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Microalgal toxins are secondary metabolites synthesized by cyanobacteria,

dinoflagellates, and diatoms in response to environmental stress. Humans

and animals can be exposed to these toxic compounds through food, water,

and aerosolized toxins and these toxic compounds are capable of causing

acute and chronic health issues like paralysis, liver damage, cancer, and even

death by employing several molecular mechanisms such as sodium channel

blocking, protein phosphatase inhibition, cellular membrane disruption etc.

Microalgal toxin poisoning through food products is a major concern as

microalgae are largely consumed as dietary supplements. These toxins can

easily bioaccumulate and be biomagnified via food chains. Hence, proper

screening and quality control measures for these microalgal toxins should

be implemented. Cytotoxins, dermatoxins, neurotoxins, hepatotoxins, and

endotoxins are the main toxins produced by the microalgae. Microalgae

are effectively incorporated into the food industry in a diverse range. Toxic

contaminants from the microalgae are a silent threat to food security and human

health. There are some regulatory models when consuming microalgae-related

food products and water due to their toxic effects. Detecting the toxins in

the initial stage, studying the impact of toxin production due to environmental

factors, and developing effective mitigation strategies to ensure food safety, is a

future needs in this field.
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1 Introduction

Microalgae are a diverse group of unicellular, photosynthetic microorganisms (1)
that act as the primary producers in aquatic ecosystems (2). Their nutrient richness
and the ability to synthesize bioactive compounds are considered highly beneficial
as they can be used in various industries, such as food and nutraceuticals (3),
medicines (4), cosmetics (5), animal feed (6), agriculture (7), and biofuel production
(8). By 2050, it is estimated that the global population will reach 9.7 billion,
requiring a doubling of global food production to satisfy the rising food demand
(9). Microalgae have been consumed as a food source for thousands of years
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(9) and are loaded with essential nutrients (10). Apart from
that, their antibiotic (11), antioxidant (12), anti-viral (13, 14),
anticancer (15, 16), anti-inflammatory (17) and neuroprotective
properties (18) offer many health benefits by reducing and
preventing the risk of developing diseases like cancer, macular
degeneration, cataracts, type 2 diabetes, and cardiovascular diseases
(19). Compared to conventional crop cultivation, microalgae
cultivation offers numerous advantages, including continuous year-
round output, less land consumption, better yields, etc. (1).
Hence, as an alternative food source, microalgae is a promising
solution. Currently, microalgae species including Arthrospira
platensis, Chlorella spp., Dunaliella salina, Aphanizomenon flos-
aquae, Odontella aurita, Tetraselmis chuii, Haematococcus pluvialis,
Schizochytrium spp., and Ulkenia spp., are commercially cultivated
for human consumption and issued to the market as tablets,
pellets, powders, capsules, or in liquid form (1). Furthermore,
microalgae-incorporated food items, such as cookies, sausages,
cheese, and ice cream etc., are also available in the market
(1).

Certain microalgal species can produce toxic compounds
known as microalgal toxins, and some environmental factors
like temperature, light intensity, and nutrient availability
are believed to trigger the formation of harmful algal
blooms (HABs) (20). As the population of toxin-producing
microalgae increases within these blooms, they release
larger quantities of toxic compounds such as Saxitoxin,
Ciguatoxins, Nodularin, Anatoxin-a, and many more (21)
into water bodies, leading to the complete disruption of the
entire ecosystem. Moreover, these toxins can bioaccumulate
through aquatic food webs in higher trophic levels, including
humans, which eventually leads to detrimental chronic renal,
cardiovascular, gastrointestinal, respiratory, and neurological
disorders (22–24). Therefore, it is important to thoroughly
examine microalgal toxin production and releasing mechanisms
to develop monitoring and mitigation strategies to prevent
food contamination.

When it comes to public health, there are three major
ways of exposure to algal toxins: (1) consumption of toxin-
contaminated food (25), (2) Inhalation of aerosolized toxins
(26), and (3) Skin contact with toxin-containing liquids (27).
Accordingly, the simplest way to experience microalgal toxin-
associated poisoning is by consuming toxin-contaminated
food and water (28). In the case of shellfish, as they are
filter feeders, toxins such as saxitoxins or domoic acid can
accumulate (29). Moreover, consuming dietary supplements
such as Spirulina or Chlorella-based on some microalgae
supplement, poses a risk of contaminated microalgal toxins
(30). This can be due to contamination by toxin-producing
species, even under commercial setups (30). Proper screening
for toxic compounds and quality control measures should
be implemented, as children, the elderly, pregnant women,
and immunocompromised individuals consume these
dietary supplements.

To minimize the contamination of food by microalgal toxins
and to prevent their short- and long-term health implications,
it is essential to have a clear understanding of the specific
species responsible for producing these toxins, the factors that
influence their production and release, their mode of action, and
their occurrence in the human diet. In this review, we try to

provide an overview of the types of microalgal toxins, how they
enter into food chains, and their associated health implications,
while understanding the molecular mechanisms underlying the
production of these toxins and their role in developing life-
threatening diseases. The consumer protections and regulatory
models regarding the microalgae and their future directions.

2 Microalgae and toxins

2.1 Definition, classes, and biological
characteristics of microalgae

Microalgae are prokaryotic and primary photosynthetic
eukaryotic, single-celled organisms that are phylogenetically and
taxonomically divergent (31, 32). Algae can be classified as
unicellular and multicellular according to their sizes and shapes
(33, 34). These microalgae are in diverse habitats and can be
found in almost all areas on earth, including different water
bodies with fresh water, hypersaline environments, and sea water,
rocks, or moist soil (31). The classification of microalgae can
be based on various aspects such as morphological features,
pigmentations, and photosynthetic membranes (32). As Torres
et al. (31) describe, the most typical classification of microalgae
is with classes Chlorophyceae [green algae, Cyanophyceae (blue-
green algae), Chrysophyceae (golden algae), and Bacillariophyceae
(Diatom)] (31). A chart summarizing the main microalgae classes
with their main relevant species is shown in Figure 1. Consequently,
microalgae are fast growers and highly productive even in a limited
land area (35), doing photosynthesis and completing their whole
lifecycle within a few days. Mostly, it needs simple nutrients
and abundant sunlight for its survival (35). Mainly, microalgae
are smaller in size; their sizes range from l µm to 1 mm and
belong to a heterogenous group. Chlorella, which lives primarily in
freshwater or soil, is 2 µm to 10 µm in diameter and spherical (36).
Usually, microalgae are orthotropic, while some are mixotrophs.
Their mechanism is different from the terrestrial plants as they
do not have the same cell differentiation (36, 37). In 1830, color
was first used to differentiate microalgae into green, brown, and
red (38). However, recent studies mainly focused on phylogeny
and molecular studies to analyze the structure and understand the
relationship between algae and other organisms (39). Algae do
not have a common ancestor, and they are called a polyphyletic
group without a taxonomic value (31, 34, 40). According to the
color pigments produced by the chloroplast, the color of microalgae
comes from phycobiliproteins and chlorophylls (38). The Phylum
cyanobacteria belongs to the prokaryotic cell microalgae, and
eukaryotic species mainly consist of red microalgae (Rhodophyta),
green microalgae (Chlorophyta), and diatoms (Bacillariophyta)
groups (41, 42).

