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Introduction: Human milk fatty acids and human milk oligosaccharides (HMOs) 
are milk components inconsistently associated with neurodevelopment. The 
objective of this research is to examine the link between fatty acids, HMOs and 
neurodevelopment.
Methods: This study includes a subset of 240 parent-infant pairs from the 
Edmonton site of the CHILD Cohort Study. At 3–4 months post-partum, 
breastfeeding parents provided a milk sample which was analyzed to identify 20 
fatty acids and 19 HMOs. Research assistants administered the Bayley Scales of 
Infant and Toddler Development at 1 and 2 years of age, comprising cognitive, 
language and motor development scales (standardized to a mean of 100 and a 
standard deviation of 15; higher scores indicate better development). Adjusted 
linear regression was used to estimate the relationships between individual 
milk components or principal components and neurodevelopment, adjusting 
for maternal and infant factors. Interactions were tested with infant sex and 
maternal secretor status.
Results: After adjustment, the first fatty acid principal component, characterized 
by high saturated fat and low n-3 and n-6 fatty acids, was related to higher motor 
scores (β = 1.59; 95% CI: 0.75, 2.43). Higher concentrations of disialyllacto-N-
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tetraose were related to lower motor scores (β = −3.91, 95% CI: −5.81, −2.01). 
Higher concentrations of difucosyllacto-N-hexaose were related to higher 
language and motor scores for infants of maternal non-secretors, while higher 
concentrations of 3′-sialyllactose were related to higher scores for infants of 
maternal secretors.
Conclusion: Both fatty acids and HMOs are related to early neurodevelopment. 
Maternal secretor status moderates the relationship between select HMOs and 
neurodevelopment.

KEYWORDS

cognitive development, language developement, motor development, breast milk 
composition, Bayley-III Scales of Infant and Toddler Development, cohort study

Introduction

Decades of research have shown that longer breastfeeding 
duration and more exclusive breastfeeding are related to better 
neurodevelopmental outcomes such as performance on intelligence 
tests and standardized measures of cognitive, language or motor 
development (1–4). A prominent hypothesis to explain the association 
between breastfeeding and child neurodevelopment is that human 
milk contains the optimal source of nutrients (ex. fats, protein, 
carbohydrates) and other bioactive components (ex. human milk 
oligosaccharides, brain-derived neurotrophic factor, milk fat globule 
membrane) to support the developing brain (5, 6). Thus, longer 
duration, and more exclusive breastfeeding would provide more of 
these nutritional and bioactive components and confer more benefits 
to the infant. However, our current understanding of which human 
milk components contribute to neurodevelopment is limited and 
requires further study.

Human milk fatty acids and infant 
neurodevelopment

Fatty acids are the most well-studied milk component related to 
neurodevelopment (7). It is well known that both n-3 and n-6 long 
chain polyunsaturated fatty acids (LCPUFAs) have essential roles in 
human brain development and function (8, 9); however, the available 
observational data on the association between human milk LCPUFAs 
and child neurodevelopment has produced mixed results. Some 
previous studies have shown that higher concentrations of human 
milk LCPUFAs, measured within the first 4 months post-partum, are 
related to better neurodevelopment (i.e., infant temperament and 
psychomotor development) (10, 11); while others have shown no 
relationship with neurodevelopment (i.e., cognition and intelligence) 
(12, 13). Further, it is largely unknown if other human milk fatty acids, 
such as saturated and monounsaturated fats, are related to child 
neurodevelopment; this relationship needs to be explored further.

Evidence from rodent and human adult studies have shown 
sex-specific pathways for fatty acid metabolism (14, 15), and 
emerging research indicates that concentrations of human milk ALA 
and total n-3 LCPUFAs measured after 8 weeks post-partum are 
higher in milk made for female infants compared to males (16). In 
addition, language scores at 13 months, and cognitive scores at 
24 months are known to differ based on infant gender, with girls 
having higher mean scores than boys (17). This evidence provides 

rational to study the moderating role of child sex on the association 
between human milk fatty acids and child neurodevelopment to glean 
more nuanced and specific understandings of these relationships. In 
general, further research is needed to clarify the associations between 
human milk n-3 and n-6 fatty acids and child neurodevelopment, 
investigate novel associations between saturated and 
monounsaturated fats and child neurodevelopment, and test for 
sex differences.

Human milk oligosaccharides and infant 
neurodevelopment

Another human milk component that has received attention for 
its association with infant neurodevelopment are human milk 
oligosaccharides (HMOs) (18). HMOs are complex, bioactive, sugar 
molecules that have multiple functions, one of which is to shape the 
infant gut microbiome, which can modulate infant brain development 
through the gut-brain axis (19). In addition, sialic acid, one of the 
HMO building blocks, is essential for human brain ganglioside 
development which play an important role in cell signaling and 
communication (20). A recent narrative review identified only five 
previous human studies in term infants (four of which n < 100) 
examining the association between HMOs and infant 
neurodevelopment up to 2 years of age (18).

There is some evidence that associations between individual 
HMOs and child outcomes, including neurodevelopment, may vary 
depending on maternal secretor status, a genetic trait that has a 
large influence on the type and number of HMOs produced in 
human milk (21, 22). Additionally, it is largely unknown if the 
relationships between HMOs and neurodevelopment are moderated 
by infant sex. This emerging area of research requires more study to 
understand the associations between HMOs and child 
neurodevelopment and the potential moderation by maternal 
secretor status and infant sex.

