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Background: The conjugation of polyphenols to proteins provides a method for 
modifying the structure and properties of proteins.

Methods: This study investigated the roles of ultrasound in the conjugation of 
epigallocatechin gallate (EGCG) with whey protein isolate (WPI) and its effects on 
the structural characteristics and properties.

Results and discussion: The formation of EGCG-WPI conjugates (EW) resulted 
in a decrease in free amino groups and thiol groups in WPI, accompanied by an 
increase in size and thermal stability. Consequently, this conjugation inhibited the 
immunoglobulin E (IgE) binding capacity and improved the emulsifying properties of 
WPI. Furthermore, ultrasound facilitated the interaction by producing larger size of 
conjugates (U-EW), increasing the binding affinity from 5.8 × 105 M−1 to 1.7 × 106 M−1 
and the polyphenol bound equivalent from 80.4 ± 1.3 mg/g to 98.2 ± 1.9 mg/g 
compared to EW. It induced the greater changes in the secondary structure and 
surface hydrophobicity, thereby promoting greater participation of β-lactoglobulin 
(βLg) in conjugation with EGCG, and resulting in a higher inhibition rate of IgE 
binding capacity, an enhanced emulsifying property of U-EW. These findings will 
potentially expand the applications of WPI in the food industry.
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1 Introduction

Whey protein isolate (WPI), consists of β-Lactoglobulin (βLg), α-lactalbumin (αLa), 
bovine serum albumin (BSA) and lactoferrin (LF), offers an exceptionally high nutritional 
value with all the essential amino acids required by humans (1, 2). It is well known that WPI 
is extensively utilized as ingredient in dairy products, meat products, and baked goods to 
enhance the nutritional value of these products, as well as to improve their texture, taste, and 
stability (3, 4). However, its emulsifying properties vary under different environmental 
conditions, which is the key functional property that governs its application in dairy and meat 
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products. Furthermore, it has potential allergenic effects that could 
trigger milk allergies, classified as immunoglobulin E (IgE)-mediated 
type I hypersensitivity (5, 6). This can lead to a severe inflammatory 
response and various allergic symptoms, potentially resulting in life-
threatening reactions (6).

The emulsifying properties and allergenicity of WPI are closely 
dependent on its conformational structure (7). Consequently, these 
properties can be modified or inhibited by altering the conformational 
structure of WPI. Chemical conjugation offers a method to alter the 
structure through either covalent or non-covalent bonds. Interestingly, 
polyphenols, which contain multiple phenolic hydroxyl groups, exhibit 
a significant potential for combining with WPI to form polyphenol-WPI 
conjugates (8, 9). The formation of these conjugates primarily relies on 
hydrogen bonds, hydrophobic interactions, electrostatic interactions, 
and covalent bonding (10). Moreover, this conjugation can modify the 
secondary structure of WPI, thereby influencing its properties, such as 
enhancing emulsifying ability, reducing allergenicity and masking 
unpleasant odors (10, 11).

Stirring and shaking at alkaline condition is the commonly 
used method for the conjugation of WPI and polyphenols. 
However, it faces challenges, including low binding efficiency, 
prolonged conjugation time, and harsh conditions (12). 
Fortunately, ultrasonic technology has emerged as a green and 
efficient physical processing method, gaining widespread 
application in the food industry (6, 13). Ultrasound is a mechanical 
wave with a frequency exceeding 20 kHz, which generates a 
cavitation effect (13). These effects can disrupt chemical bonds 
between molecules, enhance molecular interactions, and accelerate 
the rate of chemical reactions (14). For instance, our previous 
studies revealed that ultrasound facilitates the adsorption of 
β-lactoglobulin on starch nanoparticles, thereby enhancing 
desensitization effects (6). Chinarak et al. (15) demonstrated that 
ultrasonic treatment significantly improved the interaction of WPI 
and gallic acid, promoting structural changes. However, the 
mechanisms by which ultrasound affects the conjugation of 
polyphenols to WPI and its influence on properties, particularly 
emulsifying ability and allergenicity, remain unclear.