Microalgae are considered old living beings on the planet,
and they exist in all of Earth’s ecosystems. They can live
in adverse conditions like radiation, temperature, oxygen, pH,
and salinity. Therefore, it can lead to a vast area of scientific
research and exploration (34, 41, 43). Rationalizing microalgae by
bioprospecting the new species, studying unique lineages of these
organisms, and properly choosing microalgae and cultivating them
is very important (44).
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FIGURE 1

Main micro algae classes and their main species (32).

2.2 Toxins produced by microalgae and
it’s mechanism action

As shown in Figure 2, microalgal species, including
those belonging to the groups of cyanobacteria, diatoms, and
dinoflagellates, produce toxic compounds known as microalgal
toxins, which have harmful effects on both aquatic ecosystems
and human health by mainly harmful algal blooms (HABs) (45).
Each species generates a distinct array of algal toxins, characterized
by varying chemical structures and toxic effects (25, 46). These
toxins are produced as a defensive strategy to protect against
predators in response to grazing pressure; hence, they play a major
role in their life survival (47, 48). In the market, most biomedical
exploration utilizes Spirulina and Chlorella, but it must ensure
safety for the final commercial outcome. Manali et al. (49) showed
that microcystin contamination was only detected in fish food
supplements, not in the Spirulina ingredients dietary supplements
(49). However, to this today, there are no considerable reports
that Arthrospira spp. and Chlorella spp. produce toxins, therefore
establishing their safety by the US Food and Drug Administration
(US FDA) (50) by GRN No.127 (51–53). From the microalgal
toxins, cyanotoxins are the most diverse group of natural toxins
from the chemical and toxicological view (54). Because of the
algae, it can cause the death of people, fish, and other living things.
Most toxic microalgae are dinoflagellates and diatoms in marine
and freshwater, and Figure 2 depicts the major toxic algal species.
According to many records, microalgal toxins associated with
food poisoning significantly impact public health (22). Most of the
incidents are related to contaminated seafood consumption (55,
56) leading to acute food poisoning with distinct symptoms such
as vomiting, diarrhea, numbness, confusion, memory loss, and in

FIGURE 2

Mainly algal species that cause for harmful algal blooms (HABs) (39,
144).

extreme cases, paralysis, brain and liver damage, and even death
(25). Apart from that, long-term exposure to these toxins can cause
damage to the gut, liver, and lung health (22).

Certain microalgae produce bioactive compounds known as
phycotoxins, which are toxic substances generated by specific
genera of dinoflagellates, diatoms, and cyanobacteria (57). The
situation worsens as these toxins accumulate in water bodies,
posing risks to humans, marine life, and aquatic organisms (58).
This review examines how several well-known microalgae toxins
function at the biochemical, molecular, and toxicological levels and
analyzes their impact on the risk posed to the human population
and their mechanism of action.

Cyanobacteria produce diverse toxins as secondary metabolites,
which are hazardous to many other organisms. Researchers have
discovered that these pollutants cause a significant threat to human
health in diverse parts of the world. The main two types of toxins
produced by cyanobacteria are cytotoxins and biotoxins (59, 60).
Table 2 summarizes the cyanobacterial toxins produced by various
types of blue-green algae and their impacts, as listed in the below.

2.2.1 Cytotoxins
Cylindrospermopsin is a known cytotoxin. It is one of the

toxins made by Cylindrospermopsis mceberskii, and it is the
only alkaloid compound among the hepatotoxicants. The toxic
effect of this compound is not only for the liver; it has been
found to cause tissue destruction to the kidneys (61). Some
marine cyanobacteria species produce this toxin, and it is closely
related to the cholera toxin, but it is not so toxic to animals;
however, it is lethal to cells produced in tissue cultures, and it
prevents the growth of several microorganisms across the spectrum
(62). Cylindrospermopsis, Umezakia, and Aphanizomenon-like
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cyanobacteria produce these toxins, and those toxins cause kidney
and liver failures. Further, it causes tissue failures and destroys the
organ (59). Toxins such as Tolytoxin, Tubercidin, Scytophycins,
Actiphycins, Indolocarbazoles and tautazoles, microbilinisonitriles,
paracyclophanes are belongs to cytotoxins (59, 63).

2.2.1.1 Tolytoxin

Tolytoxin is produced by Tolypothrix, a polyketide macrolide
that perturbs the filaments; it can interact with the actin monomers
cytoskeletal and inhibit polymerization, enabling intracellular
transport and mitosis. Cock and Cheesman (64) in 2023 reported
that, with in vitro studies, the IC50 of tolytoxin is 50–100 nM.
The primary mode of action of this toxin is on the apoptotic cell
death, preventing polymerization, which is essential in intracellular
transport and mitosis in human health. The main mechanism of
this toxin is to enhance apoptotic cell death through the disruption
of the cytoskeleton. This toxin can be used as an anti-metastatic
since it can reduce the cancer cell death (65–67). Tolytoxin has
profound effects on the cell shape and microfilament distribution
of mammalian cells, and these changes can be produced by very
low concentrations of this agent. Tolytoxin inhibits actin such as
polymerization in vitro, which you would expect to see in a gel, and
thereby explains the observed cellular effects (66).