Objectives

The objectives of these exploratory analyses are to 1), examine the 
associations between 20 fatty acids and 19 HMOs in relation to child 
cognitive, language and motor development at 1 and 2 years of age, 2), 
using dimension reduction techniques, assess the association between 
fatty acids, HMOs and neurodevelopment, and 3), determine if these 
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associations are moderated by sex, or maternal secretor status 
(HMOs only).

Methods

Data and sample

This study uses data from the CHILD cohort study, a pan-Canadian 
longitudinal cohort ongoing since 2009 (n = 3,407) (23). Data were 
collected in four sites across Canada; Toronto, Manitoba (including 
Winnipeg, Morden and Winkler), Edmonton and Vancouver, and at 
several time points (i.e., two pre-natal assessments and annual data 
collection through a combination of visits and questionnaires). The 
CHILD study is unique because it combines data from biological samples 
as well as survey data to better understand relationships between 
environmental exposures and biological functions. Parent-infant pairs 
were included if the infant was born at or after 35 weeks gestation, the 
parent had the ability to read and write English and the pregnant parent 
was greater than 18 years of age at the time of recruitment. Pairs were 
excluded if the child was born with major congenital abnormalities, a 
child of multiple births, a child resulting from in vitro fertilization or a 
child who would not spend at least 80% of nights in the index home 
(n = 111). Written informed consent was obtained from all participants 
at enrollment. The study was approved by the Human Research Ethics 
Boards at the University of Alberta, the University of British Columbia, 
McMaster University and the University of Manitoba.

Parents who were breastfeeding at a mean age of 4 months post-
partum (range: <1 month to 11 months) were asked to provide a 10 mL 
breastmilk sample that consisted of a mix of foremilk and hindmilk 
from multiple feedings during a 24-h period (n = 2,571) (24). Following 
collection, parents were instructed to place the sample in the refrigerator 
for up to 24 h until the sample was collected by study staff and placed 
in a −80 °C freezer. A subset of milk samples was preselected to 
be analyzed for both fatty acids and HMOs (n = 1,200), however, only 
1,181 samples were analyzed for both milk components and had 
corresponding survey data. This subsample was partly representative of 
the CHILD study population (about 1/3 of the samples) and partly 
enriched for maternal and infant health conditions (i.e., asthma, 
allergies and obesity; about 2/3 of the samples). To improve normality 
of the dataset, we  excluded dyads with ≥ one milk fatty acid or 
oligosaccharide value that was ± > 6 standard deviations (SD) from the 
mean (n = 26). Two further dyads were excluded because the infant had 
parent-reported, physician diagnosed Trisomy 21. The main outcome 
of this study, the Bayley Scales of Infant and Toddler Development III 
(Bayley-III), was only measured in the Edmonton cohort, therefore, 913 
dyads from the other three sites were excluded because they did not 
have Bayley-III data. In total 240 parent–child dyads were included in 
the current analysis (Supplementary Figure S1).

Measures

Milk fatty acids
Milk fatty acids were analyzed by gas chromatography at the 

University of Alberta and expressed as relative percentages of total 
identified fatty acids (25). Relative percentages were used instead of 
absolute concentrations because the sampling protocol did not 

involve a full breast expression, which is necessary to accurately 
determine fat content and concentrations. Relative percentages of 
milk fatty acids are commonly used in human milk research 
including previously within the CHILD Study (26–28). All values 
were z-scored with a mean of zero and a standard deviation (SD) of 
one so the values could be comparable across all fatty acids. Twenty 
commonly identified fatty acids were included in the present 
analysis. These included saturated fatty acids [SFA; capric acid 
(10:0), lauric acid (12:0), myristic acid (14:0), palmitic acid (16:0), 
margaric acid (17:0) and stearic acid (18:0)], monounsaturated fatty 
acids [MUFA; palmitoleic acid (16:ln-7), oleic acid (18:ln-9), and 
vaccenic acid (18:1 c-11)], n-3 polyunsaturated fatty acids [n-3 
PUFA; α-linoleic acid (ALA; 18:3n-3), eicosatetraenoic acid (ESA; 
20:4n-3), eicosapentaenoic acid (EPA; 20:5n-3), docosapentaenoic 
acid (DPA; 22:5n-3), and docosahexaenoic acid (DHA; 22:6n-3)] 
and n-6 polyunsaturated fatty acids [n-6 PUFA; linoleic acid (LA; 
18:2n-6), γ-linolenic acid (GLA; 18:3n-6), conjugated linoleic acid 
(CLA; 18:2c-9, t-11), dihomo-γ-linoleic acid (DGLA; 20:3n-6), 
arachidonic acid (ARA; 20:4n-6) and adrenic acid (22,4n-6)]. In 
addition, similar to previous research, five biologically meaningful 
ratio variables and four summary variables were created (28). The 
ratios included: ARA: (DHA + EPA); ARA: DHA; total n-6:total 
n-3; LA: ALA; (EPA + DPA): DHA (all calculated using 
non-transformed data), and the summary measures included: total 
n-3; total n-6; total n-3 without ALA and total n-6 without LA.