In this study, the effect of ultrasound on the conjugation of WPI 
and epigallocatechin gallate (EGCG) was investigated from the 
perspectives of binding affinities (Ka), secondary structure, and 
protein compositions of WPI-EGCG conjugates. Furthermore, the 
resulting alteration in allergenicity and emulsifying properties were 
probed. These results will provide a framework for optimizing the 
characteristics of WPI and expanding the application of ultrasound in 
the food industry.

2 Materials and methods

2.1 Materials

Whey protein isolate (protein content 93.5%) was purchased from 
Mullins Whey Co., Ltd. (Mosinee, WI, United  States). The 
epigallocatechin gallate (purity ≥ 99%), 1-anilinonaphthalene 8 
sulfonate (ANS) and ortho-phthaldialdehyde (OPA) were purchased 
from Sigma Aldrich (St. Louis, MO, United States). Serum samples 
from cow milk allergen (CAM) patients were generously provided by 
Jinan Maternity and Child Care Hospital (Jinan, China). Other 
chemical reagents, including PBS, NaOH and Folin–Ciocalteu are 

analytical grade and purchased from Sinopharm Chemical Reagents 
Co., Ltd. (Shanghai, China).

2.2 Formation of EGCG-WPI conjugates

The EGCG-WPI conjugates were formed following the protocols 
established by Shao et al. with minor modifications (9). WPI (2 mM, 
0.1 mM) was incubated with EGCG solution (2 mL, 1 mM) in alkaline 
environment (pH 9.0) at 24°C for 2 h. Afterwards, EGCG-WPI 
conjugates, referred to EW, were obtained after removing unreacted 
EGCG by dialysis (2000 Da cut-off) against double-distilled water at 4°C 
with 4 water changes. For the ultrasound treatment (U-EW), these 
solutions were processed using an ultrasound probe with a circulating 
water bath at 24°C (JY92-IIDN, Ningbo Scientz Bio-technology Co., 
Ningbo, Zhejiang, China). The sonication was set to 120 W, with a pulse 
duration of on-time 4 s and off-time 2 s according to previous studies.

2.3 Polyphenol bound equivalents

The phenol contents in EW and U-EW were measured using the 
Folin–Ciocalteu method (16). Briefly, EGCG (0.5 mg/mL) was utilized 
as the standard solution to construct the calibration curve. The resulting 
standard equation is y = 9.16452x + 0.00642, with an R2 value of 0.9995. 
One milliliter of each sample was mixed with Folin–Ciocalteu (2.5 mL, 
0.1 N) for 5 min, then co-incubated with 2.5 mL sodium carbonate 
(15%, w/v) at 40°C for 1 h. The absorbance at 778 nm was determined 
using an ultraviolet–visible spectrophotometer, with the protein sample 
treated in the same manner as a control.

2.4 Free amino groups and thiol groups

The content of free amino groups in WPI and EGCG-WPI 
conjugates was determined using ortho-phthaldialdehyde (OPA) 
method (17). Two hundred microliters of samples (4 mg/mL) was 
incubated with 4 mL of the OPA reagent at 35°C for 2 min. The 
absorbance at 340 nm was measured against the OPA reagent. The 
content of free thiol groups was measured according to the method 
described by (38). Fifteen milligrams of samples were incubated 
with 50 μL of Ellman reagent at room temperature for 1 h. The 
absorbance at 412 nm was measured, using the conjugates as 
a blank.

2.5 Dynamic light scattering (DLS)

WPI and EGCG-WPI conjugates solution were filtered through a 
PTFE 0.8 μm filter, added in Malvern ZetaSizer Nano ZS instrument 
to measure the hydrodynamics diameters and zeta-potential with 
refractive index of 1.450 according previous study (3).

2.6 Fluorescence spectroscopy

The fluorescence intensity of WPI and EGCG-WPI conjugates 
measured on a Cary Eclipse fluorescence spectrophotometer (Varian, 
Sweden). WPI (0.1 mM) was incubated with EGCG (0–1 mM) at 
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24°C for 30 min in the presence or absence of ultrasound, respectively. 
These samples were excited at 280 nm with a slit width of 5 nm and 
the emission spectra was recorded from 300 to 450 nm. The binding 
affinities was calculated following Equation:

 
( ) − = +    0log F F /F log Ka log Dn

 (1)

Where F0 and F are the maximum fluorescence intensities of WPI 
in the absence and presence of the EGCG, respectively, D is the EGCG 
concentration, and n is the number of binding sites.