2.2.1.2 Tubercidin

This toxin is an adenosine analog, a purine nucleoside that is
incorporated in the synthesis by nucleic acid. The specific toxin of
this fungus is capable of RNA translation and transcription, causing
eventual apoptosis (68). According to the current literature, it has
the potential to be used in clinical trials against fungal invasions
such as Candida albicans and Leishmania donovani (68, 69).

2.2.1.3 Scytophycins

Scytonema is a toxin synthesized by cyanobacteria macrolide
compounds targeting actin filaments, leading to cell death. This can
affect cytotoxic effects against breast cancer cells and leukemia cells
(57, 70).

2.2.1.4 Indolocarbazoles

This toxin is an alkaloid group originating from tryptophan
(71). It interferes with DNA supercoiling and influences protein
kinases, such as topoisomerase I and II (72). Further, it can hinder
the transcription by inhibiting the VEGFR and EGFR signaling,
which is crucial for angiogenesis and cancer cell division (73).

2.2.1.5 Actiphycins

This toxin is a cyclic peptide containing a significant number
of proteinogenic amino acids contributing toward the stability of
this molecule. The major use of this is to stop the molecule from
replicating through binding to DNA polymerase. Al-Hussieny (59)
reported that it is a kind of toxin belonging to cytotoxins. There
is only limited documentation regarding these toxins, and further
research is needed regarding these toxins.

2.2.2 Dermatoxins
Dermatoxins include aplysia toxins and debromoaplysiatoxin,

which predominantly result from contact and are related to
cyanobacterial toxins (74). These toxins stimulate the protein
kinase C (PKC), which is involved in cell proliferation and

differentiation, and promote inflammation in human skin cells.
Dermatoxins are poisonous chemicals that cause skin issues, and
when the skin is repeatedly exposed to dermatoxins, the PKC
remains active for a long time, increasing the occurrence of
tumors (75).

2.2.3 Neurotoxins
Neurotoxins are some of the most widely recognized types

of microalgae toxins, and they work in the nervous system
by interfering with ion channels and neurotransmitters (75).
Alexandrium species generate Saxitoxin (STX), which binds to
voltage-gated sodium channels in both nerve and muscle cells, thus
preventing the infiltration of sodium ions into cells; this triggers
paralysis and possibly fatal cessation of breathing in humans (76).
Likewise, the toxic alkaloid, domoic acid, elaborated by diatoms
of the genus Pseudo-nitzschia, mimics the neurotransmitter
freshwater, seeking out specific glutamate receptors in the central
nervous system. This causes excitotoxicity, in which stimulation of
glutamate receptors results in neuronal lesions and memory loss, a
condition referred to as amnesic shellfish poisoning (77).

2.2.3.1 Neurotoxic alkaloids

Alkaloids are usually lethal and poisonous in a short time as
they cause paralysis of respiratory muscles and skeletal muscles,
often resulting in respiratory issues and death. Oscillatoria and
Trichodesmium are producing different forms of these kinds of
toxins (78).

Anatoxin: Anabaena flos-aquae species produces this toxin,
which contains a 765 Da molecular weight (79).

Homoanatoxins: Oscillatoria rubescens produces a and is less
toxic than anatoxin (79).

Anatoxin-a(s): Anabaena produces this toxin, which is ten
times more toxic than anatoxin, with a molecular weight of
252 Da (79).

2.2.3.2 Paralytic shellfish poisons (PSPs)

PSPs include 18 toxins that paralyze crustaceans and are
classified into three main classes, gongyautoxins, saxitoxin, and
C-toxins, usually produced by species such as Anabaena circinalis
and Aphanizomenon flos-aquae (80). These toxins are thought to
have an immediate neurological response due to the interference of
nerve impulses by blocking sodium channels, but they do not affect
potassium leak currents (81).

2.2.4 Hepatotoxins
Hepatotoxins-producing genera include Anabaena,

Microcystis, Cylindrospermopsis, Nodularia, Oscillatoria, and Nostoc
(82). Microcystins are the most abundant of the cyanobacterial
toxins (75). Nevertheless, they are slower in killing the organisms
than neurotoxins, and the process of death can take 5 min to
as long as several days, based on the rate of more factors and
conditions, such as the type of poison, an animal’s weight, and the
dose. These toxins are classified into three groups (82).

The hepatotoxins act on the liver and produce both
short-term and chronic effects. Microcystins isolated from M.
aeruginosa, for instance, interfere with serine/threonine protein
phosphatases PP1 and PP2A; increased intracellular proline-
directed serine/threonine phosphorylation induces hepatocyte
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apoptosis/necrosis (75). This toxin is considered to be very stable;
hence, the long-term effects of this algae grown in water bodies are
very detrimental to water sources used for human consumption
(75, 83). Another similar but distinct toxic compound affecting
liver cells is nodularin, which is produced by Nodularia spumigena
cyanobacteria and is typical for brackish water conditions as well
only limited documents are (75).

2.2.4.1 Microcystins

These are monocyclic seven-chain peptides with an unusual
resident amino acid (84). Microcystin-LR (MC-LR) inhibits green
algae growth by regulating antioxidant and photosynthetic systems
by harmful algae (84). This is because the peptide ring includes
five amino acids that are involved in the biosynthesis of all
the structural variants of microcystins found in this species.
Microcystins were found in a stream inhabited by fish of the
genus Brook (Salvelinus fontinalis) (85). Some other related species
belonging to Oscillatoria, Nodularia, and Lyngbya, as well as genera
like Anabaena, Nostoc, and others, are employed in the production
of these materials (84). Among these toxins, only microcystins MC-
RR, MC-LR, and MC-YR have been identified. There are often
lethal microcystins, such as microcystin molecule weights. The
levels of microcystins may be detected as long as 909–1,044 years,
depending on the species (85). Microcystins are known for their
long-term heat shock and other related features, and it has emerged
that they are capable of enduring boiling without denaturation (84).
They are stable in terms of pH changes and are freely soluble in
water. Ethanol, methanol, and acetone cells will require energy to
metabolize the poison (85).

2.2.4.2 Nodularin

MC–LR is slightly similar to this compound; it is a pentacyclic
monocyclic peptide, but significantly smaller. The peptide ring has
a molecular weight of 824 Da and contains amino acids similar to
those found in MC–LR (86). Although a range of varieties have
been spotted around the world, only one is manufactured by the
Nodularia spumigena species, and their growth is toxic to humans
and cattle as well as to that of MC-LR (87).