Human milk oligosaccharides
We identified 19 HMOs using high-throughput solid-phase 

extraction and analyzed by liquid chromatography at the University 
of California San Diego. The 19 HMOs identified account for 
approximately 90% of the total HMO content and were summed to 
approximate the total HMO content per sample (29). The absolute 
concentrations of each HMO were log-transformed for normality and 
then z-score transformed with a mean of zero and a SD of one to 
be comparable across all HMOs in the sample. The HMOs included 
fucodisialyllacto-N-hexaose (FDSLNH); 2′-fucosyllactose (2’FL); 
3-fucosyllactose (3FL); difucosyllactose (DFLac); lacto-N-
fucopentaose-I (LNFP I); lacto-N-fucopentaose-II (LNFP II); lacto-
N-fucopentaose-III (LNFP III); difucosyllacto-N-tetrose (DFLNT); 
fucosyllacto-N-hexaose (FLNH); difucosyllacto-N-hexaose 
(DFLNH); 3′-sialyllactose (3’SL); 6′-sialyllactose (6’SL); sialyllacto-N-
tetraose b (LSTb); sialyllacto-N-tetraose c (LSTc); disialyllacto-N-
tetraose (DSLNT); disialyllacto- N-hexaose (DSLNH); lacto-N-
neotetraose (LNnT); lacto-N-tetrose (LNT) and lacto-N-hexaose 
(LNH). In addition, three summary measures were included: total 
HMO-bound sialic acid, total HMO-bound fucose and total HMOs.

Bayley Scales of Infant and Toddler 
Development III

The Bayley Scales of Infant and Toddler Development III 
(Bayley-III) was administered to children at 1 and 2 years of age in the 
Edmonton cohort by trained research assistants (4, 30). The Bayley-III 
is an assessment that measures developmental functioning of infants 
and toddlers between 1 and 42 months of age. For the purposes of 
these analyses, we  included three assessed domains: cognitive, 
language, and motor development. Composite scores for each domain 
are standardized to a mean of 100 and a SD of 15, with higher scores 
indicating better development.

https://doi.org/10.3389/fnut.2025.1606169
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Turner et al.� 10.3389/fnut.2025.1606169

Frontiers in Nutrition 04 frontiersin.org

Maternal secretor status
Maternal secretor status is a genetic trait determined by the 

fucosyltransferase 2 (FUT2) gene, which in about 20% of the 
population is inactivated by a single nucleotide polymorphism leading 
to truncation of the gene product (31). Secretor status impacts the 
number and type of HMOs that the mother produces, particularly 
2’FL which is the most abundant HMO among secretors but is 
virtually absent among non-secretors (29). Maternal secretor status 
was determined by the presence or near absence of the 2’FL in the 
mother’s milk.

Confounders
We developed a directed acyclic graph to identify variables to 

use as confounders in the present analysis 
(Supplementary Figure S2). These include child sex (male or 
female), birth mode (cesarian or vaginal), birthweight (continuous 
in kilograms), gestational age (continuous in weeks), number of 
older siblings (none, one or two or more), maternal race (White, 
Asian, or Other), completed maternal post-secondary education 
(yes/no) and infant age at milk sampling (continuous in weeks). In 
sex interaction models, child sex was used as a moderator, not as 
a confounder.

Statistical analyses

Characteristics of the sample were described and compared to 
those who had Bayley-III scores at 1 year but no milk component data. 
Then, we ran Pearson correlations between fatty acids, HMOs and 
cognitive, language and motor scores at 1 year and 2 years of age. 
Pearson correlations were used because the milk components and 
Bayley-III scores generally follow a normal distribution. A sensitivity 
analysis was conducted repeating the analysis among just the exclusively 
breastfed infants with the intent of reducing statistical variance in the 
outcome due to the consumption of infant formula or other food. To 
understand the shape of the relationships and visually assess the 
potential impact of outliers, scatter plots were generated displaying the 
linear, quadradic and cubic fit lines for the one-year Bayley-III outcomes.

Next, to assess for potential confounding, we ran linear regression 
models between milk components and Bayley-III scores at 1 and 2 years, 
adjusting for sex, birth mode, birthweight, gestational age, number of 
older siblings, maternal race, maternal post-secondary degree and infant 
age at milk sampling. We combined the two milk component types into 
one analysis to assess their potential interdependence in relation to 
neurodevelopment using principal component analysis as a dimension 
reduction technique. We determined the first component that explained 
the largest amount of variance in the sample of fatty acids and HMOs, 
separately. Then, we  entered both first components in a regression 
model, with Bayley-III scores at 1 and 2 years at the outcomes, to 
determine if either milk component accounted for variation in the other 
component. We also limited the regression models to secretors and 
non-secretors to determine if there were differences in the associations 
with Bayley-III scores when looking at these specific subgroups. Sex 
interactions, adjusting for all confounders, were tested for all fatty acids 
and HMOs in relation to all Bayley-III scores. Adjusted maternal 
secretor status interactions were tested for HMOs. All p-values 
throughout the analysis were corrected for multiple comparisons using 
the Benjamini Hochberg False Discovery Rate (32).

