acid and butyric acid. Acetic acid is 
predominantly synthesized by Bacteroides and Lactobacillus species (65, 
66). It plays a crucial role in supplying energy to colonic epithelial cells 
and in strengthening the integrity of the intestinal barrier (67, 68). 
Propionate acid is linked to the proliferation of microbial taxa such as 
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Dialister and Phascolarctobacterium and is implicated in the regulation 
of gluconeogenesis and cholesterol metabolism (69). Propionic acid 
exerts beneficial effects on diabetes-related metabolic abnormalities 
through diverse mechanisms, including the enhancement of insulin 
sensitivity, regulation of glucose and lipid metabolism, attenuation of 
inflammation, and restoration of intestinal microbiota balance (70–73). 
For example, propionic acid enhances insulin sensitivity and reduces 
insulin resistance in peripheral tissues by activating free fatty acid 
receptors and promoting the secretion of glucagon-like peptide-1 
(GLP-1) (74–76). In addition, butyric acid exhibits significant anti-
inflammatory properties by modulating the nuclear factor kappa B 
(TLR4/NF-κB) signaling pathway, thereby reducing the production of 
pro-inflammatory cytokines (77). In summary, the polysaccharides 

from Anemarrhena asphodeloides Bunge (AABP-1B) can regulate the 
composition of intestinal flora and the production of short-chain fatty 
acids. These effects jointly maintain intestinal microecological balance 
and promote intestinal health, and provide a strong theoretical basis for 
the development of functional foods and drugs based on polysaccharide, 
which is worthy of further research, development and utilization.

5 Conclusion

This study examined the in vitro digestion of AABP-1B and 
associated changes in the composition of intestinal microbiota 
during fermentation. Our findings indicated that AABP-1B was 

FIGURE 10

LDA score; LDA among Blank 0 (OR), Blank 24 (BLK-24), Inulin 24 (IN-24) and AABP-1B 24 (AABP-1B-24) at OTUs level; Blank 0 was blank medium 
fermentation for 0 h, Blank 24, Inulin 24, AABP-1B 24 was blank medium, Inulin medium, AABP-1B medium fermentation for 24 h, respectively.
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only slightly degraded, without yielding free monosaccharides. Its 
inhibitory effects on α-glucosidase activity remained consistent 
before and after digestion. After 24 h of fermentation, AABP-1B 
lowered pH, increased acetic and propionic acid levels, and 
promoted the growth of beneficial microbes like Prevotella and 
Megasphaera, suggesting its potential as a prebiotic for intestinal 
health and functional food development.
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