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IBD, which includes Crohn’s and ulcerative colitis, is associated with gut

microbiota dysbiosis. The dysbiotic environment results in an elevation of

harmful microbiota and a diminution of advantageous microbiota, leading

to IBD. Interestingly, plant-based dietary compounds consisting of dietary

fibers and polyphenols have demonstrated promise to be safe and successful

in IBD treatment, with studies revealing that they can improve dysbiosis,

increase anti-inflammatory cytokines, decrease pro-inflammatory cytokines,

lower oxidative stress, and improve barrier function. Plant-based dietary

compounds have shown potential to reduce IBD by regulating signaling

pathways such as TGF-β/Smad, TRL-4/NF-κB/MAPK, TLR2-NF-κB, autophagy,

pyroptosis, glycolysis/gluconeogenesis and amino acid metabolism, Nrf-2/HO-

1, microbiota-macrophage-arginine metabolism, and bile acid metabolism.

Additionally, they assist in forming short-chain fatty acids and other metabolites,

which help regulate immune cells to alleviate IBD. Recent research indicates that

dietary compounds, either as nanoparticles or encapsulated in nanoparticles,

have shown potential in effectively treating IBD. Despite the beneficial role

of plant-based dietary compounds, other studies have shown detrimental

effects such as cancer promotion and exacerbation of immune responses.

Therefore, this will help clinicians/individuals to plan their nutrition to prevent

IBD exacerbation. This review highlights the microbiota signatures linked to

IBD and examines the impact of gut dysbiosis on IBD. It also provides

a comprehensive discussion of how plant-based dietary compounds can

influence the modulation of dysbiotic gut microbiota in IBD. Plant-based dietary

compounds hold potential for treating IBD.
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GRAPHICAL ABSTRACT

Plant-based dietary compounds help restore a eubiotic environment in dysbiotic settings. This improves gut barrier repair and lowers inflammatory
markers, easing IBD symptoms. PDC, plant-based dietary compounds; SCFA, short chain fatty acid.

1 Introduction

Inflammatory bowel diseases (IBD), which include Crohn’s
disease (CD) and ulcerative colitis (UC), are characterized by
long-term chronic inflammation of the digestive system (1) and
have a complex etiology that involves genetic susceptibility,
environmental factors, and the intricate interactions between the
host’s immune system and gut microbiota (2). IBD is a common
condition in Europe and America, and because of changes in
dietary habits, its incidence rate is rising in Asia (3). CD and
UC patients often experience weight loss, diarrhea, fatigue, bloody
stool, fecal urgency, mucoid stool, and abdominal pain (4).

The digestive tract contains numerous microbes that have
evolved alongside the host immune system (5). It is now commonly
known that a healthy gut flora significantly influences the host’s
general health (6). The normal gut microbiota helps protect the
gut mucosal barrier and control the immune system (Figure 1). It
also helps break down nutrients and drugs and fight off pathogens
(6). However, emerging research highlights that intestinal dysbiosis
plays a critical role in both the onset and progression of IBD (7).
Antibiotics, steroids, immune modulators, and 5-aminosalicylates
have all been used to lessen symptoms and keep remission going
in IBD (8). Nevertheless, prolonged use of these substances has
been shown to cause serious toxicities, which discourage consumers
(8). Thus, finding an effective treatment to restore gut microbiota
to a state of eubiosis and reduce drug toxicities is essential for
addressing the increasing prevalence of IBD. One potential strategy

for nutritionally treating IBD with little adverse effects is the use of
food bioactive substances (9).

Plant-based diets have become increasingly popular for
enhancing animal welfare, improving human health, and benefiting
the environment (10); consuming them offers several advantages,
including improved digestive and immune system function (11).
The plants’ dietary components have shown the potential to
reduce colitis in mouse models by modifying the gut microbiota,
lowering immune responses, and minimizing barrier damage.
These compounds enhance beneficial intestinal microbes and
reduce harmful ones (12–15). Diets based on plants are safe
and beneficial for all phases of life, including childhood, old
age, pregnancy, and breastfeeding (16). Understanding the role
of gut dysbiosis in IBD is crucial for exploring additional plant-
based therapies aimed at gut modulation. We therefore examine
the critical function of dysbiotic gut microbiota in IBD and
demonstrate how plant-based dietary compounds can successfully
alter the dysbiotic gut microbiome. This will open up new paths for
treating IBD symptoms.

2 Key microbial signatures that are
involved in the dysbiosis of IBD

More than 1 trillion microorganisms live in the human body,
and the gastrointestinal tract alone is home to various commensal
microbes (17). The gut microbiota is an essential component of the
human metaorganism that shapes physiologic host immunological
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FIGURE 1

Gut microbiome homeostasis. In a homeostatic environment, the helpful microbes multiply while the toxic ones diminish. Dendritic cells interact
with the beneficial microbes to emit IL-10, which stimulates Tregs. Tregs release IL-10 and TGF-β to prevent pro-inflammatory cells from activating.

responses, including host defense against infections (18). An
important factor in IBD and its chronicity is the interplay among
the intestinal mucosal barrier, the mucosal immune system, and
a disrupted microbial makeup (19). Dysbiosis is any perturbation
to the makeup or function of the microbiome (20). Microbial
dysbiosis is characterized by reduced biodiversity, changed
geographic distribution, abnormal gut microbiota composition,
and interactions between microbiota, strains, and the host (21).
IBD onset and development are associated with alterations in gut
microbiota and metabolites, but the specific microbial communities
affected and their potential contribution to the disease remain
unclear (22, 23). Several studies have revealed gut microbiota
dysbiosis, including viruses, bacteria, and fungi in IBD. The
helpful microbiota decreases while the pathogenic microbiome
increases. As a result, plant-based dietary components’ potential
to reverse these alterations by increasing helpful microorganisms
while decreasing pathogenic microbes may aid in the prevention
of IBD. These will be covered in the discussion section. Table 1
summarizes the alterations in the gut microbial signatures in IBD.

3 Gut microbiota dysbiosis and its
impact on IBD

3.1 Gut microbiota diversities

Dysregulation during infancy can result in diseases later in
life since the human gut flora develops and matures throughout

this time. The microbiota of infants differs from that of adults
in several metabolite groups, including short- and branched-chain
fatty acids associated with changes in bacterial populations (24).
In particular, during illness and early growth, the gut microbiota
can change over time and is incredibly varied (25). Evidence from
clinical (26–28) and preclinical (29–31) studies shows that the gut
bacteria’s diversity is lower in people with IBD and DSS compared
to controls. Reduced biodiversity of the gut fungal (32–35) and the
gut virome (36–38) has also been observed in IBD both clinically
and preclinically.

3.2 Barrier integrity disruption and
influence on gut’s immunological system

The intestinal epithelium facilitates the movement of
nutrients, water, and waste products while acting as a barrier
to restrict interactions between luminal contents such as the
gut microbiota, the immune system, and the body (39). Tight
junction proteins like Zonula occludens, occludin, and claudins
are essential for maintaining the integrity of the epithelial
barrier (40). Tight junctions are crucial for maintaining barrier
integrity by regulating the movement of antigens through the
intestinal epithelial barrier (41). Multiple studies indicate that
gut microbiota comprising bacteria (42, 43), fungi (44), and
viruses (45–47) can compromise intestinal barrier integrity,
leading to the pathogenesis of IBD. Additionally, the gut
bacteria (43, 48–50), virus (51, 52), and fungi (53–55) have
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TABLE 1 Gut microbiota signatures in IBD.

Microbiota Model Sequencing
method

Sample Microbial signatures References

Bacteria UC 16S rRNA Stool ↓Bacteroides ↓Parabacteroides
↓Prevotella
↑Actinomyces
↑Klebsiella ↑Limosilactobacillus
↑Streptococcus
↑Escherichia-Shigella

(248)

UC 16S rRNA, metagenomic
shotgun

Stool ↓Akkermansiaceae ↓Clostridiaceae
↓Eggerthellaceae ↓Lachnospiraceae
↓Oscillospiraceae

(27)

UC 16S rDNA Stool ↑Escherichia coli
↑Klebsiella pneumoniae
↑Proteobacteria ↑Actinobacteria
↓Firmicutes ↓Bacteroides

(249)

CD 16S rRNA Stool ↓Firmicutes
↑Bacteroidetes

(7)

CD 16S rRNA Stool ↓Ruminococcaceae
↓Christensenellaceae
↓Erysipelotrichaceae
↓Clostridium
↓Erysipelotrichia

(250)

CD 16S rRNA Stool ↑ASV 6 Escherichia/Shigella uncl.
↑ASV 497 Dorea uncl.,
↑ASV-709 Subdoligranulum uncl.

(251)

IBD 16S rRNA Stool ↑Coriobacteriaceae
↑Streptococcaceae
↓Christensenellaceae
↓Desulfovibrionellaceae
↓Marinifilaceae
↓Rikenellaceae
↓Ruminococcaceae
↓Tannerelleaceae
↓Barneselliaceae

(26)

DSS-induced colitis 16S rRNA Stool ↓Lactobacillaceae
↓Lachnospiraceae
↑Bacteroidaceae

(29)

DSS-induced colitis 16S rRNA Stool ↑Firmicutes ↑Actinobacteria
↓Bacteroidetes ↓Verrucomicrobia

(252)

DSS-induced colitis 16s RNA Stool ↓Lactobacillus ↓Lachnospiraceae
NK4A136
↓Prevotellaceae UCG-001
↑Bacteroides

(253)

DSS-induced colitis RT-PCR Stool ↓Bifidobacterium
↓Lactobacillus
↓Roseburia
↓Akkermansia spp
↑Prevotella spp

(254)

Fungal CD ITS2 Colonic mucosa
samples

↑Saccharomycetes
↑Exobasidiomycetes
↑Sordariomycetes
↑Candida glabrata
↑Dioszegia
↑Cystofilobasidiaceae
↓Leptosphaeria ↓Trichosporon

(255)

CD ITS2 high-throughput Stool ↑Saccharomyces
↑Clonostachys ↑Exophiala

(256)

(Continued)
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TABLE 1 (Continued)

Microbiota Model Sequencing
method

Sample Microbial signatures References

CD ITS1-2 Stool ↑Escherichia-Shigella
↓Faecalibacterium ↓Gemmiger
↓Bifidobacterium ↓Romboutsia
↓Ruminococcus ↓Roseburia
↓Fusicatenibacter

(257)

UC ITS2 Stool ↑Ascomycota ↑Chytridiomycota
↑Saccharomycetaceae ↑Pleosporaceae
↑Didymellaceae
↑Saccharomyces ↑Malassezia
↑Alternaria

(258)

IBD ITS2 Stool ↑Basidiomycota- Ascomycota ratio
↓Saccharomyces cerevisiae
↑Candida albicans

(32)

IBD ITS Stool ↑Ascomycota
↓Basidiomycota

(34)

Virus UC Deep metagenomics
sequencing of VLP,
16S rRNA

Rectal biopsies ↑Escherichia phage
↑Enterobacteria phage

(36)

UC 16S rRNA Stool ↑Eight Siphoviridae VCs
↑Two Myoviridae VCs

(259)

UC RT-PCR and Sanger Colonic biopsies ↑Eukaryotic Hepadnaviridae (260)

CD Shotgun metagenomic Stool ↑crAssphage (37)

CD etagenomics and
metaviromics

Stool ↑33 distinct Torque Teno virus species
↑Streptomyces phage RosaAsantewaa
↑Escherichia phage D6/sp.
↑Faecalibacterium phage FP Brigit
↑Escherichia virus P2 4B2/4E6b

(38)

IBD Shotgun metagenome Stool ↑Caudovirales
↓Petitvirales

(261)

VEO-IBD Shotgun metagenome Stool ↑Caudovirales- Microviridae ratio
↑Anelloviridae

(262)

IBD, inflammatory bowel disease; ITS, internal transcribed spacer; VEO, very early-onset; VLP, virus-like particle.

shown potential to cause immunological responses in IBD.
These findings imply that the gut microbiota may participate
in IBD pathogenesis. Figure 2 illustrates how dysbiosis of the
gut microbiome leads to compromised intestinal epithelium
and heightened immune responses, exacerbating IBD. Dysbiosis
increases detrimental gut microbiota, which then induces the
generation of proinflammatory cytokines and disrupts the barrier
function.

4 Plant-based dietary compounds

The American College of Lifestyle Medicine advises consuming
a diet high in plant-based foods, including whole grains, legumes,
nuts, seeds, fruits, and minimally processed vegetables (56).
The benefits of plant-based diets for human and environmental
health have made them more popular in recent years (57).
Plant-based diets often provide numerous health benefits,
including increased intake of essential vitamins and minerals,
reduced saturated fat consumption, and increased fiber intake
(56). Additionally, research has proven that plant-based diets

can reduce the risk of chronic renal disease (58), improve
cardiovascular health (59), combat multidrug-resistant bacteria-
induced enteric disorders (60), and prevent nonalcoholic fatty
liver disease (61). Polyphenols, dietary fibers, and prebiotics
are the main components of plant-based diets. These are
described below.