Results

Demographics of the sample

Of the 653 infants who had Bayley-III scores at 1 year, 240 were 
included in the present analysis because they also had an analyzed 
milk sample (Table 1). At the time of milk sampling, 45.4% of infants 
were being exclusively breastfed. The mean infant age at milk sampling 
was 18.1 (± 4.7) weeks. About 72.0% of the mothers who provided 
milk samples were secretors. The mean Bayley-III scores at 1 year were 
110.9 (±10.1) for the cognitive domain, 109.8 (±11.4) for the language 
domain and 104.7 (±14.5) for the motor domain. At 2 years, the scores 
were slightly lower with mean scores of 106.9 (± 15.6) for the cognitive 
domain, 101.2 (±12.2) for the language domain and 99.1 (± 9.7) for 
the motor domain. Compared to infants in the CHILD study with a 
Bayley-III assessment but no milk sample (n = 413), those with milk 
samples were more likely to be exclusively breastfed at 3 months and 
have higher Bayley-III language scores at 1 year (p-values ≤0.001 and 
0.02, respectively); the other demographics were not statistically 
different between the subset used for this analysis and all infants with 
a Bayley-III assessments at 1 year.

Select fatty acids and HMOs are related to 
cognitive, language and motor 
development at 1 year

There were significant correlations between select fatty acids 
and cognitive and motor development at 1 year of age after FDR 
adjustment (Figure 1A; Supplementary Figure S3A). Specifically, 
higher proportions of n-3 and n-6 PUFAs including, EPA (20:5n-3), 
DPA (22:5n-3), DHA (22:6n-3), total n-3 without ALA, LA 
(18:2n-6) and total n-6 fatty acids were related to lower (worse) 
cognitive scores (rho range from −0.24 to −0.18). These correlations 
generally became stronger when limiting to those who were 
exclusively breastfed (rho range from  –0.36 to −0.28; 
Supplementary Figures S4A, S5A). Two saturated fatty acids were 
related to higher (better) motor development at 1 year: palmitic 
acid (16:0) and margaric acid (17:0) (rho = 0.19 and 0.20, 
respectively). In addition, several monounsaturated, n-3 and n-6 
PUFAs were related to lower (worse) motor development at 1 year 
including: oleic acid (18:ln-9), EPA (20:5n-3), DPA (22:5n-3), LA 
(18:2n-6), ARA (20:4n-6), AA (22:4n-6) and total n-6 (rho range 
from −0.22 to −0.16). These correlations followed a similar trend 
when limiting to those who were exclusively breastfed, but none 
reached statistical significance after FDR correction. After FDR 
correction, no significant correlations were observed between fatty 
acids and language development at 1 year or any Bayley-III scales 
at 2 years and these trends remained when limiting to those who 
were exclusively breastfed.

Only one HMO was significantly correlated with Bayley-III 
scores after FDR adjustment; higher DSLNT concentrations were 
related to lower (worse) language and motor scores at 1 year of age 
(rho = −0.22 for language and −0.26 for motor; Figure  1B; 
Supplementary Figure S3B). When limiting to those being exclusively 
breastfed, there were no significant correlations with one-year 
outcomes; however, LNFP1 was negatively correlated to motor 
development at 2 years (rho = −0.39; Supplementary Figures S4B, S5B).

https://doi.org/10.3389/fnut.2025.1606169
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Turner et al.� 10.3389/fnut.2025.1606169

Frontiers in Nutrition 05 frontiersin.org

TABLE 1  Characteristics of CHILD cohort subset included in the current analysis of fatty acid and HMO data.

Variable n (%) or mean [SD]

Subset for this analysis 
(n = 240)

Remaining infants with a 
Bayley-III score at 1 Yeara 

(n = 413)

Chi square or Wilcoxon 
test p-value

Independent variables

Breastfeeding at 3 monthsb

 � None 1 (0.4) 100 (24.4) ≤0.001

 � Partial 76 (31.7) 99 (24.2)

 � Exclusive 163 (67.9) 210 (51.3)

Breastfeeding status at time of milk sampling

 � Partial 124 (54.6) -

 � Exclusive 103 (45.4) -

Maternal secretor status

 � Non-secretor 68(28.3) -

 � Secretor 172 (71.7) -

Child sex

 � Female 119 (49.6) 205 (49.6) 0.99

 � Male 121 (50.4) 208 (50.4)

Bayley scales 1 year

 � Cognitive 110.9 [10.1] 109.7 [10.4] 0.10

 � Language 109.8 [11.4] 107.3 [12.8] 0.02

 � Motor 104.7 [14.5] 103.0 [14.1] 0.20

Bayley scales 2 year

 � Cognitive 106.9 [15.6] 104.8 [13.8] 0.14

 � Language 101.2 [12.2] 99.3 [12.2] 0.16

 � Motor 99.1 [9.7] 98.6 [10.0]

Confounders

Maternal race

 � White 187 (78.2) 316 (77.8) 0.98

 � Asian 28 (11.7) 47 (11.6)

 � Other 24 (10.0) 43 (10.6)

Maternal educationc

 � Some or Completed high school 14 (6.0) 35 (8.9) 0.10

 � Some college or University 36 (15.5) 80 (20.3)

 � Completed college or University 183 (78.5) 279 (70.8)

Birth mode

 � Vaginal 175 (73.8) 315 (76.6) 0.42

 � C-section 62 (26.2) 96 (23.4)

Birthweight (kg) 3.5 [0.5] 3.4 [0.5] 0.13

Gestational age (weeks) 39.0 [1.4] 39.1 [1.4] 0.52

Older siblings

 � None 125 (52.1) 176 (42.6) 0.06

 � One 84 (35.0) 176 (42.6)

 � Two or more 31 (12.9) 61 (14.8)