2.2.5 Endotoxins
2.2.5.1 Lipopolysaccharides (LPS)

Lipopolysaccharides are glycolipoproteins present in the cell
wall. These chemicals are toxic to humans; when it was injected
into the peritoneal membranes at a dose of 1–1.2 mg/kg, they were
found to be fatal to rats even at 48 h using in vivo experiments (57).

3 Overview of microalgae and their
uses in food products

Microalgae are successfully included in different sectors such
as the food industry, pharmaceuticals industry, biofuel production,
wastewater treatments, fertilizers, and cosmetics industry (31, 35,
88, 89). Globally, Microalgae have been recognized as sustainable,
healthy, nutritional, and eco-friendly for social development. From
ancient times, countries such as China, Japan, and many coastal
regions worldwide mainly used microalgae for food production.

Arthrospira platensis, Chlorella vulgaris, Dunaliella salina,
Isochrysis galbana, Nostoc sphaeroides, Spirulina maxima,
and Spirulina platensis are used to produce commercial
feed or food products (1, 90, 91). C. vulgaris is a famous
microalga commercially cultivated to produce beta-carotene,
astaxanthin, canthaxanthin, and chlorophyll, which can be
used as food ingredients. Microalgae can additionally be
used as food additives, bakery products, food supplements,
and beverages (92–95). Docosahexaenoic acid is produced
by the commercially cultivated Cryptothecondium cohnii,
Schizochytrium, Thraustochytrium, and Ulkenia (96). Products
of microalgae, including cyanobacteria, have been proposed
for sterols, proteins, lipids, n-3 and n-6 fatty acids, microalgal
oil, hydrocarbons, vitamins, polysaccharides, phycobiliproteins,
zeaxanthin, lutein, phycocyanin, phycoerythrin, and antioxidants
(96–105).

The protein in autotrophic and heterotrophic cyanobacteria
is higher than the protein in pork and beef (104). Further,
when we give small amounts of microalgae with animal
feed, it improves the nutritional value of the feed and the
animal’s performance and enhances the quality of products
like meat, milk, and eggs (106). Table 1 clearly shows the
microalgae-based food products and their nutritional values.
Different value-added products can be commercialized using
these microalgae, which is an emerging trend in this field.
Asian countries like Sri Lanka still have a hidden fear of using
these micro algae and fewer products in the market related
to this field. This article suggests the research gaps in the
microalgae-related food industry worldwide as one part of the
article.

4 Pathways of toxin contamination
in food products in algae

Algae, specifically microalgae, are increasingly in demand in the
food market due to their rich nutritional profiles. However, toxin
contamination from microalgae is a significant threat to food safety
and human health. Algal toxins, which are known as phycotoxins,
can accumulate in food chains, impacting human health through
various pathways (107). These toxins are critically produced
by harmful algal blooms, where specific algae species release
toxins as secondary metabolites. Understanding the pathways of
contamination is significant for mitigating risks and ensuring food
safety regarding microalgae (7). Concerning the pathways of toxin
contamination in food products, microalgae are much important,
and it is critical to avoid those contaminations in algae as they can
cause health risks and environmental pollution.

4.1 Direct consumption of
toxin-producing algae

Microalgae such as Microcystis, Anabaena, and Nodularia
are known to produce toxins like microcystins and nodularins,
which can directly contaminate food products when algae are
consumed as dietary supplements or functional foods (108).
Spirulina, commonly used in the food industry, may occasionally be
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TABLE 1 Table of microalgae-based food products and their macromolecules.

Microalgae Micro algae-based
food product

Macromolecules References

Haematococcus pluvialis, Nannochloropsis gaditana,
Karlodinium veneficum, Isochrysis galbana, Chlorella sp.,
Scenedesmus almeriensis, Tetraselmis suecica

Additives Lipids (93)

Arthrospira platensis, Chlorella spp., Nannochloropsis
spp., Tetraselmis sp., Dunaliella salina, Haematococcus
pluvialis, Porphyridium sp., Phaeodactylum
tricornutum, Scenedesmus sp.

Biomass Carbohydrates, protein, lipids (145, 146)

Chlorella vulgaris, Arthrospira platensis 3D Printed Cookies Microalgae
flour

Proteins (147–149)

Schizochytrium sp. Fortified beverages Lipids (95)

Arthrospira platensis, Chlorella sp. Additives Pigments (150)

Scenedesmus almeriensis, Isochrysis galbana,
Nannochloropsis gaditana, Tetraselmis suecica

Wheat bread Proteins (151)

Arthrospira platensis, Scenedesmus obliquus Chocolate Proteins lipids carbohydrates (152)

Arthrospira platensis, Nannochloropsis gaditana,
Pyrocystis lunula

Biomass Carbohydrate (153)

Arthrospira platensis Yogurt Proteins (92)

Arthrospira platensis Chocolate milk Proteins (154)

Arthrospira platensis, Chlorella sp. Beverages Proteins, carbohydrate (155)

Chlorella sp., Arthrospira platensis Dietary supplements Proteins (94)

contaminated with toxic cyanobacteria if not adequately monitored
when manufacturing dietary products, dessert products, and food
additives (109). Cyanotoxins are heat-stable, and conventional food
processing methods like pasteurization and cooking are ineffective
at eliminating them, thereby posing risks to consumers (110).
Research studies regarding this topic is an emerging trend, as there
may be some direct consumption of toxin-producing algae which
has not yet been identified without knowing.

4.2 Bioaccumulation in the food chain

Bioaccumulation is highlighted as another key approach to
having algal toxins in seafood and other sea products. Some of these
crustaceans and mollusks include mussels and oysters; these are
categorized as filter-feeding mollusks that can concentrate toxins
that are produced by algae in their tissues (74, 76, 107). Domoic
acid, a substance that is transmitted from algae to fish and shellfish,
is toxic to mammals, while saxitoxins, which are consumed by
fish and bivalves, are also toxic to mammals. Brevetoxins, which
move up the food chain from algae to fish, are toxic to humans
through the process of biomagnification (74, 107, 111). This
bioaccumulation is identified as a major issue for aquaculture, as
seafood consumption is rapidly increasing globally. Contaminated
water, whether freshwater or seawater, is used in food production,
allowing toxins to enter food products. For instance, the use of
polluted water for washing food crops, watering crops, or returning
yield to feed livestock floods these products with toxic substances
(42, 112). Microcystins, prevalent in freshwater systems, can persist
in treated water, posing food safety risks when surface water is
utilized for irrigation in agricultural regions (113).