4.1 Types of plant-based dietary
compounds

4.1.1 Polyphenols
Nutritionists and food scientists are increasingly interested

in the nutraceutical properties of dietary plant polyphenols,
which are naturally occurring bioactive substances (62). Phenolic
chemicals are significant components of plant-derived diets, as
their existence correlates with health-protective properties (63).
Phenolic chemicals must be liberated from the matrix during
digestion in an absorbable form (bioaccessible), then absorbed
and transported to the bloodstream (bioavailable) to exert their
biological action (63).
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FIGURE 2

Gut microbiome dysbiosis in IBD. In a dysbiotic environment, short-chain fatty acids (such as butyrate) and gut microbial diversity decrease,
accompanied by a rise in microbial imbalances. An increase in harmful microbiota leads to the activation of dendritic cells and macrophages,
prompting them to produce cytokines. These cytokines stimulate T helper cells, specifically Th1 and Th17, to release more cytokines that cause
mucosal ulcerations. As a result, there is a decrease in tight junction proteins and barrier integrity, along with a reduction in anti-inflammatory cells,
while pro-inflammatory cells increase.

4.1.1.1 Sources

Plant-based foods high in polyphenols, such as fruits,
vegetables, tea, coffee, wine, and chocolate, provide several health
advantages (64). The gut microbiota may mediate the beneficial
effects of polyphenols on host metabolism (65). Renowned for their
strong antioxidant qualities, polyphenols neutralize free radicals,
therefore addressing oxidative stress and helping to avoid chronic
non-communicable disorders like cancer, cardiovascular problems,
obesity, and diabetes (64).

4.1.1.2 Types

Dietary polyphenols, such as phenolic acids, flavonoids,
catechins, tannins, lignans, stilbenes, and anthocyanidins, are
prevalent in grains, cereals, legumes, vegetables, spices, fruits,
chocolates, and drinks including fruit juices, tea, coffee, and wine
(66). Additionally, curcuminoids are phenolic chemicals frequently
added to food as a spice, color, and additive. They serve as a
medicinal agent (67).

4.1.1.2.1 Phenolic acids
One important type of dietary polyphenols that are naturally

occurring antioxidants is phenolic acids (68). Plant metabolites
called phenolic acids are present in various parts of the plant
kingdom (69). Mohammed and his team used phytochemical
analysis to find phenolic acids in Ephedra alata Decne. These
acids include p-coumaric acid, ferulic acid, ellagic acid, caffeic

acid, vanillic acid, rosmarinic acid, and chlorogenic acid (70).
Researchers have demonstrated that phenolic acids slow down
the progression of osteoarthritis by reducing the expression
of catabolic factors, mitigate alcohol-induced liver disease by
altering the hepatic circadian rhythm signaling pathway through
the gut microbiota-NPAS2 axis, prevent inflammation and
ferroptosis by controlling the AMPK/mTOR/HIF-1 signaling
pathway, alleviate S. aureus-induced endometritis in mice, shield
testicular injuries caused by cyclophosphamide, and reduce
vascular endothelial growth factor-induced angiogenesis and
endothelial permeability. Phenolic acids have also been found
to effectively treat neurotoxicity brought on by exposure to
neuroendocrine disruptors, reduce splenic tissue inflammation,
balance oxidative stress in carp via the nuclear factor erythroid
2-related factor 2 (Nrf2)/NQO-1 pathway, and enhance spleen
apoptosis (71–77).

4.1.1.2.2 Flavonoids
Flavonoids are substances that are found in nature and

have a variety of health benefits (78). Numerous plants, fruits,
vegetables, and leaves contain phytochemicals called flavonoids,
which may have uses in medical chemistry (79). Proanthocyanidins
are byproducts of flavonoid biosynthesis, consisting of oligo- or
polymers made from monomeric flavan-3-ols (80). The degree of
unsaturation and oxidation of the C ring and the carbon to which
the B ring is linked divide flavonoids into subgroups. Isoflavones
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are flavonoids with a B ring connected to a C ring at position 3, and
neoflavonoids have a B ring connected at position 4. Flavonoids
with a B ring connected at position 2 can be further classified
into subgroups based on the C ring’s structural characteristics.
These subcategories include anthocyanins, chalcones, flavones,
flavonols, flavanones, flavanonols, and flavanols or catechins (81).
Researchers have proven several advantages from these substances.
For instance, increased anthocyanin intake has been associated
with a decrease in cardiovascular disease mortality (82). Chalcone
T4 also inhibits inflammation in periodontal tissues and the loss
of alveolar bone (83). Isoorientin (a natural flavone) therapy
in mice with excisional wounds improved tissue healing (84).
There is evidence that the natural flavonol kaempferol and
flavanonol dietary dihydromyricetin can help treat rheumatoid
arthritis and protect against growth retardation and intestinal
damage caused by enterotoxigenic Escherichia coli, respectively
(85, 86). Other types of flavonoids have also shown promise
in slowing the progression of nonalcoholic fatty liver disease,
lowering signs of neuroinflammation and cell death in the
hippocampus in people with Gulf War Illness, and possibly being
used as a treatment for the Omicron version of SARS-CoV-2 (61,
87, 88).

4.1.1.2.3 Curcuminoids
Curcuminoids, commonly used as pigment spices, are

phenolic chemicals with antiviral, antitumor, anti-HIV, anti-
inflammatory, antiparasitic, anticancer, and antifungal properties.
The main active and consistently bioactive components are
curcumin, bisdemethoxycurcumin, and demethoxycurcumin (89).
Curcumin’s strong anti-inflammatory qualities and regulatory
impact on the gut flora make it a research hotspot for IBD
treatment (90). Also, bisdemethoxycurcumin holds enormous
promise for creating powerful inhibitors that reduce the likelihood
of deadly amyotrophic lateral sclerosis (91). Demethoxycurcumin
has been shown to upregulate peroxisome proliferator activated
receptor γ (PPARγ), which inhibits the growth of cervical cancer
cells (92).

4.1.1.2.4 Tannins, lignans, stilbenes
These chemicals, recognized as dietary polyphenols

from various sources, exhibit beneficial effects in disease
management. For instance, Pterostilbene, a naturally occurring
stilbene, has anticancer properties in head and neck cancer cells
and prevents liver damage from alcohol consumption, both acute
and chronic (93, 94). Schisandra chinensis (Turcz.) Baill’s lignan-
enriched extract offers protection against Parkinson’s disease (95).
After mandibular molar extraction, green tea tannin has been
shown to stop bleeding much better than aqueous and methanolic
extracts (96).

4.1.2 Dietary fibers
Fiber consumption improves metabolic homeostasis in both

humans and rodents, which in turn leads to changes in the gut
microbiota (97). Due to the absence of the digestive enzyme
necessary for fiber digestion, dietary fiber is a nondigestible
form of carbohydrates in humans (98). Dietary fibers’ structure
dictates the metabolic variations and alterations in the gut
microbiota brought about by fermentation, which in turn influence
the health impacts of gut microbes (99). Consuming dietary

fiber, especially insoluble fiber from fruits, vegetables, and
other foods, may lower the risk of breast cancer, particularly
in premenopausal women (100). Zheng et al. (101) found
that total, insoluble, or soluble dietary fibers taken from
highland barley can help mice on a high-fat diet (HFD) lose
weight, change their blood lipid profiles, and heal damaged
tissues (101).

4.1.2.1 Classification of dietary fibers

Dietary fiber falls into the soluble or insoluble category based
on its water solubility characteristics (98). Soluble fibers comprise
pectin, inulin, resistant starch, β-glucan, gums, and mucilages
(102–104), while insoluble fibers comprise cellulose, hemicellulose,
and lignin (103, 104).

4.1.2.1.1 Soluble fibers
4.1.2.1.1.1 Pectin. Apple and citrus peels are currently the
main ingredients used in commercial pectin manufacturing
(105). Pectin is a collection of intricate polysaccharides naturally
occurring in diverse plants and linked to numerous advantageous
health benefits (106). Pectins are dietary fibers recognized for
their various positive immunomodulatory effects and their role
in managing and preventing different inflammatory disorders
(107, 108). Pectins can be classified as high methoxyl pectin or
low methoxyl pectin based on the degree of esterification (107).
A study has demonstrated that pectin prevents ileitis (109). Liu
and colleagues found that pectin from comfrey roots could lessen
colon damage from DSS in rats and repair the intestinal barrier
(110). In a pilot study, supplementing healthy volunteers with citrus
low-methoxy pectin lowers inflammation and anxiety levels (111).

4.1.2.1.1.2 Inulin. As a reserve polysaccharide, inulin, a
soluble dietary fiber, is present in over 36,000 plant species
(112). Jerusalem artichokes, chicory, onions, garlic, barley, and
dahlia are the main sources of inulin (112, 113). The food industry
commonly uses chicory roots and Jerusalem artichoke tubers as raw
materials for inulin manufacturing (112). A well-known prebiotic
component that has been shown to alter the gut flora and its
metabolic processes is inulin (114). This suggests that inulin may
possess prebiotic properties. Researchers have demonstrated that
inulin prevents atherosclerosis by boosting the intestinal barrier
and gut microbiota, decreasing inflammation, and increasing
lipid metabolism (115). Research suggests that inulin may have
antidiabetic effects by enhancing insulin resistance and insulitis,
and reducing obesity progression by modulating gene expression
in the prefrontal cortex via endocannabinoids (116, 117).

Small interfering RNA (siRNA)-mediated therapy has shown
potential in treating various illnesses by inhibiting gene expression,
including those involved in cancer initiation and spread, making
it a promising treatment option (118). Interestingly, researchers
have applied nanoparticles to inulin to treat diseases. For instance,
researchers developed systemically administered nanoparticles
using inulin modified with α-cyclam-p-toluic acid (CPTA) (IC) and
siRNA against p53, which preferentially concentrate in damaged
kidneys and significantly decrease p53 expression (119). Mice
with cisplatin-induced acute kidney injury showed improved renal
function overall and decreased tubular cell death, renal injury, and
inflammation due to selective p53 knockdown (119).
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4.1.2.1.1.3 β-glucan. β-glucans are a class of β-D-glucose
polysaccharides (glucans) found naturally in grain, fungal, and
bacterial cell walls (120). A non-starch-soluble polysaccharide,
β-glucan, is found in many foods, including barley, oats, yeast,
mushrooms, bacteria, and algae (121). Observations show that
the structural features of β-glucan, such as specific glycosidic
connections, monosaccharide compositions, molecular weight, and
chain conformation, influence its physiochemical and biological
properties (121). Enzymes called β-glucanases break down β-
glucan into glucose and cello-oligosaccharides (120). β-glucans
have demonstrated the ability to elevate reactive oxygen species and
induce apoptosis in melanoma cells, alter local innate responses in
ewes by preserving the integrity of the mammary epithelial barrier,
and exhibit unique immune-modulating properties, rendering
them compelling adjuvants for prospective allergy therapies
(122–124).

4.1.2.1.1.4 Gums. Gums are carbohydrate-based biomolecules
that bind water and form gels. Types include exudate, mucilage,
and seed gums. Plant gums, due to their bioavailability, are
significant and have been used by humans since prehistoric times
for various purposes (125). Plant-derived gums and mucilages
are suitable pharmaceutical excipients due to their non-toxicity,
stability, availability, regulatory compliance, cost-effectiveness,
and adaptability to specific requirements (126). According to a
phytochemical analysis, Prunus armeniaca and Prunus domestica
gum include proteins, carbohydrates, and saponins (127). These
gums exhibit potential in pharmaceutical compositions (127,
128). Furthermore, gum can serve as a medium for the oral
administration of protein pharmaceuticals (129). Hydrogel made
of chicha gum has demonstrated promise as a wound-healing
agent (130).

4.1.2.1.1.5 Mucilages. The food industry is interested
in mucilage, a hydrophilic biopolymeric substance in high
concentrations in agricultural by-products such as the peel of
cactus fruits, due to its high dietary fiber content, antioxidant
activity, and gelling and thickening properties (131). Plant parts
like seeds, rhizomes, and roots can yield mucilage (132). In nature,
it is a polysaccharide made up of large sugar molecules and uronic
acid components (132). Okra’s mucilage and flesh may be potential
remedies for preventing metabolic dysfunction (133). In mice with
alloxan-induced diabetes, Abelmoschus esculentus mucilage has
good antioxidant potential and hypoglycemic and hypolipidemic
effects (134).