Infant age at milk sampling (weeks) 18.1 [4.7] -

Chi-square test of independence is used to test differences between categorical variables. Wilcoxon Rank Sum Test is used to test differences between continuous variables. a Infants with a 
Bayley-III (Bayley Scales of Infant and Toddler Development) score and no fatty acid or HMO data. b One parent provided a milk sample before they responded to the three-month 
questionnaire, at which point they had stopped breastfeeding. c Maternal education is collapsed into two categories (less than post-secondary education and post-secondary education) when 
used as a confounder. HMOs, Human Milk Oligosaccharides; SD, standard deviation.

https://doi.org/10.3389/fnut.2025.1606169
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Turner et al.� 10.3389/fnut.2025.1606169

Frontiers in Nutrition 06 frontiersin.org

To understand if the relationships between milk 
components and Bayley-III scores at 1 year followed a linear 
relationship, we present scatter plots with the linear, quadradic and 
cubic (i.e., polynomial) fit lines for fatty acids and HMOs. There were 
no obvious polynomial fit lines for fatty acids or HMOs and 
Bayley-III scores at 1 year (Supplementary Figures S6A–C, S7A–C), 
suggesting generally linear relationships.

DSLNT remains significantly associated 
with motor development after adjusting for 
confounders

After adjusting for sex, birth mode, birthweight, gestational age, 
number of older siblings, maternal race, maternal post-secondary 
degree and infant age at milk sampling, and applying FDR correction, 

there were no significant associations between human milk fatty acids 
and Bayley-III scores at 1 or 2 years (Figure 2A). DSLNT remained 
significantly associated with lower motor scores at 1 year after 
confounder adjustment and FDR correction (B = −3.91, 95% CI: 
−5.81, −2.01; i.e. one SD increase in DSLNT is related to a 3.91 point 
(about ¼ of a SD) decrease in motor scores), however, no other HMOs 
were significantly related to Bayley-III scores at 1 or 2 years (Figure 2B).

The first fatty acid principal component is 
related to motor development at 1 year 
and this association is unchanged after 
accounting for HMOs

Figure 3A shows the factor loadings and biplots for the first fatty 
acid and HMO principal components (PC1). PC1 explained 25.2% of 

FIGURE 1 (Continued)
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the variance in the fatty acids data and 27.2% of the variance in the 
HMO data, which indicates how much information is preserved from 
the full dataset. Based on the loadings, the PC1s can be described as 
high saturated fat and low n-3 and n-6 PUFAs and high secretors (ex. 
2’FL, DLFac) and low non-secretors (ex. LNFP11, FDSLNH). After 
adjusting for all confounders and applying the FDR correction, fatty 

acid PC1 was associated with higher motor scores at 1 year, and this 
association was unchanged after adjusting for HMO PC1 (B = 1.59; 
95% CI: 0.75, 2.43; Figure 3B). Fatty acid PC1 was not significantly 
associated with Bayley-III scores at 2 years. HMO PC1 was not 
associated with Bayley-III scores at 1 or 2 years, and the estimates were 
relatively unchanged after adjusting for FA PC1. In line with the full 

FIGURE 1

Pearson correlations between human milk fatty acids (A), HMOs (B) and Bayley-III scores at 1 and 2 years of age in the CHILD cohort study. Bayley-III, Bayley 
Scales of Infant and Toddler Development; DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNH, 
disialyllacto- N-hexaose; DSLNT, disialyllacto-N-tetraose; FLNH, fucosyllacto-N-hexaose; FDSLNH, fucodisialyllacto-N-hexaose; Fuc, Fucosylated HMO; 
Fucose, human milk oligosaccharide–bound fucose; HMO, human milk oligosaccharide; LNFP I/II/III, lacto-N-fucopentaose-I/II/III; LNH, lacto-N-hexaose; 
LNnT, lacto-N-neotetraose; LNT, lacto-N-tetrose; LSTb/c, sialyllacto-N-tetraose b/c; Sia, Sialylated HMO; Sialic Acid, HMO-bound Sialic Acid; 2’FL, 
2′-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3′-sialyllactose; 6’SL, 6′-sialyllactose; PUFA, Polyunsaturated Fatty Acid; ALA, Alpha Linolenic Acid; EPA, 
Eicosapentaenoic Acid; DPA, Docosapentaenoic Acid; DHA, Docosahexaenoic Acid; LA, Linoleic Acid; ARA, Arachidonic Acid. All milk components are 
expressed as z-scores aside from fatty acid ratios which are not z-scored. See Supplementary Figure S3 for exact correlation coefficients. See 
Supplementary Figures S4, S5 for a sensitivity analysis limited to exclusively breastfed infants and Supplementary Figures S6, S7 for scatter plots indicating 
linear and polynomial fit lines. *FDR corrected p-value ≤0.05, ** FDR corrected p-value ≤0.01, ~ uncorrected p-value ≤0.05, ~ ~ uncorrected p-values ≤0.01.
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sample, when limiting to subgroups of either secretors or non-secretors, 
there were no significant associations between HMO PC1 and 
Bayley-III scores at 1 or 2 years.

Maternal secretor status moderates the 
association between select HMOs and 
language and motor development at 1 year

There were limited adjusted sex interactions in the relationships 
between milk fatty acids, HMOs and Bayley-III scores at 1 or 2 years 
of age and none reached statistical significance after confounder 
adjustment and FDR correction (Supplementary Figures S9, S10). 
Maternal secretor status interactions showed that DFLNH was 
significantly related to better language and motor scores at 1 year for 
infants of maternal non-secretors, while 3’SL was related to better 
language and motor scores at 1 year for infants of maternal secretors 
(Figure 4). Significant interactions between 3’SL, 3FL and secretor 
status also showed better motor scores at 2 years for infants of 
maternal secretors. These results indicate that maternal secretor 
status may play an important role in moderating the relationships 
between DFLNH, 3’SL, 3FL, and language and motor development, 

however, the direction of the moderation effect is not consistent (i.e., 
having a positive secretor status is not always better).