2.7 Circular dichroism (CD)

The secondary structure of WPI in native and in conjugates were 
determined by a Chirascan Spectropolarimeter (Applied Photophysics, 
United Kingdom) operating at 200 nm/min speed, 2.0 nm bandwidth 
with a 1 mm path length quartz cell at 24°C.

2.8 Surface hydrophobicity (H0)

The H0 of WPI and EGCG-WPI conjugates was determined using 
8-aniline-1-naphthalene sulfonate (ANS) as the fluorescent probe as 
described by Han et al. (4).

2.9 Differential scanning calorimetry (DSC)

The thermal stabilities of WPI and EGCG-WPI conjugates were 
determined using a DSC 8000 thermal analysis system (Shimadzu, 
Tokyo). Briefly, 5.0 mg of sample powder was heated from 50°C to 
200°C with a constant rate of 5°C/min under dry nitrogen.

2.10 Sodium dodecyl sulfate 
polyacrylamide gel electrophoresis 
(SDS-PAGE)

SDS-PAGE analysis was performed following our previous 
protocols with slight modification (18). The precast PAGE gels utilized 
were 5% stacking gels and 15% separating gels. The conjugates were 
mixed with loading buffer and boiled for 5 min before electrophoresis. 
A volume of 10 μL from each sample solution was cooled to room 
temperature and then loaded into the gel lanes, with a working voltage 
set at 180 V.

2.11 IgE binding capacity

The IgE binding capacity of WPI and EGCG-WPI conjugates 
were determined by an inhibition enzyme-linked immunosorbent 
assay (ELISA) described by Zhang (19). The polystyrene 
MaxiSorp 96 U-well microplates (Roskilde, Denmark) were coated 
by 120 μL WPI and EGCG-WPI conjugates (5 μg/mL), then 
incubated with 100 μL CAM patients’ serum (1:30 in PBST) for 2 h 
after the free-binding sites were blocked. Afterwards, goat 

anti-human IgE-HRP (100 μL, 1:200  in PBST) was added and 
incubated for 60 min. The absorbance of microplates at 450 nm was 
determined by a Bio-Rad Microplate Reader. The inhibition rate was 
calculated using:

 ( ) ( )= − ×0Inhibition % 1 B/B 100 (2)

where B and B0 are the absorbance values of the wells in the WPI 
or EGCG-WPI conjugates, respectively.

2.12 Emulsifying ability (EAI) and 
emulsification stability (ESI)

The emulsifying properties of WPI before and after EGCG 
conjugates was access according to our protocols (20). One 
milliliter of soybean oil was added to 9 mL of sample solution 
(1 mg/mL) and homogenized at 10,000  rpm for 2 min. 
Subsequently, 50 μL of the emulsion was taken and incubated with 
5 mL of 9% SDS. The absorbance of emulsions at 500 nm was 
determined. The EAI and ESI was calculated by the 
following Equations:

 
( ) ×

= × ×
×∅× ×

2
04

2 2.303/
10

EAI m g A D
c L  

(3)

 
( ) = ×

−
0

0 10
min 10AESI

A A  
(4)

Where c is the concentration of emulsion, A0 and A10 are the 
absorbance of emulsions at 0 min and 10 min, Φ is the oil phase volume 
percent, D is the dilution factor (100), L is the light range (2.303).

2.13 Statistical analysis

The measurements were performed in triplicate, and the data are 
presented as mean ± standard deviation. Statistical analysis was 
conducted using SPSS version 17.0 (SPSS Inc., Chicago, IL, 
United States). A significant difference was defined as p < 0.05 and 
represented by different letters.