4.1.2.1.1.6 Resistant starch. Humans have long used resistant
starch (RS) as a food source, and almost all starchy foods contain it
(135). RS is a type of starch that can pass through the small intestine
and reach the colon, despite being indigestible by human pancreatic
amylase (135). Five different RS types modulate gut microbiota to
respond differently to chronic illness (136). Short-chain fatty acids
(SCFAs) bridge the gut microbiota and RS, and RS has the potential
to improve the metabolism of the gut microbiota and increase the
population of beneficial bacteria in the gut (136). RS may enhance
body weight and carbohydrate and lipid metabolism (137). The RS
diet has shown positive effects on renal function indicators and
uremic toxin levels in patients with chronic kidney disease (138).

4.1.2.1.1.7 Prebiotics. Prebiotics are indigestible food fibers
that have undergone selective fermentation. They specifically

encourage the growth of one or more bacterial genera in the
gut, which benefits the host’s health (139). Prebiotics that
are helpful to human health fall into two major categories:
galactooligosaccharides and fructooligosaccharides (140).
Prebiotics can feed the gut microbiota, and their breakdown
releases SCFAs into the bloodstream that affect the gut and other
external organs (140). Consuming prebiotics such as arabinoxylan
oligosaccharides and inulin-type fructans can boost the quantity of
bifidobacteria in the colon (141). Bifidobacteria play various roles,
including breaking down indigestible carbohydrates, protecting
against infections, synthesizing vitamin B, antioxidants, and
conjugated linoleic acids, and activating the immune system (141).
Supplementing male rats with oligofructose prebiotic fiber has
been shown to lessen the effects of a diet heavy in fat and sugar and
to prevent knee joint deterioration (142). Notably, the majority of
prebiotics are soluble fibers.

4.1.2.1.2 Insoluble fibers
4.1.2.1.2.1 Cellulose. Cellulose is the most prevalent
polysaccharide on Earth. It can be found in a wide variety of
places, including the cell walls of plants and wood, certain types
of bacteria, algae, and tunicates—the only known animals that
possess cellulose (143). Cellulose can be categorized into fiber,
microfibril/nanofibril, or micro/nanocrystalline cellulose based on
the selection of physical characteristics, sizes, and shapes (143).
SCFAs produced by cellulolytic bacteria from dietary fiber are
vital for maintaining gut health and optimizing fiber use (144).
The gut microbiota is essential for digesting cellulose, the primary
component of plant fiber, in humans and all other mammals. The
human gut microbiota contains ruminococcal species that form
multi-enzymatic cellulosome structures, which are functional and
capable of breaking down plant cell wall polysaccharides. A species
closely related to humans likely originated in ruminants’ guts and
spread to humans during domestication. It acquired genes from
other gut microbes and underwent diversification and diet-related
adaptation. These species are common among hunter-gatherers,
ancient people, and rural groups but are uncommon in populations
from industrialized countries, suggesting they may go extinct due
to Westernized lifestyles (145). Microparticles made of highly
crystalline seaweed cellulose may help control gut microbial
dysbiosis and reduce obesity and metabolic syndromes linked to a
high-fat, high-sugar diet in mice (146). Also, cellulose nanocrystals
have demonstrated the potential to enhance intestinal retention
and assist in body weight management (147).

4.1.2.1.2.2 Hemicellulose. Plant cell walls contain
polysaccharides called hemicelluloses, which have beta-(1–
> 4)-linked backbones (148). Around one-third of wall
biomass comprises hemicelluloses, including heteromannans,
xyloglucan, heteroxylans, and mixed-linkage glucan (149).
Research suggests finger millet-derived arabinoxylan and Delonix
regia galactomannan can be used as nutraceuticals to control
high-fat diet-induced obesity and enhance wound healing in
murine cutaneous wounds by increasing transforming growth
factor-beta (TGF-β) levels (150, 151). Lemieszek and colleagues
have also demonstrated Cantharellus cibarius branched mannans
as a novel treatment option for colon cancer (152).

4.1.2.1.2.3 Lignin. Lignin, a dietary fiber derived from plant
cell walls, has several biological anti-inflammatory and antioxidant
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properties (153). Lignin is a complex polymer of phenylpropane
units that exhibits extensive cross-linking (154). Common lignin
structures found in the insoluble dietary fiber of fruits and
vegetables comprise glycerols, spirodienones, dibenzodioxocins,
and lignin precursors in the gut known as resinols (155). The
nature of the cell wall, particularly the amount of lignin present,
significantly influences the gut microbiota and fermentation
results (156). Lignin prevents ferroptosis in UC by interacting
with GPR37 and triggering the extracellular signal-regulated
kinase-Nrf2-glutathione peroxidase 4 (GPX4) signaling pathway,
providing new clinical intervention concepts for UC treatment
(153). Additionally, lignin-carbohydrate complexes reduce the
neurotoxicity of bisphenol A in zebrafish by reducing oxidative
stress (157).

5 Role of plant-based dietary
compounds in modulating the gut
microbiome to repair IBD

5.1 Dietary fibers

5.1.1 Soluble dietary fibers
Numerous studies have demonstrated that inulin can avert

various disorders, including IBD. Researchers have recognized
additional inulins for their prebiotic characteristics. Inulin
enhances beneficial microbiota and diminishes detrimental
microbiota. These strategies mitigate inflammation and preserve
the integrity of the gut mucosal barrier. For instance, Lactobacillus
rhamnosus 1.0320 combined with inulin can alleviate colitis caused
by DSS, reduce the disease activity index score of colon tissue
damage, and increase IL-10 expression while downregulating IL-1β,
IL-6, TNF-α, and myeloperoxidase (MPO) (158). Additionally, the
combination dramatically increases the abundance of Bacteroidales
S24-7 in enteritis-affected mice while decreasing the abundance
of Lachnospiraceae and Ruminococcaceae (158). Cao and team
also found that the inulin gel matrix can prolong the residence
time of polypyrrole (PPy) nanozymes and pirfenidone (PFD) in
the gastrointestinal tract, reducing pro-inflammatory cytokine
levels, repairing the intestinal epithelial barrier, and suppressing
intestinal fibrosis through sustained reactive oxygen and nitrogen
species scavenging and attenuation of the TGF-β/Smad signaling
pathway. The gut microbiota was altered, enhancing the presence
of beneficial genera like Coprococcus and Oscillospira, which
aid in butyrate production, a crucial fatty acid for intestinal
barrier restoration (159). Zhang and his team also found that
in three animal models of IBD, the Cu2(Olsa) nanoneedle-
inulin gel composite significantly reduced colitis by promoting
the repair of the epithelial barrier through anti-inflammatory
and antioxidant therapies while downregulating levels of pro-
inflammatory cytokines (Figure 3). The inulin gel composite
containing Cu2(Olsa) nanoneedles reduced the number of
harmful microorganisms, including Proteobacteria (160). Various
studies have demonstrated the potential of inulin in alleviating
different ailments. For instance, inulin may improve metabolic
diseases by altering the gut microbiota and enhancing the
generation of SCFAs, potentially mediated by the angiopoietin-like

protein 4-related signaling pathway. Dietary inulin improved gut
microbiota dysbiosis, reduced the loss of Bacteroidetes, inhibited
the growth of Firmicutes, and enhanced the ratio of Firmicutes to
Bacteroidetes (161). Also, inulin improves anxiety- and depression-
like behaviors in alcohol-dependent withdrawal mice by increasing
the number of Faecalibacterium and Roseburia, boosting the
generation of SCFAs, and regulating serotonin metabolism (162).
Additionally, inulin27 has significantly decreased rats’ systemic
glucose levels and weight gain from an HFD. Inulin7 reduced
levels of Lachnospiraceae linked to metabolic disorders while
promoting beneficial Bifidobacteriaceae taxa (163). This indicates
that inulin enhances gut microbiota in several disorders, including
IBD. However, researchers have found that inulin may induce
carcinogenesis in IBD. Tian and team found that following DSS
treatment, mice fed inulin showed significant colitis, while mice
who completed the research showed substantial colon cancer.
Inulin caused a shift in gut flora, which supported the increase of
succinate in the gut lumen. Interestingly, inulin-fed mice showed
a rise in Bacteroidota cecal abundance (164). In a different study,
Hoving and the team found that although inulin has prebiotic
effects, it did not reduce hypercholesterolemia or atherosclerosis
in E3L.CETP mice. However, it did lead to hepatic inflammation
when combined with a high cholesterol intake. Inulin significantly
increased the abundance of Coprococcus and Allobaculum in mice,
while decreasing the abundance of Bacteroides, Parabacteroides,
Prevotella, Micispirillum, Clostridium, and Coprobacillus compared
to control mice (165). These findings indicate that inulin may
exhibit diverse roles in several disorders, including IBD.

As previously mentioned, the two primary prebiotics are
galactooligosaccharides and fructooligosaccharides. Therefore,
Koleva and her team discovered that fructo-oligosaccharides
markedly alleviated colitis in rats. While FOS increased the
number of Bifidobacterium spp., both fructans (FOS and
inulin) decreased the expression of the genes for Clostridium
difficile toxin and Clostridium cluster XI, which was associated
with a decrease in chronic intestinal inflammation (166). Another
study found that FOS lowers colitis and levels of the pro-
inflammatory cytokine IL-1β in rats given rat chow. FOS increased
the number of copies of Bifidobacteria, Enterobacteriaceae,
and butyryl-CoA transferase genes while decreasing those of
Clostridium cluster IV. In rats given FOS, the relative content
of acetate was noticeably higher (167). In a different study,
treatment with fructooligosaccharides improved the changes
in pathology in transgenic mice and cognitive impairments.
Fructooligosaccharides therapy enhanced the abundance of
Lactobacillus while decreasing the abundance of Helicobacter
in the transgenic group (168). Conversely, in mice with stress-
induced IBS, the injection of FOS increases gut inflammation
and visceral hypersensitivity (169). Another study also found that
chitooligosaccharides (COS) and Clostridium butyricum decreased
clinical symptoms, enhanced colonic morphology, controlled
cytokine levels linked to inflammation, prevented the activation of
the TLR-4/NF-κB/MAPK signaling pathway, preserved intestinal
barrier function, and increased intestinal homeostasis by adjusting
the diversity and composition of the gut microbiota (170). These
findings indicate that prebiotics may influence the gut microbiota
in several disorders, including IBD.

The gums, categorized as soluble dietary fibers, modulate
the gut microbiota to prevent IBD. Partially hydrolyzed guar
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FIGURE 3

Cu2(Olsa)/Gel treatment of IBD. The oral delivery of Cu2(Olsa)/Gel improves bio-adhesion and colon retention. This makes it easier for 5-ASA to
penetrate the inflammatory tissue slowly. It lowers proinflammatory cytokines and speeds up the repair of the epithelial barrier by fighting free
radicals and inflammation. This leads to colitis alleviation. 5-ASA, 5-aminosalicylic acid; IL-interleukin; MDA, malondialdehyde; MPO;
myeloperoxidase; Olsa, olsalazine; ROS, reactive oxygen species; TNF-α, tumor necrosis factor-alpha.

gum (PHGG) lowers increases in myeloperoxidase activity, TNF-
α protein, and mRNA expression in the colonic mucosa and
repairs damage in the colon caused by TNBS. Mice treated
with PHGG exhibited markedly higher caecal proliferation of
the Bacteroides fragilis (B. fragilis) group, the Clostridium leptum
subgroup (Clostridium cluster IV), and the Clostridium coccoides
group (Clostridium cluster XIVa), along with increased SCFAs such
as propionic acid and butyric acid (171). The study focused on
gut microbiota, excluding significant bacteria like Bifidobacteria,
and assessed microbiota and SCFA after TNBS-induced colitis,
suggesting further research is needed to address these issues (171).
Nevertheless, a study by Paudel and team found that following DSS
intervention, mice given a guar gum-containing diet showed more
severe colitis than the control group. Primarily, guar gum enhances
Actinobacteriota, particularly Bifidobacterium. In the guar gum
diet-fed mice, this change in the makeup of the gut microbiota
promoted the luminal accumulation of intermediary metabolites
lactate and succinate (172). These changes may result from the
type of gum diet (refined and partially hydrolyzed guar gum).
In a different study, PHGG partially inhibited the development
of non-alcoholic fatty liver disease in mice through the gut-liver
axis by modifying the microbiota and the resulting SCFA profiles.
PHGG dramatically raised the prevalence of Clostridium subcluster
XIVa and Bacteroides in the cecum. Furthermore, PHGG therapy
significantly raised SCFA levels in the cecal samples, specifically
butyric acid, acetic acid, propionic acid, and formic acid (173).