Discussion

This is the largest study to date to examine relationships between 
both human milk fatty acids and HMOs with child neurodevelopment 
at ages 1 and 2 years. Our results suggest that select n-3 and n-6 PUFAs 
were related to lower cognitive and motor scores at 1 year of age, while 
select saturated fatty acids were related to higher motor scores. Although 
these individual associations did not withstand correction for multiple 
comparisons, they were corroborated by results from principal 
component analyses where fatty acid profiles high in saturated fat and low 
in n-3 and n-6 PUFAs were significantly related to better motor scores at 
1 year. Higher concentrations of DSLNT, a sialylated HMO, were related 
to lower motor scores at 1 year and this association was robust to 
confounding and correction for multiple comparisons. However, overall 
HMO profiles were not associated with neurodevelopment at 1 or 2 years. 
We found that secretor status moderates associations between DFLNH, 
3’SL, 3FL and language and motor scores, however, the direction of the 
moderation effect was inconsistent between these HMOs.

FIGURE 2 (Continued)
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Select n-3 and n-6 PUFAs are related lower 
cognitive and motor development scores 
at 1 year

Contrary to the existing literature (10, 11, 33), in unadjusted 
models, higher concentrations of n-3 PUFAs were related to worse 
cognitive and motor scores at 1 year. There is existing research 
showing no association between n-3 PUFAs and neurodevelopment 
both in observational studies of human milk n-3 PUFAs and RCTs of 
n-3 formula supplementation (7, 34); however, to our knowledge, no 
studies have shown negative associations between n-3 PUFAs and 
neurodevelopment in term infants. A previous analysis using data 
from the CHILD cohort found that DHA was negatively associated 
with head circumference, a proxy for brain development (35), which 

may also be related to cognitive, language and motor scores (36). 
While the associations shown in the current study did not persist 
after adjustment and FDR correction, or extend to the two-year time 
point, the direction of the associations are consistently negative 
across most n-3 and n-6 PUFAs. It is important to note that the 
relative proportion of fatty acids in the milk does not reflect the 
actual amount of fatty acid that gets absorbed and utilized by the 
infant body, or how absorption is affected by the presence of other 
milk components. These cautions may shed light on the reasons for 
our negative findings. Future research could examine infant serum to 
determine absorbed fatty acids levels and how this may be associated 
with Bayley-III scores. Additionally, future work is needed to examine 
different combinations of human milk components to determine if 
and how their bioavailability interacts in the infant body.

FIGURE 2

Adjusted linear associations between human milk fatty acids (A), HMOs (B) and Bayley-III scores at 1 and 2 years of age in the CHILD cohort study. All 
models are adjusted for: infant sex, birthweight, birth mode, number of older siblings, gestational age, maternal race, maternal education, infant age at 
milk sampling. Bayley-III, Bayley Scales of Infant and Toddler Development; DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, 
difucosyllacto-N-tetrose; DSLNH, disialyllacto- N-hexaose; DSLNT, disialyllacto-N-tetraose; FLNH, fucosyllacto-N-hexaose; FDSLNH, 
fucodisialyllacto-N-hexaose; Fuc, Fucosylated HMO; Fucose, human milk oligosaccharide–bound fucose; HMO, human milk oligosaccharide; LNFP I/
II/III, lacto-N-fucopentaose-I/II/III; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetrose; LSTb/c, sialyllacto-N-tetraose b/c; Sia, 
Sialylated HMO; Sialic Acid, HMO-bound Sialic Acid; 2’FL, 2′-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3′-sialyllactose; 6’SL, 6′-sialyllactose; PUFA, 
Polyunsaturated Fatty Acid; ALA, Alpha Linolenic Acid; ESA, Eicosatetraenoic Acid; EPA, Eicosapentaenoic Acid; DPA, Docosapentaenoic Acid; DHA, 
Docosahexaenoic Acid; LA, Linoleic Acid; GLA, Gamma Linoleic Acid; CLA, Conjugated Linoleic Acid; DGLA, Dihomo Gamma Linolenic Acid; ARA, 
Arachidonic Acid; AA, Adrenic Acid. All milk components are expressed at z-scores aside from fatty acid ratios which are not z-scored. *FDR corrected 
p-value ≤0.05, ~ uncorrected p-value ≤0.05, ~ ~ uncorrected p-value ≤0.01.

https://doi.org/10.3389/fnut.2025.1606169
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Turner et al.� 10.3389/fnut.2025.1606169

Frontiers in Nutrition 10 frontiersin.org

Saturated fatty acids are related to better 
motor development at 1 year

This is one of the first studies to examine the relationship between 
human milk saturated fatty acids and child neurodevelopment. 
Palmitic and margaric acid were related to better motor scores at 
1 year in unadjusted models, although the associations did not remain 
significant in adjusted models and after FDR correction. However, the 
fatty acid profile high in saturated fat and low n-3 and n-6 PUFAs (the 
first principal component) was related to better motor scores at 1 year 
and this association was robust to confounding and FDR correction. 
Principal component analysis preserves variance which may translate 
into increased statistical power to observe a significant effect 
compared to individual analyses (37).