3 Results and discussion

3.1 The polyphenol bound equivalents

The alkaline conditions can oxidize EGCG to quinones, further 
extend the structure to maintain the deprotonation of WPI, facilitating 
the conjugation of EGCG to WPI (4). The polyphenol binding 
equivalents of EGCG-WPI conjugates, both with and without 
ultrasound treatment, were analyzed using the Folin-Phenol assay. The 
results indicated that the equivalents in the EW and U-EW were 
80.4 ± 1.3 mg/g and 98.2 ± 1.9 mg/g, respectively. This increase in 
bound equivalents demonstrates that ultrasound can enhance the 
conjugation of EGCG to WPI, induced by the cavitation and shearing 
effects of ultrasound (6).
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3.2 Free amino group and thiol group

The quinones derived from phenolic compounds are susceptible 
to react with the nucleophilic side chains of proteins, such as amino 
and thiol groups (21). The conjugation of EGCG with WPI was further 
investigated by monitoring changes in the concentration of free amino 
and thiol groups, and showed in Figure 1. The conjugation of EGCG 
with WPI significantly decreased the levels of free amino groups, as 
the result of the free radicals combining with polyphenols. 
Furthermore, ultrasound treatment resulted in a more significant 
reduction of free amino groups in the conjugates (U-EW), with EW 
showing 500 ± 70 nM/mg, while U-EW demonstrated 300 ± 50 nM/
mg. Additionally, the alteration in thiol groups exhibited a similar 
trend with changes in amino groups. The thiol group concentration 
decreased from 62.7 ± 3.9 nM/mg in WPI to 34.4 ± 2.9 nM/mg in EW, 
and further to 26.8 ± 1.6 nM/mg in U-EW.

3.3 DLS

The DLS is a widely used method for determining the particle 
size distribution based on Brownian motion in liquids (22), and also 
employed to assess the degree of conjugation of polyphenols with 
proteins (23). The hydrodynamic diameters and zeta potentials of 
WPI before and after EGCG conjugation are illustrated in Figure 2. 
The hydrodynamic diameter increased from 450 ± 44 nm for WPI 
to 600 ± 59 nm in EW. The zeta potential of EW was approximately 
−24.1 ± 1.6 mV, which is lower than that of WPI (−17.7 ± 2.1 mV). 
Zeta potential is a critical indicator of emulsion stability, reflecting 
the extent of electrostatic repulsion between droplets (24). The 
increase in the absolute value of the zeta potential indicates that the 
stability of WPI was enhanced by the conjugation of EGCG, 
moreover, the negative charge of EGCG could enhance the negativity 
of the conjugates. Additionally, the diameter of the U-EW increased 
to 710 ± 52 nm, which is larger than that of EW, and it exhibited the 
highest absolute zeta potential value of 27.9 ± 2.0 mV. The sonication 
process facilitated the conjugation of EGCG, resulting in a reduction 
of interfacial tension and creating a robust barrier against 
flocculation and coalescence (25).

3.4 Fluorescence spectroscopy

The WPI contains plenty of chromophores, namely, tryptophan, 
tyrosine, and phenylalanine residues, which provide a convenient 
parameter for investigating the interactions between proteins and 
ligands (26). The fluorescence intensity can be quenched when the 
chromophores are within a quenching distance to EGCG, inducing 
fluorescence resonance energy transfer and resulting in fluorescence 
quenching (22). Furthermore, the quenching efficiency depends on 
the binding force and distance, which can be described by the Ka (6).

The fluorescence spectrum of WPI before and after EGCG conjugated 
with or without ultrasound treatment, are illustrated in Figure  3. A 
redshift in the maximum emission wavelength (λmax) was observed 
when WPI was conjugated with EGCG, which was further enhanced by 
ultrasound treatment. This result indicates the unfolding of the protein, 
leading to conformational changes that expose more tryptophan residues 
to a more hydrophilic environment (27). Furthermore, the fluorescence 
intensity of WPI gradually decreased with the increasing concentration of 
EGCG, indicating the occurrence of intermolecular energy transfer 
between WPI and EGCG. Notably, sonication accelerated this quenching 
rate, resulting in an increase in Ka from 5.8 × 105 M−1 to 1.7 × 106 M−1 
when the conjugation occurred in an ultrasound environment accroding 
to Equation 1. This result aligns with the findings of Shao, who reported 
that ultrasound increased the Ka of EGCG with βLg from 2.5 × 105 M−1 
to 6.3 × 105 M−1 (9). This phenomenon can be attributed to two factors 
(6): first, the cavitation effect generated by ultrasound facilitates the 
conjugation of EGCG to WPI; second, ultrasound promotes the unfolding 
of the protein (3), thereby increasing the exposure of active sites in WPI 
to EGCG. Consequently, the number of binding sites (n) increased from 
1.04 to 1.56.