Therefore, PHGG may similarly prevent IBD via regulating the gut
microbiota and producing SCFAs.

As previously mentioned, β-glucans, which are soluble dietary
fibers, have shown the ability to reduce IBD by influencing gut
flora. Additionally, certain β-glucans can be encapsulated with
nanoparticles to alleviate IBD. For instance, in an acute colitis
mouse model, oral administration of a yeast β-glucan nanocomplex
coated with bio-adhesive polydopamine (YBNs@PDA) has been
demonstrated to improve therapeutic efficacy while restoring
epithelial barriers, lowering ROS levels, and minimizing systemic
drug exposure (Figure 4). YBNs@PDA significantly increased the
number of Bifidobacterium and Lachnospiraceae NK4A136, two
probiotics that are essential for reducing colitis by maintaining
gut homeostasis (174). In a different study, oat β-glucan (ObG)
supplementation changed the gut microbiota profile, enhancing the
generation of butyrate in the intestines of both 4-week-old pups and
their dams, and increased spatial memory and cognition at week 8
(pups). The Firmicutes phylum was significantly more prevalent in
the ObG group’s dams and pups than in the control group (175).

The treatment of resistant starch from purple sweet potato
(PSPRS) significantly improved colon inflammation and
pathological characteristics in a dose-dependent manner compared
to DSS-induced colitis in mice. The PSPRS therapy group had
significantly higher levels of putative probiotic bacteria, including
Lactobacillus, Alloprevotella, Lachnospiraceae_NK4A136_group,
and Bifidobacterium, as well as a higher ratio of Firmicutes to
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FIGURE 4

YBNs@PDA intervention in IBD. Due to the mucoadhesive PDA layer that enables YBNs to adhere to inflammatory colon mucosa, these nano-agents
extended the time of retention in the intestine, allowing them to optimize the bioavailability of the medicine. This coating also enhances the core
YBNs’ potential for beneficial gut flora regulation, enhancing their effectiveness in treating inflammatory colon conditions. This restores the epithelial
barrier, lowers the levels of reactive oxygen species and pro-inflammatory cytokines, and raises the diversity and richness of the gut microbiota.
MPO, myeloperoxidase; NPs, nanoparticles; PDA, polydopamine; YBNs, yeast β-glucan nanocomplex.

Bacteroidetes (176). High PSPRS dosages, meanwhile, markedly
raised butyrate, propionate, and acetate production (176).
Nonetheless, the relationship between microbiota and PSPRS
structure is unclear, necessitating further research. Furthermore, in
DSS-induced colitis mice, a single dose of PSPRS was applied to the
gut microbiota and SCFAs; additional doses ought to be selected in
subsequent studies to elucidate PSPRS’s anti-inflammatory action
(176). The type of RS significantly impacts the gut microbiota’s
fermentation of SCFAs, with different RS types possessing unique
structural traits that ultimately lead to SCFA generation (177).

Li et al. (178) found that the reduction of Salmonella abundance
and the inactivation of TLR2-NF-κB signaling may explain
why dietary pectin improved tight junctions, oxidative stress,
and colitis caused by Salmonella typhimurium. Interestingly, the
study also discovered that Salmonella typhimurium markedly
increased the colon’s p-NF-κB/NF-κB ratio and TLR2 protein
expressions (178). These findings imply that dietary pectin may
ameliorate Salmonella typhimurium-induced colitis by inhibiting
the TLR2/NF-κB signaling pathway and oxidative stress.

5.1.2 Insoluble dietary fiber
Insoluble dietary fibers, including cellulose and xylans, have

shown promise in modulating gut microbiota to help prevent
IBD. In this case, Kim and colleagues discovered that high-
cellulose diets (HCD) protect mice from DSS-induced colitis,

while low-cellulose diets (LCD) increase intestinal inflammation.
Compared to mice fed LCD, mice fed HCD had a higher relative
abundance of the genus Akkermansia. Akkermansia muciniphila,
given orally to LCD-fed mice, improved colitis, lengthened crypts,
and expanded goblet cells. Dietary cellulose reduces inflammation
in the gut by regulating gut microbiota and lipid metabolism
(13). Additionally, mice fed HCD had greater levels of 13(S)-
HODE (hydroxyoctadecadienoic acid), while the precursor of
9(S)-HODE (hydroxyoctadecadienoic acid) was higher in LCD-
fed mice than in HCD-fed mice (13). Moreover, cellulose, when
used at an optimal dosage of 1.5 g/kg, has been proven to
reverse the pathological process of colitis by preventing colon
damage, balancing oxidative stress, controlling inflammation, and
preventing weight loss. Cellulose primarily targets and regulates the
number of unclassified Lactobacilli, Bacteroides, Faecalibaculum,
and norank Lactobacilli. Additionally, cellulose raised the levels of
SCFAs, including total SCFAs, butyric acid, propionic acid, and
valeric acid (179). In another study, treating citric acid-crosslinked
carboxymethyl cellulose nanofibers shields mice against diet-
induced obesity and metabolic dysfunction by increasing energy
expenditure, decreasing food intake, and enriching probiotics like
Bifidobacterium (180).

Zhao et al. (181) found that ferulic acid-derived lignin
nanoparticles (FALNP) significantly reduced pathogenic
symptoms by controlling the gut microbiota and lowering
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oxidative stress in a mouse model of acute colitis. The mice
treated with FALNP showed a considerable rise in Lactobacillus
and Lachnospiraceae_NK4A136_group. Through intestinal
microenvironment regulation, FALNP can tolerate the gastric acid
environment and significantly alleviate pathological symptoms in
colitic mice (181). The FALNP-based delivery system, despite its
versatility, is not selective for inflammatory areas, necessitating
further biological or chemical modification for improved oral
delivery therapy of intestinal illnesses (181).

Xylan butyrate ester (XylB) treatments can balance pro-
and anti-inflammatory cytokines, lessen damage to mice’s guts,
and restore gut microbiota that was harmed by DSS treatment.
This lowers the number of Oscillibacter, Ruminococcaceae UCG-
009, Erysipelatoclostridium, and Defluviitaleaceae UCG-01 genera.
XylB increased colon butyrate concentration, decreased histone
deacetylase (HDAC) activity, increased G-protein-coupled receptor
109A protein expression, and activated autophagy and NF-κB,
resulting in anti-inflammatory effects (182). In a different study,
supplementing with specific xylans, such as arabinoxylan derived
from rice bran (RAX), dramatically reduces obesity from a high-fat
diet. RAX decreases the relative abundance of pro-inflammatory
bacteria such as Anaerotruncus, Helicobacter, Coprococcus, and
Desulfovibrio while increasing the relative abundance of anti-
inflammatory bacteria like Bifidobacterium and Akkermansia (183).
Table 2 summarizes the role of dietary fibers in regulating the gut
microbiota to prevent IBD.

5.2 Polyphenols

5.2.1 Curcuminoids
Polyphenols, plant-based substances found naturally or as

semi-synthetic or synthetic derivatives, have demonstrated positive
health impacts and therapeutic uses in several chronic diseases
(184). Healthy, sub-healthy, and sick people use over-the-counter
natural products to treat and prevent chronic illnesses, with
biomedical researchers and medicine developers focusing on
dietary polyphenols like curcumin, a curry component, for
treatment and prevention (185). The turmeric plant, Curcuma
longa, produces curcumin, a polyphenol belonging to the ginger
family. It has long been used in Ayurvedic treatments to treat
a variety of illnesses, including anorexia, asthma, coughing,
hepatic diseases, diabetes, heart ailments, wound healing, and
Alzheimer’s (186). A recent study has shown that curcumin
inhibits further body weight and colon length reduction in IBD
mice while improving the disease activity index, colonic mucosal
damage, and inflammatory infiltration. Curcumin changes the gut
microbiota by raising Akkermansia, Muribaculaceae_unclassified,
and Muribaculum levels and markedly increasing intestinal
concentrations of propionate, butyrate, glycine, tryptophan, and
betaine (15). Furthermore, curcumin’s amelioration of intestinal
dysbiosis impacted hepatic metabolic performance and enhanced
the pathways linked to butanoates, bile acids, glucagon, amino
acids, and biotin metabolism (15). These modifications might
make it easier to establish the gut-liver axis’s equilibrium.
However, curcumin’s impact on the gut-liver axis remains unclear,
necessitating further confirmation of genes and proteins linked
to gut and hepatic metabolite changes (15). Moreover, the

extensive metabolomics data may have overlooked some significant
targets due to the limited screening of intrahepatic metabolites
with major intestinal genera (15). In another study, curcumin
therapy dramatically reduced tumor growth in AOM/DSS-induced
CRC model mice while restoring colon length and structural
morphology. In the CRC model mice, curcumin decreased the
number of harmful bacteria such as Ileibacterium, Monoglobus, and
Desulfovibrio while increasing the number of good bacteria such as
Clostridia_UCG-014, Bifidobacterium, and Lactobacillus (187).

5.2.2 Phenolics
Polyphenols, like phenolic acids, have shown much promise

in helping people with IBD by changing the gut microbiota. For
instance, a study revealed that dietary caffeic acid (CA) prevents
the rise in the Firmicute to Bacteroidetes ratio and promotes
Akkermansia in mice with DSS colitis (188). Nevertheless, the
authors did not prove a direct link between the improvement in
colitis and the rise in the fraction of Akkermansia populations
(188). Therefore, a causal association must be studied in the future.
Additionally, CA can significantly decrease the release of IL-6,
TNFα, and IFNγ, as well as the colonic infiltration of CD3+T
cells, CD177+ neutrophils, and F4/80+ macrophages by blocking
the signaling of NF-κB (188). Another study also found that
CA supplementation altered the gut microbiome composition,
increasing the abundance of Akkermansia, Alistipes, and Dubosiella
while decreasing Turicibacter and Bacteroides’ abundance (189).
Additionally, the study discovered that while Dubosiella abundance
rose after CA injection, the mechanism is not specified (189).
Thus, additional research is required to investigate the mechanism
of Dubosiella and whether it could impact colitis (189). In a
different study, caffeic acid phenethyl ester (CAPE) has shown
potential in reducing nonalcoholic fatty liver disease in obese
mice by manipulating gut flora. Treatment with CAPE primarily
boosted the genera Helicobacter, Bilophila, Enterococcus, and
Bacteroides (190). CAPE partially alleviates obesity-related steatosis
by inhibiting bacterial bile salt hydrolase activity through the gut
microbiota-bile acid-FXR axis (190).

Gallic acid (GA) is another phenolic acid shown to alleviate
colitis and improve gut microbial dysbiosis. Treatment with
GA restored the number of Bacteroidales, Enterobacterales, and
Clostridiales. High-dose GA treatments inhibited the activation
of NF-κB and MAPK signaling pathways, which were seen in
mRNA levels following DSS treatment (191). In an alternative
study, GA alleviates synovial inflammation and fibrosis in knee
osteoarthritis by affecting the populations of Bacteroidia and
Muribaculaceae, as well as through the metabolic pathways
related to arginine biology, glycerophospholipid metabolism,
and sphingolipid metabolism (192). However, concurrent use of
cytochrome P450 family two subfamily D member 6 substrate
medications and supplements containing gallic acid may result in
harmful herbal-drug interactions (193). Additionally, gallic acid
compounds are also known to have negative effects, including
cytotoxicity and mutagenicity (194).

5.2.3 Catechin
Green tea is rich in catechins and polyphenol flavonoids,

with the most effective catechin being epigallocatechin 3-gallate
(EGCG) (195). Oral EGCG, a key bioactive ingredient in green tea,
strengthens the intestinal barrier and reduces inflammation in mice
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TABLE 2 Dietary fibers that regulate the gut microbiota signatures to prevent colitis.

Dietary fiber Model Sequencing
method

Sample Mechanism of action Impact on gut microbiota
signatures

Outcome Reference

Soluble

Inulin

Lactobacillus rhamnosus
1.0320 + inulin

DSS-induced colitis 16S rDNA
high-throughput

Stool Augments anti-inflammatory cytokines,
diminishes pro-inflammatory cytokines,
and alters gut microbiota.

↑Bacteroidales S24-7
↓Lachnospiraceae ↓Ruminococcaceae

Relieves
DSS-induced IBD.

(158)

Ternary
PPy/PFD@Inulin gel&

DSS-induced UC 16S rRNA Stool Decreases pro-inflammatory cytokines,
enhances gut barrier repair, modulates
gut microbiota, and inhibits the
TGF-β/Smad signaling pathway.

↑Coprococcus ↑Oscillospira Reduces IBD and
intestinal fibrosis.