Saturated fats comprise the largest proportion of milk fat [42.2% 
in mature milk (38)] and can help to absorb fat-soluble vitamins and 
assist other biological functions, however, most research on the 
health effects of saturated fat has been in older children or adults 
(39, 40). Typically, increased dietary saturated fat is related to poorer 
health outcomes, including lower cognitive flexibility in children 
ages 7 to 10 years old (39). The results from the current study suggest 
that human milk saturated fatty acids may play a positive role in 
infant neurodevelopment but requires replication in other cohorts.

DSLNT is related to lower motor 
development scores at 1 year

Two previous human studies have examined the relationship 
between DSLNT and motor development and results were counter to 
what was observed in the current analysis. Both Ferrira et al. (41) and 
Sato et al. (42) showed that higher concentrations of DSLNT were 
related to better fine motor development, as measured by the Ages 
and Stages Questionnaire, in infants at 6 months and 1 year of age. 
However, in alignment with the current study, the association 
between DSLNT and motor development did not persist to the 
two-year time point in Sato et al. (42). Differences in the timing of 
human milk sample collection (i.e., at 1 month in both Ferrira et al. 
(41) and Sato et al. (42), while mean sample collection was 4 months 
in the current study), or the neurodevelopment measure, could 
explain the diverging findings.

It is currently understood that the primary role of HMOs is to act 
as prebiotics for gut bacteria and that certain HMOs have strong 
effects on shaping the infant microbiome (43). One study showed that 
DSLNT was related to multiple different bacterial genera in the infant 
gut, including a negative association with Bacteroides (44). Previous 
research using the CHILD study data has linked higher abundance of 
Bacteroides with improved motor development (4). Therefore, it is 

FIGURE 3 (Continued)
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possible that higher concentrations of DSLNT could be linked to 
lower motor development scores through the reduction of Bacteroides 
in the infant gut.

It is important to note that the main clinical utility of the 
Bayley-III scale is to assess development and identify children who 
may not be on a typical developmental trajectory (30). However, the 
Bayley-III is also used for population-level research, which may result 
in small effect sizes that can have population-level relevance despite 
not having individual clinical meaning, as observed in the current 
study. As explained by Roses Theorem, small effect sizes can still 
be  interpreted as meaningful on a population level because large 
number of people at a small risk may result in more incidence of the 
outcome than a small number who are at high risk (45). Infant 
feeding is a universal exposure, and in Canada, 69% of infants receive 
some human milk for the first 6 months of life, indicating widespread 
human milk exposure (46). An alternative method for interpreting 
the relevance of a novel exposure (e.g., DSLNT in human milk) is to 
compare the adjusted effect size to that of another variable already 
known to be  associated with that same outcome (i.e., improved 
neurodevelopment), such as high maternal post-secondary education 
(47). In our analysis, completing maternal post-secondary education, 
compared to less than a college or university degree, was related to a 
0.33 point increase in Bayley-III motor scores at 1 year (not 
statistically significant), while a one standard deviation increase in 

DSLNT was related to a 3.91 point decrease in Bayley-III motor 
scores (FDR-corrected p ≤ 0.05). This demonstrates that, in our 
sample, DSLNT has an even stronger association with motor 
development at 1 year than high maternal education and gives 
context to our findings.

Fatty acid and HMO principal components 
are not interdependent

We did not observe interdependent effects of fatty acids and 
HMO profiles on neurodevelopment. In fact, the significant 
association between fatty acid PC1 and motor development was 
unchanged after adjusting for HMO PC1, and similarly, the 
non-significant associations between HMO PC1 and 
neurodevelopment were unchanged after adjusting for fatty acid 
PC1. Previous research has examined combinations of other human 
milk components (ex. phospholipids, choline and fatty acids) in 
relation to recognition memory or cognitive development and has 
found both joint and synergistic associations between milk 
components (48, 49). To more comprehensively understand 
relationships between fatty acids and HMOs on neurodevelopment, 
future work could use more advanced methods such as machine 
learning or clustering analyses.

FIGURE 3

(A) Factor loadings and (B) Adjusted associations between fatty acid and HMO principal components and Bayley-III scores at 1 and 2 years in the 
CHILD cohort study. FA PC1 is significantly associated with Bayley-III scores and these relationships are not dependent on HMO PC1. HMO PC1 is not 
significantly associated with Bayley-III scores; estimates are similar among secretors and non-secretors. Regression models are adjusted for: infant sex, 
birthweight, birth mode, number of older siblings, gestational age, maternal race, maternal education, infant age at milk sampling. PC, Principal 
Component; Bayley-III, Bayley Scales of Infant and Toddler Development; DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, 
difucosyllacto-N-tetrose; DSLNH, disialyllacto- N-hexaose; DSLNT, disialyllacto-N-tetraose; FLNH, fucosyllacto-N-hexaose; FDSLNH, 
fucodisialyllacto-N-hexaose; Fuc, Fucosylated HMO; Fucose, human milk oligosaccharide–bound fucose; HMO, human milk oligosaccharide; LNFP I/
II/III, lacto-N-fucopentaose-I/II/III; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetrose; LSTb/c, sialyllacto-N-tetraose b/c; Sia, 
Sialylated HMO; Sialic Acid, HMO-bound Sialic Acid; 2’FL, 2′-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3′-sialyllactose; 6’SL, 6′-sialyllactose; PUFA, 
Polyunsaturated Fatty Acid; ALA, Alpha Linolenic Acid; ESA, Eicosatetraenoic Acid; EPA, Eicosapentaenoic Acid; DPA, Docosapentaenoic Acid; DHA, 
Docosahexaenoic Acid; LA, Linoleic Acid; GLA, Gamma Linoleic Acid; CLA, Conjugated Linoleic Acid; DGLA, Dihomo Gamma Linolenic Acid; ARA, 
Arachidonic Acid; AA, Adrenic Acid. See Supplementary Figure S8 for factor loadings for FA and HMO PC2 and PC3. *FDR corrected p-value ≤0.05, ~ 
uncorrected p-value ≤0.05.
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Maternal secretor status moderates the 
relationship between select HMOs and 
language and motor scores