4.3 Understanding cross-contamination
and industrial processing

In the industrial usage of algae products in the food industry,
contaminants can potentially spread (74). This can occur when
toxic microalgae get mixed with non-toxic microalgae at harvesting
time and are processed, or whenever improper washing and
storage allow toxins to transfer from one batch to another (76).
Contamination can generally be critically high, but an ineffective
quality control strategy during algal harvesting or processing can
worsen the problem (42). There is a research gap about the effect of
the consumption of microalgae directly in food, in contrast to the
industrial processing of them.

4.4 Global environment and climate
change

The harmful algal bloom frequency has increased due to
changes in the environment, especially climate change, as a higher
risk of contamination with foods (114). Increasing temperature of
the water, enrichment by nutrients from the agricultural effluents,
and changes in water currents favor the growth of toxic algal strains.
As a result, the toxins could suddenly appear in food products that
have never been observed in certain areas, thus creating a new
challenge for monitoring and controlling the issue (42).

Toxic metabolites and their characterization that cause diseases
in microalgae are essential for human health as the incidences of
harmful algal blooms are increasing (74). Cyanotoxins, which are
representative of toxins created by cyanobacteria, are ingested by
people through drinking water and consuming seafood, aerosolized
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TABLE 2 Summary of main microalgal toxins in food products, cyanobacterial genera, toxicity data, and effect of the toxins.

Toxin type Specific
toxins

Cyano-
bacteria
genera

Effect of toxins Contaminated
food product

Recommended
concentration
range

Codex
maximum
level

Reference
dose (RfD)

Lethal dose
(LD50)

References

Cytotoxins Cylindro-
spermopsin

Cylindro-
spermopsis,
Umezakia,
Aphanizomenon

Affects the kidneys and
liver, and causes tissue
destruction and failure of
potential organs

Cyanobacteria and
crops

0.1–1.3 µg/L in water;
up to 3.8 µg/kg in crops

No Codex limit;
WHO provisional:
0.7 µg/L in
drinking water
[World Health
Organization
(WHO) (156)]

0.03 µg/kg bw/day
(158)

75 to 300 µg/kg
(mouse, oral)

World Health
Organization (WHO),
(157); United States
Environmental Protection
Agency (US EPA), (158);
Al-Hussieny, (59); Grace
et al. (25); World Health
Organization (WHO)
(159); International
Agency for Research on
Cancer (IARC) (160);
World Health
Organization (WHO),
(161)

Lipopoly-
saccharides
(LPS)

Lipopoly-
saccharides
(LPS)

Cyanobacterial
sp.

Toxic effects for humans
cause illnesses and are
lethal for mice when
injected into the
peritoneal membrane

Cyanobacteria 7 to 16 mg LPS per
gram of biomass dry
weight

No Codex limit No established
RfD

1 to 2 µg (Human) Al-Hussieny, (59); Grace
et al. (25); Skočková et al.
(162); Dinges and
Schlievert, (163); Stewart
et al. (142)

Hepatotoxins Microcystin Oscillatoria,
Nostoc,
Microcystis,
Aphanocapsa,
Anabaenopsis,
Anabaena,
Hapalosiphon

Directly affect
community of
zooplankton and
affecting species that rely
on cyanobacteria as a
food source

Cyanobacteria and
crops

0.1–1.3 µg/L in water;
up to 3.8 µg/kg in crops

No Codex limit;
WHO provisional:
0.7 µg/L in
drinking water
[World Health
Organization
(WHO) (156)]

0.03 µg/kg bw/day
(158)

75 to 300 µg/kg
(mouse, oral)

Al-Hussieny, (59); Grace
et al. (25); World Health
Organization (WHO)
(159)

Nodularin Nodularia Hepatotoxic effects in
animals and humans,
and Similar effects on
zooplankton
communities

Water and fish No universally
recommended
concentration rate of
nodularin in
microalgae, but
research indicates that it
can be present in
various concentrations

Not specify a
maximum Codex
level

WHO drinking
water
concentration
limit for nodularin
extended from
microcystins-LR)
is 1.5 ug/L

Generally reported
as 50 to 70
micrograms per
kilogram (µg/kg)

Al-Hussieny, (59); Grace
et al. (25); Stewart et al.
(164); Chen et al. (165);
Bownik (166); World
Health Organization
(WHO) (143)

Neurotoxins Saxitoxin Lyngbya,
Anabaena,
Aphanizomenon

Causes paralytic shellfish
poisoning (PSP), cause
respiratory failure and
death

Shellfish (mussels,
clams, oysters),
crustaceans

1.5–2 µg STX
equivalents/kg

Codex: 800 µg
STX-eq/kg in
shellfish meat (167)

0.0007 µg/kg
bw/day (US EPA)

10 µg/kg (mouse) Al-Hussieny, (59); Grace
et al. (25); European Food
Safety Authority (EFSA)
(168); United States
Environmental Protection
Agency (US EPA) (158)
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TABLE 2 (Continued)

Toxin type Specific
toxins

Cyano-
bacteria
genera

Effect of toxins Contaminated
food product

Recommended
concentration
range

Codex
maximum
level

Reference
dose (RfD)

Lethal dose
(LD50)

References

Anatoxin-a(s) Aphanizomenon,
Cylindrospermopsis,
Lyngbya,
Anabaena

Affects neurotransmitter
activities and leads to
death by respiratory
issues.

Cyanobacteria like
Spirulina

The Office of
Environmental Health
Hazard Assessment
(OEHHA) recommends
a short-term
notification level of 4
micrograms per liter
(µg/L) of drinking
water.

No Codex limit;
The Codex
Alimentarius
Commission has
not established a
specific Codex
maximum level
(ML)

Reference dose
(RfD is 3 µg kg per
day

250 µg/kg body
weight

Al-Hussieny, (59); Grace
et al. (25); Chorus and
Bartram (169); World
Health Organization
(WHO) (157)

Homoanatoxin-
a

Oscillatoria,
Anabena

Respiratory muscles were
paralyzed to respiratory
muscles and similar to
Anatoxin-a.