(159)

Cu2(Olsa)
nanoneedle-inulin gel
composite&

DSS-induced UC 16S rRNA Stool Downregulates pro-inflammatory
cytokine concentrations and facilitates
epithelial barrier restoration via
anti-inflammatory and antioxidant
interventions

↓Proteobacteria Decreases colitis (160)

Gums

PHGG TNBS-induced
colitis

16S rRNA Stool Inhibits the onset of TNBS-induced
colitis in mice by modulating intestinal
microbiota and SCFA.

↑Bacteroides fragilis group
↑Clostridium leptum subgroup
(Clostridium cluster IV)
↑Clostridium coccoides group
(Clostridium cluster XIVa)

Prevents colitis
caused by TNBS

(171)

Prebiotic

Chitooligosaccharides +
Clostridium butyricum

DSS-induced acute
UC

16S rDNA Stool Exhibit significant anti-inflammatory
and antioxidant properties, increase the
expression of tight junction proteins,
block the TRL-4/NF-κB/MAPK
signaling pathway, and alter the amount
and composition of gut microbiota

↑Muribaculaceae ↑Lactobacillus
↑Clostridia_UCG-014, Turicibacter
↑Lachnospiraceae_
NK4A136 ↑Butyricicoccus

Ameliorate colitis (170)

Fructooligosaccharides Colitis in HLA-B27
transgenic rats

16S rRNA, 16S
rDNA

Caecum, stool FOS altered the gut microbiota, leading
to reduced chronic intestinal
inflammation

↓Enterobacteriaceae
↑Enterobacteriaceae
↓Clostridium difficile
↑Bifidobacterium
↑Bifidobacteria
↓Clostridium cluster IV

Reduce colitis (166, 167)

Chitooligosaccharides
+Bacillus coagulans

DSS-induced colitis 16S rRNA
high-throughput

An approved model
for IBD

Alter cytokines, preserve mucin and
tight junction protein expression,
encourage intestinal barrier healing,
control gut microbiota composition,
and enhance SCFA synthesis.

↑Ruminococcus ↑Akkermansia Attenuate
DSS-induced UC

(263)

β-glucans

YBNs@PDA DSS-induced colitis 16S rRNA Stool Restores epithelial barriers, lowers ROS
levels, and regulates gut microbiota

↑Lachnospiraceae NK4A136
↑Bifidobacterium

Mitigates
DSS-induced colitis

(174)
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TABLE 2 (Continued)

Dietary fiber Model Sequencing
method

Sample Mechanism of action Impact on gut microbiota
signatures

Outcome Reference

Resistant starch

PSPRS DSS-induced colitis 16S rDNA
high-throughput

Stool Reduce pro-inflammatory cytokines,
enhance SCFA and anti-inflammatory
cytokine generation, and restore the
disrupted gut flora

↑Lactobacillus, ↑Alloprevotella,
↑Lachnospiraceae_
NK4A136_group, ↑Bifidobacterium,
↑ ratio of Firmicutes to Bacteroidetes,
↓Bacteroides, ↓Staphylococcus,
↓Akkermansia

Treats colitis
brought on by DSS

(176)

Dietary pectin Salmonella
typhimurium-
induced
colitis

16S rRNA Caecal contents Reduces H2O2 and MDA levels,
decreases inflammatory cytokines,
increases the abundance of intestinal
tight junction proteins and CoQ10b
expression, and inhibits TLR2-NF-κB
signaling.

↓Salmonella Ameliorate colitis
caused by Salmonella
typhimurium.

(178)

Insoluble

Cellulose

High-cellulose DSS-induced colitis 16s rDNA Stool Increases mucus synthesis by goblet
cells and has prebiotic effects on
A. muciniphila

↑Akkermansia Prevents
DSS-induced colitis

(13)

Cellulose DSS-induced colitis 16s rDNA Stool Controls the gut microbiota, lowers
TNF-α and NF-κB expression, and
raises PPAR-γ and IL-10 expression

↑Bacteroides
↑norank_f__Muribaculaceae
↑Lactococcus
↓Faecalibaculum
↓unclassified_f__Lachnospiraceae

Reduces
DSS-induced colitis

(179)

Hemicellulose

Xylan butyrate ester DSS-induced UC 16S rRNA Stool Controls gut microbiota, increases
GPR109A protein expression, inhibits
HDAC activity, and promotes
anti-inflammatory activity by activating
autophagy pathways and inhibiting
NF-κB

↓Oscillibacter ↓Ruminococcaceae
UCG-009 ↓Erysipelatoclostridium
↓Defluviitaleaceae UCG-01 genera

lessens intestinal
inflammation and
damage

(182)

Lignin

Ferulic acid-derived
lignin nanoparticle
(FALNP)

DSS-induced colitis 16S rRNA Stool Modulates the intestinal milieu by
scavenging ROS and modifying gut
bacteria, increasing tight junction
proteins and anti-inflammatory
cytokines while lowering
pro-inflammatory cytokines

↑Lactobacillus
↑Lachnospiraceae_
NK4A136_group

Alleviates colitis (181)

&Inulin has the potential to repair the gut barrier and reduce inflammation. DSS, dextran sodium sulfate; IBD, inflammatory bowel diseases; PHGG, partially hydrolyzed guar gum; PSPRS, resistant starch from purple sweet potato; UC, ulcerative colitis; YBNs@PDA,
yeast β-glucan nanocomplex coated with bio-adhesive polydopamine.
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with DSS-induced murine colitis. EGCG alters the gut microbiota
by boosting the quantity of Akkermansia and butyrate production
(196). In another study, diets rich in green tea polyphenols (GTP)
worsened intestinal inflammation and carcinogenesis brought on
by DSS. Furthermore, colitis mice fed 1% GTP showed signs of
nephrotoxicity, as evidenced by a substantial increase in serum
creatinine levels (197). Additionally, green tea catechins have been
suggested to decrease intestinal medication absorption by blocking
OATP uptake, increasing P-gp export activity, or reducing drug
solubility (198). These imply that catechins may have a dual role
in disease management.

5.2.4 Stilbenes
Stilbenes, classified as a type of polyphenol, have demonstrated

the ability to prevent IBD via modulating gut microbiota.
One of the active ingredients in the Chinese medicinal herb
Polygonum multiflorum Thunb is tetrahydroxystilbene-2-O-β-D-
glucoside (THSG) (199). THSG treatments elicited a beneficial
pharmacological response in mice with DSS-induced acute
colitis by reinstating epithelial barrier integrity and diminishing
the synthesis of pro-inflammatory cytokines. THSG treatments
significantly increased Firmicutes and Bacteroidetes abundances,
restoring gut microbiota composition disrupted by DSS by
increasing the genus Lachnospiraceae (NK4A136) and decreasing
the genera Helicobacter, Bacteroides, and Parabacteroides (200).
Nonetheless, this study did not investigate the gut metabolites;
thus, future studies are needed to explore the metabolites and their
association with the gut microbiota.

Resveratrol (RSV), a stilbene, has shown promise in mitigating
IBD through its interaction with gut flora, thereby alleviating
DSS-induced IBD symptoms. In mice, RSV reduces metabolite
dysregulation, improves microbiota variety and composition,
increases tight junction molecules, and alleviates colitis’s clinical
symptoms. Additionally, RSV reversed the DSS group’s decrease
in Bacteroidetes and Proteobacteria and rise in Firmicutes (201).
Although the authors concentrated on RSV as a possible treatment
for colitis, other substances with similar qualities might provide
comparable effects. Consequently, this creates a gap that needs to
be filled in future research (201). Co-administration of RSV with
the probiotic strain Ligilactobacillus salivarius Li01 (RSV+Li01) has
also shown a positive anti-inflammatory impact in DSS-induced
colitis mice, promoting the healing of different inflammatory
lesions and gut microbiota composition. Mice fed RSV+Li01 had
larger relative abundances of Bifidobacterium, Akkermansia, and
Muribaculum, but Helicobacter spp. were reduced (202). In another
study, RSV therapy inhibited CRC growth in azoxymethane and
DSS mice, boosting anti-inflammatory CD4+ FOXP3+ (Tregs) and
CD4+ IL10+ cells, decreasing proinflammatory Th1 and Th17
cell growth, and modifying the gut flora (203). Other studies
have demonstrated that RSV and its derivatives can reduce liver
fibrosis caused by inorganic mercury and alleviate hypertension
generated by a high-fat diet by modulating the gut microbiota (204,
205). RSV has been shown to inhibit carcinogenesis; nonetheless,
due to the inhibition or activation of specific cytochrome P450s,
pharmacological quantities of RSV may exacerbate adverse drug
responses or change the efficacy of medications (206). Furthermore,
RSV (5 mg/kg) has been shown to extend platelet plug development
in mice (207), implying there is a tendency to bleed when using it.
RSV may prevent IBD by modifying the gut microbiota, but it can

potentially have negative consequences; therefore, caution should
be exercised while utilizing specific amounts.

5.2.5 Proanthocyanidins
Grape seed extract, which primarily consists of polymeric and

oligomeric proanthocyanidins, epicatechin and monomeric
catechin, and gallic acid, is rich in proanthocyanidins
(208). Interestingly, research has found that grape seed
proanthocyanidin (GSP), a plant-derived polyphenol, enhances
inflammatory indices and decreases intestinal permeability,
consequently reducing chronic inflammation in dogs.
GSP therapy enhanced the number of bacteria, such as
Ruminococcaceae, Faecalibacterium, Ruminococcus_torques_group,
and Lachnospiraceae_NK4A136_group, that can reduce
inflammation and stimulate bile acid metabolism (12).
Unfortunately, this study did not evaluate the activities of
7α-dehydroxylase or bile salt hydrolase. The exact mechanism
by which GSP regulates bile acids through the gut flora is still
unknown (12). Future research may be required to investigate
the role of GSP in controlling bile acids through the gut flora in
colitis mitigation.

5.2.6 Anthocyanins
It has been demonstrated that anthocyanins, such as

pelargonidin-3-galactoside (Pg3gal), which are derived
from purple sweet potatoes, considerably reduce DSS-
induced UC in mice by preventing intestinal epithelial cell
pyroptosis and preserving the structural integrity of the gut
microbiota. Pg3gal changed the gut microbiota’s dysbiosis
caused by DSS by increasing Firmicutes, Bacteroidetes,
and Verrucomicrobia and decreasing Proteobacteria and
Deferribacteria (209).

5.2.7 Tannins
Kitabatake et al. (210) discovered that persimmon-derived

tannin reduces colon inflammation in UC by changing the
immune system and microbiota makeup. Supplementing
with tannins considerably enhanced the relative abundance
of Bacteroides while decreasing that of Enterobacteriaceae and
Enterococcus. Also, mice with colitis fed a tannin diet had
higher levels of Bifidobacteria. Thus, future research should
evaluate the function of Bifidobacterium since it is unclear
how the increased bacteria in mice given tannin supplements
contribute to the improvement of colitis (210). Furthermore,
more research on how tannin supplementation increases
Bifidobacterium during colitis is anticipated to shed light on
how probiotics preserve gut homeostasis (210). Additionally,
Liu and the team discovered that punicalagin, administered
orally to mice, alleviated DSS-induced colitis and elevated
Lachnospiraceae_NK4A136_group and Bifidobacterium abundance
(211). Punicalagin significantly increased the level of D-ribose.
In vitro experiments showed that D-ribose has anti-inflammatory
and antioxidant properties (211).

5.2.8 Flavonols
Flavonols such as quercetin have also shown potential

to ameliorate IBD. Due to quercetin’s capacity to inhibit
pro-inflammatory cytokines and alter gut microbiota, dietary
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quercetin supplementation has therapeutic effects on colitis
caused by Citrobacter rodentium. In colon tissues, quercetin
increased the synthesis of IL-10 while inhibiting the production
of pro-inflammatory cytokines like IL-17, TNF-α, and IL-6.
Quercetin administration greatly decreased the populations
of Fusobacterium and Enterococcus while increasing those of
Bacteroides, Bifidobacterium, Lactobacillus, and Clostridia (212).
One of the study’s noted limitations is the lack of human
studies. Therefore, Lin et al. (212) stated that future research
involving human participants is needed to validate the effects
of quercetin on inflammatory markers and provide a more
comprehensive understanding of the changes in human gut flora
caused by quercetin. Interestingly, quercetin has been coated with
nanoparticles (NPs) for better results. Compared to quercetin,
quercetin NPs are better at controlling gut microbiota and SCFAs
to help mice with colitis caused by DSS. Quercetin NPs enhance
mucus protein and goblet cell density, reduce colon inflammatory
infiltration, improve TNF-α, IL-1β, and IL-6, raise IL-10 levels,
decrease MPO levels, and restore intestinal barrier integrity.
Butyric acid, propanoic acid, and acetic acid concentrations were
all raised by quercetin NPs (213). Treatment with quercetin NPs
lowered the amounts of Proteobacteria in mice with colitis caused
by DSS while increasing the amounts of Verrucomicrobia (213).
However, the low pH of the colon may adversely affect the
bioavailability of quercetin NPs in patients with UC, especially
during the active phase. Therefore, patients in remission or with
minor disease should be given more consideration for quercetin
delivery methods, and a combination of medications should be
used to treat colonic pH imbalance (213). In a different study,
researchers have found quercetin to have a hypoglycemic effect,
reduce insulin resistance, alter the metabolites of db/db mice,
repair the intestinal barrier, and rebuild the intestinal microbiota.
Quercetin reduced the number of Escherichia coli, Bacteroides,
Proteobacteria, and Escherichia-Shigella (214). Conversely, taking
quercetin together with warfarin has been shown to increase blood-
thinning effects (215), implying there is a tendency for bleeding
when used together.