The current results align with one previous study that examined 
differences between HMOs and neurodevelopment based on secretor 
status. Similar to our findings, Cho et al. (21), found that 3’SL was 
related to better language development in children between the ages 
of 2 and 25 months who were born to maternal secretors, with no 
relationship among children of maternal non-secretors. No other 
studies have shown associations between DFLNH and higher language 
and motor scores among infants of maternal non-secretors. While the 
exact mechanisms of these interactions are unknown, it is possible 
that certain HMOs have stronger biological effects in a microbial 
environment that is characterized by secretor status. Typically, infants 
of maternal secretors have higher abundance of gut Bifidobacteria 

(50). It is possible that the biological effects of DFLNH are more 
available in an infant gut that is colonized by bacteria informed by 
non-secretor milk (ex. less Bifidobacteria). More research in this area 
may discover neurodevelopmental benefits for infants of maternal 
non-secretors as well as for infants of maternal secretors.

Limitations

The results of this exploratory study should be interpreted in the 
context of several limitations. First, the sampling protocol for milk 
collection instructed mothers to collect a combination of fore and 
hind milk from multiple feeds over 24 h and only one milk sample was 
collected. Concentrations of human milk components can change 
throughout lactation and concentrations of fatty acids can vary from 
day to day, throughout a single day, and from the beginning to the end 

FIGURE 4

Adjusted interactions between maternal secretor status and HMOs on Bayley-III scores at 1 and 2 years in the CHILD cohort study. Colored cells in the 
table are represented as scatter plots. All models are adjusted for: infant sex, birthweight, birth mode, number of older siblings, gestational age, 
maternal race, maternal education, infant age at milk sampling. Bayley-III, Bayley Scales of Infant and Toddler Development DFLac, difucosyllactose; 
DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNH, disialyllacto- N-hexaose; DSLNT, disialyllacto-N-tetraose; FLNH, 
fucosyllacto-N-hexaose; FDSLNH, fucodisialyllacto-N-hexaose; Fuc, Fucosylated HMO; Fucose, human milk oligosaccharide–bound fucose; HMO, 
human milk oligosaccharide; LNFP I/II/III, lacto-N-fucopentaose-I/II/III; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetrose; 
LSTb/c, sialyllacto-N-tetraose b/c; Sia, Sialylated HMO; Sialic Acid, HMO-bound Sialic Acid; 2’FL, 2′-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 
3′-sialyllactose; 6’SL, 6′-sialyllactose. Linear fit line is from the full model that does not include the interaction term in Figure 2B. + FDR corrected 
p-value ≤0.1, *FDR corrected p-value ≤0.05, ^ uncorrected p-value ≤0.1, ~ uncorrected p-value ≤0.05, ~ ~ uncorrected p-value ≤0.01.
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of a feed. However, concentrations of HMOs appear to be stable over 
6 h and 7 day periods (51). The current sampling protocol was not 
designed to capture temporal changes in milk components, and could 
obscure relevant associations and/or limit the real world-applicability 
of the results, especially for fatty acids. The CHILD study also did not 
collect a full breast expression which means the total fat volume in a 
feed, and therefore the absolute concentrations of fatty acids, cannot 
be determined. Second, maternal secretor status was phenotypically 
determined and there is a small chance that genetically determined 
secretor status could provide different results. Third, CHILD study 
participants without milk component data were excluded from the 
analysis; however, there were minimal differences between those 
included and excluded from the study sample on most variables aside 
from language scores at 1 year where included infants had higher 
scores than excluded infants. Therefore, those with lower language 
scores are underrepresented in this analysis which may underestimate 
the association between milk components and language scores at 
1 year. Fourth, the CHILD study cohort has a higher income, 
education, and prevalence of married or cohabiting parents than 
participants in a general population, representative Canadian sample 
(52). Therefore, the results of this study are not fully generalizable to 
the general Canadian population.

Conclusion

In this longitudinal, exploratory study, our results suggest that 
fatty acid principal component one (comprised of high saturated fat 
and low n-3 and n-6 PUFAs) is related to higher motor scores at 1 year 
of age. Additionally, DSLNT, a sialylated HMO, may be related to 
lower motor scores at 1 year of age. Maternal secretor status may 
moderate associations between 3FL, 3’SL, DFLNH, and infant 
language and motor scores; however, positive secretor status did not 
consistently provide benefits. Results from this work can inform future 
studies seeking to understand the mechanisms of fatty acids and 
HMOs on infant neurodevelopment.
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