Cyanobacteria No universally
recommended
concentration
maximum drinking
water standard of
6 µg/L-according to
some guidelines
provisional standard of
2 µg/L-New Zealand
WHO-30 µg/L for
short-term exposure
60 µg/L for recreational
water exposure

No Codex limit no
specific Codex
maximum level
(ML)

No established
RfD

112–225 mg and
1,125–2,250 mg of
freeze-dried algal
material per kg
human body
weight

Al-Hussieny, (59); Grace
et al. (25); Bruno et al.
(170); Lilleheil et al. (171);
Zhang et al. (172)

Brevetoxins dinoflagellate
Karenia brevis

Wheezing, asthma, and
respiratory distress

Shellfish, especially
in Florida and
Mexico

20–300 µg/kg in
shellfish

Codex: 200 µg/kg 0.002 µg/kg
bw/day (US EPA)

455 µg/kg (mouse) Food and Drug
Administration (FDA)
(173); Poli et al. (174);
Amzil et al. (175);
Fleming et al. (176)

Domoic acid Pseudo-nitzschia Vertebrate central
nervous system and
other glutamate
receptor-rich organs,
memory loss
gastrointestinal distress,
confusion,
disorientation, coma,
and death

Shellfish (mussels,
clams), finfish, crabs

20 mg/kg in shellfish Codex: 20 mg/kg
(shellfish meat (EU)

0.075 mg/kg
bw/day (US EPA)

35 and 70 mg/kg
(mouse, oral)

European Food Safety
Authority (EFSA) (177);
Bates et al. (178); Lefebvre
and Robertson, (179)

Anatoxin-a Cylindrospermum,
Anabaena,
Phormidium,
Aphanizomenon,
Oscillatoria,
Microcystis

Affects the respiratory
muscles, and as a result
difficult to breathe and
death.

Freshwater fish,
shellfish, and
possibly drinking
water

Rarely quantified in
food; mostly in water at
0.1–60 µg/L

No Codex limit No established
RfD

200–375 µg/kg
(mouse)

Al-Hussieny, (59); Grace
et al. (25); Aráoz et al.
(180); Chorus and
Bartram (169); World
Health Organization
(WHO) (157); Van der
Merwe, (181); Polhemus
and Zeise, (182); Bruno
et al. (170)
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toxins inhaled by people, and skin contact due to water sports,
etc (42). Given these pathways of exposure, it becomes pivotal for
policymakers to understand the extent of associated health risks
to establish a structure for prevention measures (115). It is very
important to conduct in-depth studies regarding the effect of global
environmental changes and microalgae toxins.

4.5 Consumption of water and foods
contaminated with toxins

Consumption of water polluted with these toxins is one of
the most hazardous ways of getting involved with microalgae
toxins (74). Consequently, the toxins of cyanobacteria, primarily
microcystins, are the primary worries in freshwater ecosystems
where harmful algal blooms threaten water accessibility for
drinking. Among the toxins of this genus, microcystins produced
by species such as Microcystis aeruginosa are the most dangerous
because they possess hepatotoxic effects; they inhibit protein
phosphatases Protein Phosphatase 1 and Protein Phosphatase
2, cause liver injuries and tumor issues (113, 116). High-level
microcystins were shown to cause liver failure upon acute toxicity,
while low-dose sub-chronic or chronic toxicity of microcystins
affected liver cancer (85). In the study by Hilborn (117). They also
note that there is a massive threat of exposure to microcystin in
drinking water, as water utilities are still not capable of eradicating
the toxins from the drinking water.

In the aquatic environment, another clear danger is the
build-up of neurotoxins in seafood. Currently, Paralytic Shellfish
Poisoning is caused by toxins named saxitoxins, which are
generated by certain species of dinoflagellates, including
Alexandrium, and accumulated by shellfish. Paralytic Shellfish
Poisoning can be as mild as tingling and numbness, and severe
enough that it leads to paralysis and respiratory failure (74, 118).
In the same way, domoic acid, a neurotoxin of diatoms such
as Pseudo-nitzschia, leads to amnesic shellfish poisoning, which
impacts the central nervous system. Amnesic Shellfish Poisoning
signs include memory impairment, particularly confusion, short-
term memory loss, and, in extreme form, experiential shock,
seizures, and death (119).

These poisons in the food chain increase the risk to consumers’
health, particularly for those, including fishermen, who consume
marine products. This issue has been well documented, especially
in coastal regions, where seafood is a staple in most local diets.
This situation has created a need to enhance the surveillance of
toxin levels in commercially and recreationally harvested shellfish
(74). Inhalation and Dermal Contact Apart from ingestion, the
second mode of exposure is inhalation of aerosolized microalgae
toxins during games in or near water bodies that contain the
toxins (118). Cyanobacterial blooms can produce gas-borne toxins,
and these are inhaled, hence causing respiratory manifestations.
The aerosolized microcystins can trigger allergies, asthma, and
other respiratory problems like headaches, watery or bloody noses,
dizziness, vomiting, diarrhea, skin rash, and, in severe cases, hives
and pneumonia in children and the elderly (120). Leisure activities
such as swimming, boating, and water sports put the individual
at a greater risk of inhaling the toxins present in water and
or getting in direct contact with the toxins through the skin,

which enhances their health perils (118). Microalgae toxins are
also dangerous when dermally administered, and this happens
especially when one comes into direct contact with the water, such
as when swimming (115). The primary effects of the lyngbyatoxins
present in the cyanobacteria include skin rash, skin irritation,
and skin inflammation (120). The above-presented dermatological
symptoms are typical complaints by people who swim in water
bodies containing harmful algal blooms (121). While skin contact
is usually less dangerous than contacting the substance with the
mouth or nose or breathing it in, it still causes severe distress and,
with persistent irritation, followed by infection (74). Table 2 depicts
the summary of major microalgal toxins in the food products,
maximum limits, and their toxicity data.

5 Impact of microalgae toxins on
human health

A current concern arising from microalgal toxins is
hepatotoxicity and gastrointestinal illness, often linked to
microcystins synthesized by the cyanobacterium Microcystis
aeruginosa (122). A detailed illustration showing the impacts
is shown in Table 2. Microcystins are very resistant and tend
to concentrate in water reservoirs, and their ingestion through
contaminated food or drinking water due to algal blooms poses a
threat to the liver (85, 123). Symptoms of toxicity/exposure, acute
dermal and oral exposure result in vomiting, abdominal pain, and
nausea, while over-exposure to chronic systemic conditions results
in hepatotoxicity, tumor formation, among other diseases due to
its strong hepatotoxicity (124).