Another flavonol that has been shown to reduce IBD
is myricetin. Yang and colleagues discovered that myricetin
controlled the gut microbiota composition in prediabetic
mice, preventing DSS-induced colitis. The relative abundance
of Bacteroidetes increased while the relative abundance of
Proteobacteria declined dramatically after myricetin treatment
(216). Furthermore, myricetin therapy elevated SCFAs like
acetic, propionic, and butyric acids (216). Although altering
the gut microbiota may positively impact the prevention of
colitis, this investigation lacked clinical proof. Thus, Yang et al.
(216) have proposed future clinical trials to determine the safety
and efficacy of myricetin therapy over a lengthy duration. In
a different investigation, myricetin modulated the gut-liver
axis to have an anti-atherosclerotic effect (217). Myricetin
decreased the abundance of genera linked to obesity, such as
Rikenellaceae_RC9_gut_group and Alistipes, while increasing
that of probiotics g_Lachnospiraceae_NK4A136 (217). Table 3
summarizes the role of polyphenols in regulating the gut
microbiota to prevent IBD. Overall, studies have shown that
plant-based dietary components reduce experimental colitis by
altering the gut microbiome, increasing beneficial bacteria, and
decreasing harmful ones. This process maintains the homeostatic
equilibrium of gut microorganisms (Figure 5).

6 Clinical evidence of plant-based
dietary compounds

For patients with quiescent UC, curcumin appears to be a safe
and promising drug for sustaining remission. Curcumin reduced
the morbidity associated with UC by enhancing the endoscopic
and clinical activity indices. For 6 months of treatment, 2 out of
43 patients who took curcumin experienced a relapse, while 8 out
of 39 patients in the placebo group did the same (218). Another
clinical trial found that curcumin supplementation in mesalamine
medication was more effective than a placebo combination in
causing clinical and endoscopic remission in mild-to-moderate
active UC patients. There were no noticeable negative effects (219).
This shows that combination therapy with plant-based dietary
compounds and IBD medications is safe and effective. A recent
study found a novel curcumin derivative called Theracurmin R©, with
a 27-fold higher absorption rate than natural curcumin powder,
clinical and endoscopic effectiveness, and a positive safety profile
in patients with active CD (220). A different study also showed
that curcumin, a safe and effective adjuvant drug, lowers anti-
ds DNA and IL-6 levels, thereby reducing inflammation and
autoimmune activity in people with systemic lupus erythematosus
(221). Nevertheless, some prebiotics used in a clinical setting
showed no improvements. Benjamin et al. (222) found that
fructooligosaccharides, despite affecting dendritic cell function, did
not have a therapeutic effect in patients with active CD (223).

Despite the limited clinical studies on the role of plant-based
dietary compounds in mitigating IBD, other clinical trials and
investigations have demonstrated the potential for plant-based
diets to prevent various disorders, including IBD. Additionally,
researchers have integrated plant-based diets with other drugs
to achieve optimal results. Chiba et al. (224) discovered that
patients undergoing infliximab medication combined with a lacto-
ovo-semivegetarian diet exhibit a reduced mean CD disease
activity index score at week 6 post-admission. The average level
of C-reactive protein upon admission dropped. Of the cases,
46% (19/41) had mucosal healing. A similar study found that
for over half of CD patients, infliximab with a plant-based
diet as first-line treatment produced an unparalleled relapse-
free course. Three regular infliximab infusions combined with
a plant-based diet produced remission in 24 consecutive newly
diagnosed adult patients with CD while they were in the
hospital (225). Another study also found that relapse rates in
UC significantly decreased following lacto-ovo-semivegetarian diet
induction therapy compared to standard therapeutics. The relapse
rate for initial episode cases of UC after therapy with a lacto-
ovo-semivegetarian diet was lower than traditional treatment,
with rates of 14% at 1 year and 27% at 5 years. None of
the patients reported any significant side effects that a lacto-
ovo-semivegetarian diet might have caused (226). Also, 77%
of patients with mild or remission of UC who were given
nutritional advice and placed on a plant-based diet during a
2-week hospital stay reported improvement, including bloody
stool elimination or reduction. At 1, 2, 3, 4, and 5 years
of follow-up, the cumulative recurrence rates were 2, 4, 7,
19, and 19%, respectively. None of the patients adhering to
plant-based diets encountered any harmful effects (227). These
suggest that plant-based diets could be beneficial for use in
clinical settings.
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TABLE 3 Polyphenols that impact the gut microbiota modulation in colitis.

Polyphenols Model Sequencing
method

Sample Mechanism of action Microbiota signatures Outcome References

Curcuminoids

Curcumin DSS-induced acute
colitis

16S rDNA Stool Enhances SCFAs, amino acids,
glycolysis/gluconeogenesis, and amino
acid metabolism pathways, while
improving intestinal dysbiosis and liver
metabolic diseases

↑Akkermansia
↑Muribaculaceae_unclassified
↑Muribaculum levels

Improves hepatic
metabolism issues
and intestinal
dysbiosis

(15)

Phenolic acids

Caffeic acid DSS-induced colitis 16S rRNA Stool Reduces immune cell infiltration and
inflammatory cytokine release while
inhibiting NF-κB signaling pathways

↑Akkermansia
↓Firmicute to Bacteroidetes ratio

Ameliorates
DSS-induced colitis

(188)

Caffeic acid DSS-induced colitis 16S rRNA Colonic digesta Reduces pro-inflammatory cytokines,
increases anti-inflammatory cytokines
and antioxidants, and activates the
Nrf-2/HO-1 pathway.

↓Bacteroides ↓Turicibacter
↑Alistipes ↑Dubosiella
↑Akkermansia

Ameliorates
DSS-induced colitis

(189)

Gallic acid DSS-induced colitis 16s rRNA Stool Increases anti-inflammatory cytokines,
reduces pro-inflammatory cytokines,
and inhibits the NF-κB and MAPK
signaling pathways

↑Bacteroidales ↑Enterobacterales
↑Clostridiales

Alleviates colitis (191)

Catechin

epigallocatechin 3-gallate DSS-induced colitis 16S rRNA Stool Reduce inflammation in the colon in a
gut microbiota-dependent way

↑Akkermansia Reduces in colitis (196)

Stilbenes

2,3,5,4’-
tetrahydroxystilbene-2-
O-β-D-glucoside

DSS-induced acute
colitis

16S rDNA Stool Reduces pro-inflammatory cytokines,
boosts anti-inflammatory cytokines,
enhances tight junction proteins, and
controls gut flora

↑Firmicutes
↑Bacteroidetes
↑Lachnospiraceae
↓Helicobacter
↓Bacteroides ↓Parabacteroides

Suppresses acute
colitis caused by DSS

(200)

Resveratrol Azoxymethane and
DSS-induced colitis
CRC

16S rRNA Colonic flush
contents

Modifies the microbiome to promote
butyrate synthesis, decreases histone
deacetylases and the inflammatory T cell
response, and increases Treg

↑Ruminococcus ↑Akkermansia
↑Dehalobacterium
↑Anerostipes ↑Anaeroplasm ↑Blautia
↑Clostridium

Attenuates
inflammation-driven
CRC

(203)

Resveratrol DSS-induced colitis 16S rDNA
sequencing

Stool Modulates the
microbiota-macrophage-arginine
metabolism pathway

↑Bacteroidetes ↑Proteobacteria
↓Firmicutes

Mitigates
DSS-induced IBD

(201)

(Continued)
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TABLE 3 (Continued)

Polyphenols Model Sequencing
method

Sample Mechanism of action Microbiota signatures Outcome References

Resveratrol +
Ligilactobacillus
salivarius Li01

DDS-induced colitis 16S rRNA Colon contents Activate the AHR and tryptophan
metabolism axis to boost
anti-inflammatory impact.

↑Bifidobacterium ↑Muribaculum
↑Akkermansia
↓Helicobacter spp

Attenuates colitis (202)

Proanthocyanidins

Grape seed
proanthocyanidin

Intestinal
inflammation in
canines

16S rRNA Stool Changes gut microbial composition and
enhances bile acid metabolism

↑Ruminococcaceae ↑Faecalibacterium
↑Ruminococcus_torques_group
↑Lachnospiraceae_
NK4A136_group

Reduces intestinal
inflammation

(12)

Anthocyanins

Pelargonidin-3-
galactoside

DSS-induced colitis 16S rRNA Stool Reduces pro-inflammatory cytokines
and pyroptosis while improving gut
microbiota structural integrity

↑Firmicutes
↑Bacteroidetes
↑Verrucomicrobia
↓Proteobacteria ↓Deferribacteria

Relieves colitis
brought on by DSS

(209)

Flavonols

Quercetin Citrobacter
rodentium-induced
colitis

16S rRNA Colonic contents Increase anti-inflammatory cytokines,
reduce pro-inflammatory cytokines,
and/or alter the gut microbiome

↑Bacteroides
↑Bifidobacterium
↑Lactobacillus
↑Clostridia
↓Fusobacterium ↓Enterococcus

Controls Citrobacter
rodentium-induced
inflammation

(212)

Quercetin NPs DSS-induced colitis 16S rRNA Colonic contents Reduces inflammation, improves gut
microbiota, and repairs the intestinal
barrier by targeting the colon

↑Verrucomicrobia
↓Proteobacteria

Alleviates colitis
caused by DSS

(213)

Myricetin DSS-induced colitis
in prediabetic mice

16S rRNA Stool Suppresses proinflammatory cytokines,
increases the expression of tight
junction proteins, modulates the gut
flora, and increases SCFA synthesis

↓Proteobacteria, ↑Bacteroidetes. Reduces
inflammation caused
by DSS

(216)

Tannins

Persimmon-derived
tannin

DSS-induced colitis 16S rRNA Stool Inhibit the inflammatory reaction and
modify the microbiome

↑Bacteroides
↓Enterobacteriaceae
↓Enterococcus

Reduces intestinal
inflammation in UC

(210)

Punicalagin DSS-induced colitis 16S rRNA Stool Regulates gut flora and metabolites
(D-ribose) to relieve colitis

↑Lachnospiraceae_
NK4A136_group
↑Bifidobacterium

Relieves colitis (211)

DSS, dextran sodium sulfate; LPS, lipopolysaccharide; NPs, nanoparticles.
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FIGURE 5

Plant-based management of IBD. Plant-based dietary compounds can help treat IBD by altering the gut microbiota. The beneficial microbiota
stimulates dendritic cells to release anti-inflammatory cytokines, such as interleukin-10 (IL-10). This release of IL-10, in turn, promotes the
development of regulatory T cells. These regulatory T cells prevent the activation of Th1, Th17 cells, and macrophages from producing
pro-inflammatory cytokines, thereby helping to control IBD. This leads to decreased immune response, increased butyrate production, improved
barrier integrity, and mucus secretion. PDC, plant-based dietary compounds; SPDC, sources of PDC.

7 Role of personalized nutrition in
IBD

Nutrition plays a crucial role in the development and
progression of disease, making it a potential therapeutic approach
to suppress inflammation and symptoms. Given that IBD is
a diverse condition clinically and molecularly, tailoring dietary
recommendations may be essential to bringing about long-lasting
dietary behavior changes that enhance nutritional status and
address gut inflammation and abdominal symptoms on a personal
basis (228). With the help of data on individual traits like age,
insulin sensitivity, or gut flora, personalized nutrition creates
individualized dietary recommendations to help patients make
positive, long-lasting diet changes (229).