3.5 Secondary structure and H0

The changes in the secondary structure of WPI before and after 
conjugation with EGCG were analyzed using CD, as shown in Table 1. 
The secondary structure of WPI consists of 12% α-helix, 39% β-sheet, 
17% β-turn, and 32% random coils. However, upon conjugation with 
EGCG, the proportion of α-helix increased while the β-sheet proportion 

FIGURE 1

The content of free amino groups (A), thiol groups (B) in WPI, EW and U-EW. Different letters represent significant differences (p < 0.05) and error bars 
correspond to standard errors.
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decreased. Additionally, ultrasound treatment enhanced this alteration, 
consistent with the findings of Ka. These results suggest that conjugation 
may lead to a partial expansion of the WPI molecular structure and 
induce the conversion of β-sheet to α-helix. The reduction of β-sheet, 
particularly βLg, could disrupt the conformation of IgE epitopes, 
emphasizing the potential for desensitization to WPI (28).

The H0 is another structural characteristic of proteins that influences 
their properties, specifically related to the number of hydrophobic groups 

present on the protein surface (29). As shown in Figure 4, the intensity 
of H0 decreased from 8,200 ± 520 in WPI to 5,100 ± 460 in EW, and 
further decreased to 4,600 ± 480 in U-EW. The conjugation of EGCG 
induced protein unfolding and resulted in a more hydrophilic profile 
compared to WPI, exposing hydrophobic amino acid residues that were 
previously buried within the globular structure of the protein. It has been 
established that hydrophobic interactions drive the molecular 
rearrangement, which is facilitated by ultrasound, leading to the 
formation of conjugates (30).

3.6 DSC

The DSC is utilized to characterize the denaturation 
temperature of the conjugates by measuring heat flow during 
temperature changes, as presented in Figure 5. The results indicate 
that the denaturation temperatures of the conjugates were 
significantly increased compared to native WPI. WPI exhibited a 

FIGURE 2

The DLS spectra (A) and zeta potential (B) of WPI, EW and U-EW. Different letters represent significant differences (p < 0.05).

FIGURE 3

Fluorescence emission spectra of WPI after incubation with EGCG without (A) and with (B) ultrasound treatment.

TABLE 1 Secondary structural components of WPI in native and 
conjugates states as affected by ultrasound treatment.

Samples α-helix β-sheet β-turn Random 
coil

WPI 12% 39% 17% 32%

EW 16% 33% 20% 31%

U-EW 18% 30% 16% 36%

https://doi.org/10.3389/fnut.2025.1604708
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2025.1604708

Frontiers in Nutrition 06 frontiersin.org

characteristic peak at 94.53 ± 0.62°C with a ΔH of 
351.27 ± 55.28 J/g, while the characteristic peak of EW increased to 
129.64 ± 0.53°C, and further rose to 142.42 ± 0.86°C in the 
U-EW. This demonstrates that the attachment of EGCG to the 
protein molecules enhances the thermal stability of the conjugates. 
The higher denaturation temperature suggests the improved 
thermal stability (6). The conjugation of EGCG may reduce peptide 
degradation, and furthermore, the crosslinking decreases the 
content of free amino acids, thereby enhancing thermal 
stability (31).

3.7 SDS-PAGE and IgE binding capacity

β-lactoglobulin is the primary allergenic protein found in WPI, 
with a molecular weight of 18.4 kDa (32). Consequently, 
desensitization to βLg is the primary strategy for reducing WPI 
allergy, and the IgE binding capacity is a key criterion for assessing the 
allergy (33, 34).

SDS-PAGE under denaturing conditions was employed to analyze 
the changes in molecular weights changes in WPI before and after 
EGCG conjugation. Figure 6A presents the electrophoretic results for 
WPI, EW, and U-EW, respectively. Compared to the marker, the native 

WPI exhibited two prominent bands at approximately 18 kDa and 
14 kDa, corresponding to βLg and αLa, respectively. However, the 
bands for EW and U-EW migrated slightly upward compared to 
native WPI, indicating successful EGCG conjugation. Notably, 
observing the electrophoretic spectra of EW and U-EW, it can 
be found that the bands at 18 kDa in U-EW appeared more denser 
than that of EW, suggesting that may promote greater participation of 
βLg in conjugation with EGCG, leading to a higher relative 
representation of βLg-related conjugates (33).