This toxin is also very stable, and normal water treatment
systems may not fully eliminate the microcystins, presenting a
continued threat to communities using such water (122). In
addition to being toxic, these microalgae exhibit neurotoxic
influences—saxitoxins and domoic acid- causing manifold health
risks (85). The toxins that cause paralytic shellfish poisoning
(PSP) include saxitoxins, which are produced by Alexandrium and
other species and result in a tingling sensation to paralysis and
failure in respiration (125). Another neurotoxin that is closely
associated with species including Pseudo-nitzschia is domoic acid,
which can cause amnesic shellfish poisoning (ASP), which affects
the hippocampus in the brain, impairing memory and learning
capability (126). These neurotoxicity effects can be much worse in
some susceptible categories of the population, such as children, the
elderly, and immunocompromised persons (125).

Transmission pathways and second-order threats, besides other
types of exposure (for instance, bioaccumulation in fish products),
are also considered to threaten public health (122). Hazardous
toxins can be found in fish, shellfish, and other seafood; those
toxins bioaccumulate and move up the food chain toward human
consumers (127). This bioaccumulation is somewhat different
from other toxin concentrations as toxins may remain in the
seafood even when there are no signs of algae blooms evident
(128). For instance, surveillance schemes in the Baltic Sea have
established that microcystin toxins may become incorporated
within fish tissues, thereby posing risks through the consumption
of contaminated fish outside the bloom season (124).
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Thus, where waterborne exposure to microalgal toxins may
be possible, toxic compounds are also aerosolized in coastal
environments, posing significant risks to respiratory health (122).
Research has shown aerosolized cyanotoxins, which, once inhaled,
can penetrate the respiratory system, resulting in respiratory
inflammation, asthma, and chronic lung disease (129). This form of
exposure mainly affects coastal people and those who work closely
with water, such as lifeguards and fishers (127).

According to the available documentation, there are clinical
records regarding the food poisoning events caused by the
contamination of microalgal toxins in different countries. As shown
in Hinder et al. (55), 56 patients were identified with various toxic
effects while 6 patients died due to the consumption of seafoods
containing noxious substances, with ages 5–94 years, from 1998
through 2009 in the United Kingdom (55). Kim et al. (130) also
show that with the available data of the Asia-Pacific Countries,
shellfish that accumulate toxins when ingested by humans can
cause diverse symptoms (diarrhea and muscle pain) and even death
(130). Based on the available literature data till 2024, it clearly shows
that six allergic reactions, at least 70 illnesses, and 14 mortality
records have been globally recorded (131). As mitigation strategies
are better than the cure, studies regarding these microalgal toxins is
a timely action.

Public Health and Management Implications showed the
different consequences of microalgal toxins and also pointed to
a dire need to come up with ways to tackle the issue, given that
it has both long- and short-term effects on the health of those
who consume them. Toxic microalgal monitoring surveillance
programs for water, seafood, and coastal atmosphere are crucial
in preventing microbial access to communities (74). Innovations
like hand-held optical equipment relevant to the remote detection
of toxin-producing algae at the bloom formation scene could
decrease exposure dangers (123). Furthermore, raising awareness
of how to avoid consuming seafood contaminated by hazardous
algal blooms or toxins can considerably decrease people’s exposure
(132). Consequently, microalgal toxins are widely adverse and have
numerous effects that relate to human health, and they can affect
all age groups regardless of direct or indirect contact. Since climate
change poses a potential threat to hazardous algal bloom, observing
and explaining activities coupled with technological advancement
can help to manage health-related hazards, as shown in Table 2
(85). More efforts are required in the cross-disciplinary analysis
of toxicity to garner more information on the toxicity, diagnostic
techniques, and prevention measures that would protect particular
risk groups (85).

6 Detection and mitigation
strategies

Humans are currently at a significant risk from the HAB,
due to rising seafood consumption. Consuming contaminated
fish, seafood products, or water could expose humans to harmful
toxins produced by HABs causing respiratory illness, memory
loss, seizures, digestive tract problems, and skin irritation and also
fatalities (133). Due to this possible impact of HAB, the detection
of harmful microalgal toxins has become essential for human

health protection because which provides a major risk to human
health (134).

There are different mitigation strategies to eliminate
the extracellular toxins present in the microalgae. Different
technologies utilize chemical and physical methods, such as
activated carbon adsorption and membrane filtration, as well as
chemical inactivation through the application of oxidants like
chlorine, potassium permanganate, ozone, or ultraviolet light
(135). These approaches harness the inherent abilities of diverse
microorganisms, such as macrophytes, microalgae, macroalgae,
bacteria, viruses, actinomycetes, and pathogens, to regulate HABs
(136). Effective monitoring and early identification are essential
for controlling risks from aquatic environments, toxin-producing
microalgae. Moreover, regulation of nutrients, specifically carbon,
nitrogen, and phosphorus, is considered an important long-term
strategy for preventing the formation of hazardous blooms, which
are made worse by eutrophication (137).

6.1 Detection methods

In recent times, there are different types of detection methods
such as chemical methods, biochemical methods, molecular
methods, biosensors to detect the microalgal toxins. LC-MS/MS,
HPLC, HPCE are the chemical techniques utilized for the detect
aquatic algal toxins. These methods have separation efficiency,
low solvent cost, small sample volume, and ability to detect
multiple toxin groups. However, these have limitations such
as high technical complexity, high cost, long operating time,
and requires an expert in the field to operate. Biochemical
assays such as PPIA, ELISA, and cell-based assays provide
specificity, sensitivity, and speed (134). Compared to traditional
microscopic identification and numeration methods, molecular
method like quantitative PCR (qPCR) allows for the simultaneous
amplification and detection of specific DNA sequences, and its
objectivity, sensitivity, and specificity make it suitable for routine
monitoring of toxic algae (138). as well as high sensitivity, quick
turnaround time, resilience, affordability, ease of use, accuracy,
and low power needs of biosensors offer attractive options to
get beyond the limitations of traditional detection quantification
techniques (133).