7.1 Individualized triggers

It is crucial to remember that some foods might cause IBD
to worsen or subside. For instance, UC risk was linked to a diet
imbalance that included low vegetable and high sugar and soft
drink intake (230). Opstelten and the team also found that although
a distinct dose-response association was not demonstrated, milk
consumption may be linked to a lower risk of getting CD
(231). Recently, there has been insufficient proof to conclude that
dairy products and milk affect the occurrence and progression
of IBD (232). Increased consumption of highly processed foods

was strongly correlated with an increased incidence of IBD (233,
234). In the case of plant-based diets, some plant-based dietary
compounds have been demonstrated to worsen and exacerbate
IBD and cause carcinogenesis (164, 172, 197). Therefore, this
will help clinicians/individuals to plan their nutrition to prevent
IBD exacerbation.

7.2 Nutrient deficiencies and quality of
life

Malnutrition is believed to affect 20–85% of people with IBD.
Among the many causes of malnutrition in IBD patients are
decreased oral meal intake, intestinal bacterial overgrowth, chronic
blood and protein loss, and malabsorption. Clinical outcomes,
response to treatment, and quality of life are all negatively
correlated with poor nutritional status, selective malnutrition,
and sarcopenia. Radiological evaluation, functional capacity
measurement, and dietetic evaluation involving daily caloric intake
and energy expenditure should all be part of the nutritional
assessment (235). This reduces IBD exacerbations and improves
the quality of life (QoL) for IBD patients. Along with malnutrition
brought on by the inflammatory nature of the illness, a significant
number of IBD patients exhibit restricted dietary practices (41–
93%) and food avoidance (28–89%), which have a negative
influence on their QoL when it comes to eating (236, 237). This
may lead to nutritional deficiencies, as reported in studies (238,
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239), where patients with IBD (active or in clinical remission)
developed nutrient constraints including vitamin C, copper, niacin,
and zinc, among others. Similarly, individuals who consume fewer
or no animal products may be susceptible to dietary deficiencies
in protein, calcium, iron, iodine, zinc, vitamin B12, vitamin D,
and omega-3 fatty acids. This deficit can result in immediate and
long-term health issues (240). Research conducted in Switzerland,
Spain, and Germany identified deficiencies in vitamins and
minerals, including vitamins B6, B12, and niacin, among plant-
based groups (241–243). Therefore, inadequate consumption of
vital nutrients highlights the necessity for more effective public
health initiatives and enhanced nutrition education, irrespective of
eating habits (59).

8 Limitations of plant-based dietary
treatments

Although fibers offer many health benefits, not all are equal,
and some patients with IBD report intolerance to specific types
of fiber (244). Armstrong et al. (244) found that in a subgroup of
IBD intestinal biopsies cultivated ex vivo, unfermented dietary β-
fructan fibers produced proinflammatory cytokines and immune
cells. The NLRP3 and TLR2 pathways had to be activated to release
the proinflammatory response to intact β-fructan. Patients without
fermentative microbe activity experienced negative effects. Other
studies (164, 172, 197, 245) have also shown the negative impacts
of plant-based diets on IBD by way of exacerbating the condition
and causing carcinogenesis. This may lead to the avoidance of such
dietary compounds. Another study (246) demonstrated that plant
dietary compound combinations may affect the efficacy of others
in reducing colitis. Additionally, studies (218, 224, 225, 227) used
smaller sample sizes to determine the effectiveness of plant-based
diets in IBD. These studies have indicated the necessity for greater
sample sizes in subsequent research.

Regarding the preclinical studies, this review revealed several
shortcomings. One significant limitation, for example, was the
absence of clinical studies or trials on the plant-based dietary
components (except for curcumin). Additional limitations included
the use of a single dose in gut microbiome studies, the non-
selectivity of nanoparticles in inflammatory areas, the exclusion
of important microbiota from studies, and the incomplete and
ambiguous mechanisms underlying the effects of some dietary
components on metabolites and the gut microbiota. There were no
studies on plant-based chemicals and intestinal fungus or virome.

9 Future directions

Due to nutrient deficiencies that may arise from plant-based
dietary compound consumption, it is necessary to design a plan
to help prevent such issues. Therefore, in this situation, the
ability to create a customized meal plan for each patient will
likely improve disease treatment, boost adherence since patients
are more receptive to individualized approaches, and be more
flexible (228). More clinical trials on nanoparticles in IBD patients
should be explored. However, when exploring plant-based dietary
components as nanoparticles for potential clinical applications,
IBD patients’ pH should be considered, as these compounds act

best at high pH (preclinical studies), whereas IBD patients typically
have low pH (247). As a result, combining these nanoparticles
with another treatment regimen to aid in colonic pH regulation
may enhance the nanoparticles’ therapeutic effects. Additionally,
more intestinal microbiota should be used to evaluate important
microbiota. Future studies should include more human studies
with larger sample sizes to confirm the role of these dietary
compounds in IBD. Most studies centered on gut bacteria; thus,
more research is needed on how plant dietary compounds regulate
gut fungi and virome. Uncertain and incomplete mechanisms
involving the research of plant-based components on the gut
microbiota should be elucidated, and more dosages, rather than a
single dose, should be investigated in gut microbiome studies.

10 Conclusion

Plant-based dietary components have been demonstrated to
reduce IBD symptoms by increasing anti-inflammatory cytokines,
decreasing pro-inflammatory cytokines, lowering oxidative stress,
and improving barrier function. These compounds prevent IBD
by activating/inhibiting multiple signaling pathways, including
TGF-β/Smad, TRL-4/NF-κB/MAPK, TLR2-NF-κB, autophagy,
pyroptosis, glycolysis/gluconeogenesis and amino acid metabolism,
Nrf-2/HO-1, microbiota-macrophage-arginine metabolism, and
bile acid metabolism. Furthermore, these dietary components aid
in the formation of SCFAs, which promote the development of
Tregs, thereby alleviating IBD. While many plant-based nutritional
components have been demonstrated to reduce the severity of IBD,
others have been shown to increase it or cause cancer. This will
aid clinicians when planning diets for their patients. However, the
favorable effects make plant-based dietary components a promising
alternative for IBD treatment in clinical settings. Increased
beneficial microbiota has also been linked to butyrate and anti-
inflammatory marker production, whereas bad microbiota leads to
inflammatory marker production. Emerging evidence has shown
the promising role of dietary compounds used as nanoparticles
or dietary compounds encapsulated in nanoparticles for effective
treatment of IBD. These nanoparticles are safe and non-toxic in
preclinical studies, warranting further studies in clinical settings
for IBD patients.

Author contributions

FA: Conceptualization, Writing – original draft. C’eH: Funding
acquisition, Writing – review and editing. XW: Software, Writing –
review and editing. BW: Visualization, Writing – review and
editing. FM: Conceptualization, Writing – review and editing .

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This study was
funded by the Zhenjiang Key Research and Development Plan
(Social Development) (Grant No. SH2024047), the Key Research

Frontiers in Nutrition 20 frontiersin.org

https://doi.org/10.3389/fnut.2025.1606289
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-12-1606289 May 27, 2025 Time: 16:31 # 21

Akanyibah et al. 10.3389/fnut.2025.1606289

and Development (Social Development) projects of the Innovation
Special Fund of Danyang (Grant No. SSF202410), the Henan
Province 2024 Science and Technology Development Plan (Grant
No. 242102310081), the Open Topic at the University Level of
Shangqiu Medical College in 2023 (Grant No. KFKT23005), and the
Jiangsu Provincial Medical Key Discipline Cultivation Unit (Grant
No. JSDW202241).

Acknowledgments

The figures were drawn using Biorender.com.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships

that could be construed as a potential conflict of
interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Fathima A, Jamma T. UDCA ameliorates inflammation driven EMT by inducing
TGR5 dependent SOCS1 expression in mouse macrophages. Sci Rep. (2024) 14:24285.
doi: 10.1038/s41598-024-75516-9

2. Ning S, Zhang Z, Zhou C, Wang B, Liu Z, Feng B. Cross-talk between
macrophages and gut microbiota in inflammatory bowel disease: A dynamic interplay
influencing pathogenesis and therapy. Front Med (Lausanne). (2024) 11:1457218. doi:
10.3389/fmed.2024.1457218

3. Cai M, Mao Y, Gao W, Wang Z, Mao J, Sha R. Insights into diosgenin against
inflammatory bowel disease as functional food based on network pharmacology and
molecular docking. Heliyon. (2024) 10:e37937. doi: 10.1016/j.heliyon.2024.e37937

4. Nóbrega V, Silva I, Brito B, Silva J, Silva M, Santana GO. THE ONSET
OF CLINICAL MANIFESTATIONS IN INFLAMMATORY BOWEL DISEASE
PATIENTS. Arq Gastroenterol. (2018) 55:290–5. doi: 10.1590/S0004-2803.201800000-
73

5. Kogut M, Lee A, Santin E. Microbiome and pathogen interaction with the
immune system. Poult Sci. (2020) 99:1906–13. doi: 10.1016/j.psj.2019.12.011

6. Jandhyala S, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar
Reddy D. Role of the normal gut microbiota. World J Gastroenterol. (2015) 21:8787–
8783. doi: 10.3748/wjg.v21.i29.8787

7. Tsai Y, Tai W, Liang C, Wu C, Tsai M, Hu W, et al. Alternations of the
gut microbiota and the Firmicutes/Bacteroidetes ratio after biologic treatment in
inflammatory bowel disease. J Microbiol Immunol Infect. (2024) 58:62–9. doi: 10.1016/
j.jmii.2024.09.006

8. Saxena A, Kaur K, Hegde S, Kalekhan F, Baliga M, Fayad R. Dietary agents and
phytochemicals in the prevention and treatment of experimental ulcerative colitis. J
Tradit Complement Med. (2014) 4:203–17. doi: 10.4103/2225-4110.139111

9. Tie S, Chen Y, Tan M. An evaluation of animal models for using bioactive
compounds in the treatment of inflammatory bowel disease. Food Front. (2024)
5:474–93. doi: 10.1002/fft2.360

10. Alcorta A, Porta A, Tárrega A, Alvarez M, Vaquero M. Foods for plant-based
diets: Challenges and innovations. Foods. (2021) 10:293. doi: 10.3390/foods10020293

11. Guillamón E, Andreo-Martínez P, Mut-Salud N, Fonollá J, Baños A. Beneficial
effects of organosulfur compounds from allium cepa on gut health: A systematic
review. Foods. (2021) 10:1680. doi: 10.3390/foods10081680

12. Zhang M, Mo R, Wang H, Liu T, Zhang G, Wu Y. Grape seed proanthocyanidin
improves intestinal inflammation in canine through regulating gut microbiota and bile
acid compositions. FASEB J. (2023) 37:e23285. doi: 10.1096/fj.202300819RR

13. Kim Y, Hwang S, Kim S, Lee Y, Kim T, Lee S, et al. Dietary cellulose prevents
gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes.
(2020) 11:944–61. doi: 10.1080/19490976.2020.1730149

14. Wen X, Wan F, Wu Y, Liu Y, Zhong R, Chen L, et al. Caffeic acid modulates
intestinal microbiota, alleviates inflammatory response, and enhances barrier function
in a piglet model challenged with lipopolysaccharide. J Anim Sci. (2024) 102:skae233.
doi: 10.1093/jas/skae233

15. Zhou F, Mai T, Wang Z, Zeng Z, Shi J, Zhang F, et al. The improvement of
intestinal dysbiosis and hepatic metabolic dysfunction in dextran sulfate sodium-
induced colitis mice: Effects of curcumin. J Gastroenterol Hepatol. (2023) 38:1333–45.
doi: 10.1111/jgh.16205

16. Craig W, Mangels A, Fresán U, Marsh K, Miles F, Saunders A, et al. The safe and
effective use of plant-based diets with guidelines for health professionals. Nutrients.
(2021) 13:4144. doi: 10.3390/nu13114144

17. Johnson C, Versalovic J. The human microbiome and its potential importance
to pediatrics. Pediatrics. (2012) 129:950–60. doi: 10.1542/peds.2011-2736

18. Bishu S, Kao JY. A step closer to understanding how a diet high in simple
carbohydrates may cause dysbiosis. J Clin Invest. (2024) 134:e180001. doi: 10.1172/
JCI180001

19. Hartog A, Belle F, Bastiaans J, de Graaff P, Garssen J, Harthoorn L, et al. A
potential role for regulatory T-cells in the amelioration of DSS induced colitis by
dietary non-digestible polysaccharides. J Nutr Biochem. (2015) 26:227–33. doi: 10.
1016/j.jnutbio.2014.10.011

20. Alagiakrishnan K, Morgadinho J, Halverson T. Approach to the diagnosis and
management of dysbiosis. Front Nutr. (2024) 11:1330903. doi: 10.3389/fnut.2024.
1330903

21. Guo X, Liu X, Hao J. Gut microbiota in ulcerative colitis: Insights on
pathogenesis and treatment. J Dig Dis. (2020) 21:147–59. doi: 10.1111/1751-2980.
12849