The effect of WPI-EGCG conjugates on the IgE inhibition rate was 
determined using ELISA, as illustrated in Figure 6B. The IgE binding 
capacity of WPI was significantly reduced when conjugates were 
formed (>60%, p < 0.05) accroding to Equation 2. Furthermore, the 
IgE combing inhibition rate of U-EW increased to 74.4% ± 5.3% due 
to the enhanced conjugation of EGCG with WPI facilitated by 
ultrasound. The conjugation of EGCG demonstrated a greater 
desensitization effect compared to the proteolytic hydrolysis of WPI, 
which had an IgE binding capacity of approximately 61.65% (35). 
Additionally, the SDS-PAGE results indicated that more βLg was 
involved in the conjugation process under ultrasound, leading to a 
more effective inhibition of allergies, as βLg is the primary allergenic 
protein in WPI.

3.8 EAI and ESI

The EAI and ESI are the key criteria for evaluating the functional 
properties of proteins and their applications (11). Enhanced EAI and 
ESI can broaden their use in the food industry (36). The EAI and ESI 
of WPI in native state, as well as in EGCG-WPI conjugates formed 
with and without ultrasound treatment, were assessed in soybean oil 
emulsions, with the results calculated by Equations 3 and 4 presented 
in Figure  7. The findings indicate that ultrasound treatment can 
enhance the conjugation of EGCG to WPI, thereby facilitating an 
increase of ESI and EAI in U-EW. The EAI of WPI significantly 
increased from 41.2 ± 2.9 m2/g to 65.9 ± 4.1 m2/g after conjugation 
with EGCG, and further increased to 74.1 ± 4.7 m2/g following 
ultrasound treatment. Similarly, the ESI of native WPI was measured 
at 17.6 ± 1.4 min, which increased to 24.9 ± 1.8 min in emulsions 
without ultrasound (EW) and to 27.7 ± 1.7 min in U-EW. The 
covalent conjugation of EGCG enhances the long-range steric 
repulsion of WPI, forming a stable membrane around the oil 
droplets, which contributes to greater emulsion stability. The findings 
were consistent with the research conducted by Meng and Li (12), 
which reported that the conjugation of WPI and polyphenols through 
non-covalent interactions could enhance both EAI and ESI more 
effectively than WPI alone. Furthermore, the presence of aromatic 
residues may also improve the emulsion characteristics of WPI (37).

4 Conclusion

The conjugation of EGCG increased the hydrodynamic 
diameters of EW and the absolute value of the zeta potential of 
WPI, while significantly decreasing their amino groups and thiol 
groups from 2,370 ± 110 nM/mg to 490 ± 40 nM/mg, and from 
62.7 ± 3.9 nM/mg to 34.4 ± 2.9 nM/mg, respectively. Consequently, 
the secondary structures of WPI were changed, leading to a 

FIGURE 4

Surface hydrophobicity of WPI, EW and U-EW. Different letters 
represent significant differences (p < 0.05).

FIGURE 5

DSC analysis of WPI, EW and U-EW.
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reduction in IgE binding capacity and an improvement in 
emulsifying properties. Furthermore, ultrasound facilitated this 
conjugation by forming larger conjugates (U-EW), which increased 
the Ka from 5.8 × 105 M−1 to 1.7 × 106 M−1, and the polyphenol-
bound equivalent increased from 80.4 ± 1.3 mg/g to 
98.2 ± 1.9 mg/g. This resulted in significantly changes in the 
secondary structure and surface hydrophobicity decreased from 
8,200 ± 520 in WPI to 5,100 ± 460 in EW, and further decreased to 
4,600 ± 480  in U-EW. Additionally, the effects of ultrasound 
promoted greater involvement of βLg to EGCG when conjugates 
formation, leading to a higher inhibition rate of IgE binding 
capacity and enhanced emulsifying properties. However, some 
limitations, such as the process conditions for large-scale 
applications, the effects of modifications, and the influencing 
factors, still require comprehensive research based on this finding. 
Therefore, future research work should consider a more detailed 
analysis of the influencing factors and modification effects. These 
findings highlight the potential applications of WPI in the 
food industry.
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