6.2 Public awareness

Public awareness campaigns can significantly minimize human
exposure to cyanotoxins either due to recreational activities,
drinking untreated water or consuming seafood. In addition,
limiting the risk of bacterial bloom formation can be achieved by
implementing good social practices and avoiding the disposal of
organic and inorganic waste near water sources. Under nationally
supported programs in developing countries, media coverage of
how climate change affects the safety of food ingested could
be implemented. It is an urgent need to strengthen the aware
the children and the public community about these microalgal
toxins from their early childhood, because for children, it can
lead to an intellectual disability due to their poisonous effect.
In addition to knowledge sharing sessions, such as workshops,
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global networks programs, and research discussions to aware the
community can be identified as a timely need to mitigate this
microalgae toxin. Moreover, governmental and non-governmental
organizations should interfere in the microalgae-related toxins,
and they can organize awareness programs (139). In contrast,
regulations should be established by governments to make sure
that undesirable industrial effluents are correctly cleaned up
before they enter aquatic bodies. Only awareness is not applied,
or restrictions on recreational activities, or the prohibition of
any water-related activity, depend on the detected levels of the
monitored toxin. Indeed, having a categorical risk to cyanotoxins
classification (low, medium, and high) will help choose the
appropriate action (135).

6.3 Consumer protection and regulatory
models

In 1998, the WHO established a provisional TDI for chronic
exposure to MC-LR of 0.04 g/kg body weight and a provisional
guideline value of 1 g/L in drinking water (cell-bound and extra-
cellular toxins) to protect the public from the harmful effects
of cyanotoxins. For MC-LR, CYN, STXs, and ANTX, WHO
suggested revised provisional guidelines in 2020. To better reflect
the health effects, temporary guidelines were modified. However,
the provisional TDI remained the same for MC-LR.

It has been suggested that to measure the risk accurately,
the concentration of MCs present should be considered. A new
provisional recommendation of 12 g/L has been recommended for
short-term exposure, but the 1 g/L value for drinking water is used
for long-term exposure. Due to a lack of long-term toxicological
evidence, ANTX was only given a provisional guideline value of
30 g/L for short-term exposure in drinking water. In contrast,
three provisional guideline values have been assigned to CYN.
Guidelines for drinking water exposure have been established at
0.7 g/L for short-term exposure and 3 g/L for long-term exposure.
Provisional standards for drinking water at 3 g/L have been sent to
STX (135).

Certain groups of people are more affected than others
regarding the adverse health effects of microalgae toxins, such
as children, the elderly, persons with chronic diseases, or other
compromised health conditions of the body (74). Therefore, there
is potential for high exposure to people living in areas where
the dependent water resources are surface waters or in areas
where seafood is a staple food (7). Current findings indicate that
Dichlorobenzene exposure at sub-chronic levels and below the
toxicity level may also lead to chronic health issues. Including
liver cancer and neurological disorders (116). An area of special
interest is the ability of microalgae toxins to act as environmental
carcinogens. Researchers have identified that deficient proteins
in cells regulated by microcystins enhance the growth of
liver tumors (85). Acute exposure to low-concentration toxins
can integrate over time and cause cumulative injuries. Hence,
populations with long-term exposure are at a higher propensity
to have cancer-related ailments (112). When considering all these
mitigation strategies, it shows that public/consumer awareness and
regulatory models are the best strategies to mitigate this microalgal
toxin for humans.

7 Future direction

Despite extensive research, several knowledge gaps hinder
our comprehensive understanding of microalgae toxins in food
products and their implications for human health. These gaps limit
the ability to develop effective mitigation strategies and ensure
food safety. Considering these gaps, conducting more studies in the
future is essential.

Regarding the production of toxins, several microalgae species
are still not fully understood and it is a timely need to research in
this field. Toxins such as domoic acid, saxitoxins, and microcystins
are commonly identified (140) but there may be others that
are unidentified, especially in lower-studied microalgae species.
So, it is important to thoroughly profile different microalgae
species for potential toxins, which is a highlighted research
gap. Also, the production of toxins is significantly influenced
by environmental factors, including temperature, salinity, light
intensity, and nutrient availability. Prediction and monitoring
endeavors are made more difficult by the incomplete understanding
of the specific conditions and mechanisms causing this variability.
So, clarifying the environmental factors that contribute to the
production of toxins requires multidisciplinary research that
integrates oceanography, climate science, and microbiology. Also,
to monitor changes in the patterns of algal blooms and their toxin
profiles, long-term monitoring programs should be established
in the location.

There are significant gaps in the knowledge of these toxins’
bioconcentration, bioaccumulation, and bioamplification, as well
as the impact of detoxication and covalent binding of microcystins
on transfer in the food web, despite the abundance of fundamental
data regarding their concentrations in freshwater food webs.

Different detection techniques have been developed to detect
microalgae toxins to date, but currently detection techniques
frequently lack the sensitivity, specificity, and efficiency necessary
for regular monitoring of various toxin types. In general, different
detection techniques are appropriate for other purposes (141). So,
toxin detection can be improved by advances in biotechnology and
analytical chemistry. Furthermore, methods like biosensors, high-
resolution mass spectrometry, and assays based on nanoparticles
should be improved for rapid, accurate, and cost-effective toxin
screening, which are emerging requirements that show the
knowledge gaps in this field.

Conclusion

Even though there is a huge demand for microalgae-
incorporated food and dietary supplements in the community,
there is still a risk of microalgal toxin poisoning via these
food products. As these toxins can cause life-threatening health
issues in both humans and animals, it is important to identify
these toxin-producing microalgal species, the types of toxins they
produce, their biochemical pathways, and the environmental and
population factors that influence toxin production. Moreover,
understanding the exposure pathways to these toxins and their
mode of action is crucial to avoid and treat associated health
implications. Apart from that, these microalgal toxins cause critical
damage to the environment and the economy. Hence, developing
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effective detection and mitigation strategies is essential to fight
against microalgal toxins. Effective monitoring and early detection
of microalgal toxins in natural ecosystems can drastically reduce
the risk of human exposure to microalgal toxins. Raising public
awareness is also important to address the root causes of HABs.
Additionally, imposing regulations as those established by the
WHO plays a major role in setting guidelines for safe exposure
levels in food and water. The above study shows the need to conduct
multidisciplinary research strategies to prevent microalgal toxin
contamination and mitigation techniques under commercial food
production regarding microalgae.
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