22. Lee M, Chang E. Inflammatory Bowel diseases (IBD) and the microbiome-
searching the crime scene for clues. Gastroenterology. (2021) 160:524–37. doi: 10.1053/
j.gastro.2020.09.056

23. Ning L, Zhou Y, Sun H, Zhang Y, Shen C, Wang Z, et al. Microbiome and
metabolome features in inflammatory bowel disease via multi-omics integration
analyses across cohorts. Nat Commun. (2023) 14:7135. doi: 10.1038/s41467-023-
42788-0

24. Barker-Tejeda T, Zubeldia-Varela E, Macías-Camero A, Alonso L, Martín-
Antoniano I, Rey-Stolle M, et al. Comparative characterization of the infant gut
microbiome and their maternal lineage by a multi-omics approach. Nat Commun.
(2024) 15:3004. doi: 10.1038/s41467-024-47182-y

25. Lozupone C, Stombaugh J, Gordon J, Jansson J, Knight R. Diversity, stability
and resilience of the human gut microbiota. Nature. (2012) 489:220–30. doi: 10.1038/
nature11550

26. Teofani A, Marafini I, Laudisi F, Pietrucci D, Salvatori S, Unida V, et al.
Intestinal taxa abundance and diversity in inflammatory Bowel disease patients: An
analysis including covariates and confounders. Nutrients. (2022) 14:260. doi: 10.3390/
nu14020260

27. Zuo W, Wang B, Bai X, Luan Y, Fan Y, Michail S, et al. 16S rRNA and
metagenomic shotgun sequencing data revealed consistent patterns of gut microbiome
signature in pediatric ulcerative colitis. Sci Rep. (2022) 12:6421. doi: 10.1038/s41598-
022-07995-7

Frontiers in Nutrition 21 frontiersin.org

https://doi.org/10.3389/fnut.2025.1606289
https://www.Biorender.com
https://doi.org/10.1038/s41598-024-75516-9
https://doi.org/10.3389/fmed.2024.1457218
https://doi.org/10.3389/fmed.2024.1457218
https://doi.org/10.1016/j.heliyon.2024.e37937
https://doi.org/10.1590/S0004-2803.201800000-73
https://doi.org/10.1590/S0004-2803.201800000-73
https://doi.org/10.1016/j.psj.2019.12.011
https://doi.org/10.3748/wjg.v21.i29.8787
https://doi.org/10.1016/j.jmii.2024.09.006
https://doi.org/10.1016/j.jmii.2024.09.006
https://doi.org/10.4103/2225-4110.139111
https://doi.org/10.1002/fft2.360
https://doi.org/10.3390/foods10020293
https://doi.org/10.3390/foods10081680
https://doi.org/10.1096/fj.202300819RR
https://doi.org/10.1080/19490976.2020.1730149
https://doi.org/10.1093/jas/skae233
https://doi.org/10.1111/jgh.16205
https://doi.org/10.3390/nu13114144
https://doi.org/10.1542/peds.2011-2736
https://doi.org/10.1172/JCI180001
https://doi.org/10.1172/JCI180001
https://doi.org/10.1016/j.jnutbio.2014.10.011
https://doi.org/10.1016/j.jnutbio.2014.10.011
https://doi.org/10.3389/fnut.2024.1330903
https://doi.org/10.3389/fnut.2024.1330903
https://doi.org/10.1111/1751-2980.12849
https://doi.org/10.1111/1751-2980.12849
https://doi.org/10.1053/j.gastro.2020.09.056
https://doi.org/10.1053/j.gastro.2020.09.056
https://doi.org/10.1038/s41467-023-42788-0
https://doi.org/10.1038/s41467-023-42788-0
https://doi.org/10.1038/s41467-024-47182-y
https://doi.org/10.1038/nature11550
https://doi.org/10.1038/nature11550
https://doi.org/10.3390/nu14020260
https://doi.org/10.3390/nu14020260
https://doi.org/10.1038/s41598-022-07995-7
https://doi.org/10.1038/s41598-022-07995-7
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-12-1606289 May 27, 2025 Time: 16:31 # 22

Akanyibah et al. 10.3389/fnut.2025.1606289

28. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul
L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a
metagenomic approach. Gut. (2006) 55:205–11. doi: 10.1136/gut.2005.073817

29. Yang Y, Chen C, Zheng Y, Wu Z, Zhou M, Liu X, et al. Fucoxanthin alleviates
dextran sulfate sodium-induced colitis and gut microbiota dysbiosis in mice. J Agric
Food Chem. (2024) 72:4142–54. doi: 10.1021/acs.jafc.3c08811

30. Hu Q, Yuan B, Wu X, Du H, Gu M, Han Y, et al. Dietary intake of Pleurotus
eryngii ameliorated dextran-sodium-sulfate-induced colitis in mice. Mol Nutr Food
Res. (2019) 63:e1801265. doi: 10.1002/mnfr.201801265

31. Clooney A, Eckenberger J, Laserna-Mendieta E, Sexton K, Bernstein M, Vagianos
K, et al. Ranking microbiome variance in inflammatory bowel disease: A large
longitudinal intercontinental study. Gut. (2021) 70:499–510. doi: 10.1136/gutjnl-2020-
321106

32. Sokol H, Leducq V, Aschard H, Pham H, Jegou S, Landman C, et al. Fungal
microbiota dysbiosis in IBD. Gut. (2017) 66:1039–48. doi: 10.1136/gutjnl-2015-310746

33. Chehoud C, Albenberg L, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al.
Fungal signature in the gut microbiota of pediatric patients with inflammatory Bowel
disease. Inflamm Bowel Dis. (2015) 21:1948–56. doi: 10.1097/MIB.0000000000000454

34. Imai T, Inoue R, Kawada Y, Morita Y, Inatomi O, Nishida A, et al.
Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel
disease. J Gastroenterol. (2019) 54:149–59. doi: 10.1007/s00535-018-1530-7

35. Catalán-Serra I, Thorsvik S, Beisvag V, Bruland T, Underhill D, Sandvik
A, et al. Fungal microbiota composition in inflammatory bowel disease patients:
Characterization in different phenotypes and correlation with clinical activity and
disease course. Inflamm Bowel Dis. (2024) 30:1164–77. doi: 10.1093/ibd/izad289

36. Zuo T, Lu X, Zhang Y, Cheung C, Lam S, Zhang F, et al. Gut mucosal virome
alterations in ulcerative colitis. Gut. (2019) 68:1169–79. doi: 10.1136/gutjnl-2018-
318131

37. Imai T, Inoue R, Nishida A, Yokota Y, Morishima S, Kawahara M, et al. Features
of the gut prokaryotic virome of Japanese patients with Crohn’s disease. J Gastroenterol.
(2022) 57:559–70. doi: 10.1007/s00535-022-01882-8

38. Kong C, Liu G, Kalady M, Jin T, Ma Y. Dysbiosis of the stool DNA and RNA
virome in Crohn’s disease. J Med Virol. (2023) 95:e28573. doi: 10.1002/jmv.28573

39. Odenwald M, Turner J. The intestinal epithelial barrier: A therapeutic target?
Nat Rev Gastroenterol Hepatol. (2017) 14:9–21. doi: 10.1038/nrgastro.2016.169

40. Chelakkot C, Ghim J, Ryu S. Mechanisms regulating intestinal barrier integrity
and its pathological implications. Exp Mol Med. (2018) 50:1–9. doi: 10.1038/s12276-
018-0126-x

41. Barbara G, Barbaro M, Fuschi D, Palombo M, Falangone F, Cremon C, et al.
Inflammatory and microbiota-related regulation of the intestinal epithelial barrier.
Front Nutr. (2021) 8:718356. doi: 10.3389/fnut.2021.718356

42. Jakobsson H, Rodríguez-Piñeiro A, Schütte A, Ermund A, Boysen P, Bemark M,
et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO
Rep. (2015) 16:164–77. doi: 10.15252/embr.201439263

43. Yuan Y, Wu D, Chen H, Ma Z, Peng X, Li X, et al. Farnesol ameliorates DSS-
induced IBD by regulating inflammatory cytokines, repairing the intestinal barrier,
reversing the gut microbiota imbalance, and influencing fecal metabolome in C57BL/6
mice. Biomed Pharmacother. (2024) 180:117518. doi: 10.1016/j.biopha.2024.117518

44. Jin J, Tang Y, Cao L, Wang X, Chen Y, An G, et al. Microsporidia persistence in
host impairs epithelial barriers and increases chances of inflammatory bowel disease.
Microbiol Spectr. (2024) 12:e0361023. doi: 10.1128/spectrum.03610-23

45. Massimino L, Palmieri O, Facoetti A, Fuggetta D, Spanò S, Lamparelli L, et al.
Gut virome-colonising Orthohepadnavirus genus is associated with ulcerative colitis
pathogenesis and induces intestinal inflammation in vivo. Gut. (2023) 72:1838–47.
doi: 10.1136/gutjnl-2022-328375

46. Le-Trilling V, Ebel J, Baier F, Wohlgemuth K, Pfeifer K, Mookhoek A, et al. Acute
cytomegalovirus infection modulates the intestinal microbiota and targets intestinal
epithelial cells. Eur J Immunol. (2023) 53:e2249940. doi: 10.1002/eji.202249940

47. Seth R, Maqsood R, Mondal A, Bose D, Kimono D, Holland L, et al. Gut
DNA virome diversity and its association with host bacteria regulate inflammatory
phenotype and neuronal immunotoxicity in experimental gulf war illness. Viruses.
(2019) 11:968. doi: 10.3390/v11100968

48. Viladomiu M, Metz M, Lima S, Jin W, Chou L. Adherent-invasive E. coli
metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal
inflammation. Cell Host Microbe. (2021) 29:607–619.e8. doi: 10.1016/j.chom.2021.01.
002

49. Guo Z, Cai X, Guo X, Xu Y, Gong J, Li Y, et al. Let-7b ameliorates Crohn’s disease-
associated adherent-invasive E coli induced intestinal inflammation via modulating
Toll-Like Receptor 4 expression in intestinal epithelial cells. Biochem Pharmacol.
(2018) 156:196–203. doi: 10.1016/j.bcp.2018.08.029

50. Wu M, Li P, An Y, Ren J, Yan D, Cui J, et al. Phloretin ameliorates dextran sulfate
sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol
Res. (2019) 150:104489. doi: 10.1016/j.phrs.2019.104489

51. Hsu, C, Paik J, Treuting P, Seamons A, Meeker S, Brabb T, et al. Infection with
murine norovirus 4 does not alter Helicobacter-induced inflammatory bowel disease in
Il10(-/-) mice. Comp Med. (2014) 64:256–63.

52. Seamons A, Treuting P, Meeker S, Hsu C, Paik J, Brabb T, et al. Obstructive
lymphangitis precedes colitis in murine norovirus-infected stat1-deficient mice. Am
J Pathol. (2018) 188:1536–54. doi: 10.1016/j.ajpath.2018.03.019

53. Limon J, Tang J, Li D, Wolf A, Michelsen K, Funari V, et al. Malassezia is
associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host
Microbe. (2019) 25:377–388.e6. doi: 10.1016/j.chom.2019.01.007

54. Martini G, Tikhonova E, Rosati E, DeCelie M, Sievers L, Tran F, et al. Selection of
cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell
responses in Crohn’s disease. Nat Med. (2023) 29:2602–14. doi: 10.1038/s41591-023-
02556-5

55. Yu M, Ding H, Gong S, Luo Y, Lin H, Mu Y, et al. Fungal dysbiosis facilitates
inflammatory bowel disease by enhancing CD4+ T cell glutaminolysis. Front Cell Infect
Microbiol. (2023) 13:1140757. doi: 10.3389/fcimb.2023.1140757

56. Landry M, Ward C. Health benefits of a plant-based dietary pattern and
implementation in healthcare and clinical practice. Am J Lifestyle Med. (2024) 18:657–
65. doi: 10.1177/15598276241237766

57. Metoudi M, Bauer A, Haffner T, Kassam S. A cross-sectional survey exploring
knowledge, beliefs and barriers to whole food plant-based diets amongst registered
dietitians in the United Kingdom and Ireland. J Hum Nutr Diet. (2024) 38:e13386.
doi: 10.1111/jhn.13386

58. Thompson A, Tresserra-Rimbau A, Jennings A, Bondonno N, Candussi C,
O’Neill J, et al. Adherence to a healthful plant-based diet and risk of chronic kidney
disease among individuals with diabetes. J Am Nutr Assoc. (2024) 44:212–22. doi:
10.1080/27697061.2024.2415917

59. Grygorczuk O, Mrozik M, Lipert A, Kamińska S, Białas A, Drygas W, et al.
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