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Background: Postoperative malnutrition is a prevalent complication following 
esophageal cancer surgery, significantly impairing clinical recovery and long-
term prognosis. This study aimed to develop and validate predictive models 
using machine learning algorithms and a nomogram to estimate the risk of 
malnutrition at 1 month after esophagectomy.

Methods: A total of 1,693 patients who underwent curative esophageal cancer 
surgery were analyzed, with 1,251 patients allocated to the development cohort 
and 442 to the validation cohort. Feature selection was performed via the least 
absolute shrinkage and selection operator (LASSO) algorithm. Eight machine 
learning models were constructed and evaluated, alongside a nomogram 
developed through multivariable logistic regression.

Results: The incidence of postoperative malnutrition was 45.4% (568/1,251) in 
the development cohort and 50.7% (224/442) in the validation cohort. Among 
machine learning models, the Random Forest (RF) model demonstrated optimal 
performance, achieving area under the receiver operating characteristic curve 
(AUC) values of 0.820 (95% CI: 0.796–0.845) and 0.805 (95% CI: 0.771–0.839) 
in the development and validation cohorts, respectively. The nomogram 
incorporated five clinically interpretable predictors: female gender, advanced 
age, low preoperative body mass index (BMI), neoadjuvant therapy history, 
and preoperative sarcopenia. It showed comparable discriminative ability, 
with AUCs of 0.801 (95% CI: 0.775–0.826) and 0.795 (95% CI: 0.764–0.828) 
in the respective cohorts (p > 0.05 vs. RF). Calibration curves revealed strong 
agreement between predicted and observed outcomes, while decision curve 
analysis (DCA) confirmed substantial clinical utility across risk thresholds.

Conclusion: Both machine learning and the nomogram provide accurate 
tools for predicting postoperative malnutrition risk in esophageal cancer 
patients. While RF showed marginally higher predictive performance, the 
nomogram offers superior clinical interpretability, making it a practical option 
for individualized risk stratification.
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1 Introduction

Esophageal cancer is the seventh most common malignancy 
globally and the sixth leading cause of cancer deaths (1, 2). Curative 
resection, which involves tumor removal and lymph node dissection, 
remains pivotal for improving survival (3). However, these procedures 
disrupt gastrointestinal anatomy and function, leading to dysphagia, 
early satiety, and postprandial dumping syndrome, all of which 
contribute to early postoperative malnutrition (incidence: 44.0–
75.7%) (4–8).

Malnutrition in cancer patients is not just a comorbidity but a 
potentially life-threatening condition. Studies indicate that 10–20% of 
cancer patients die from malnutrition-related complications rather 
than the cancer itself (9). After esophagectomy, malnutrition worsens 
metabolic dysfunction, increases infection risk, prolongs hospital 
stays, and raises 30-day mortality (8, 10–12). Moreover, malnourished 
patients have reduced tolerance to adjuvant therapies (e.g., 
chemotherapy, immunotherapy), further decreasing survival rates and 
quality of life (13–17).

Current guidelines recommend early enteral nutrition to reduce 
postoperative malnutrition risk; however, choosing the best delivery 
method remains clinically challenging (18, 19). Nasojejunal feeding, 
a minimally invasive method, is usually limited to short-term use 
(4–6 weeks) due to risks such as tube displacement and aspiration 
pneumonia (20). In contrast, surgical jejunostomy allows long-term 
nutritional support but can cause complications like bowel obstruction 
(21–23). This highlights the need for preoperative malnutrition risk 
stratification: high-risk patients benefit from prophylactic jejunostomy 
during esophagectomy, whereas low-risk patients can safely use 
temporary nasojejunal feeding.

Although predictive models for malnutrition exist in gastric and 
colorectal cancer cohorts (24–26), no validated tools are available for 
esophageal cancer’s unique challenges. Moreover, existing studies 
frequently lack standardized diagnostic criteria. To address this gap, 
our study is the first to apply the Global Leadership Initiative on 
Malnutrition (GLIM) criteria—a robust, consensus-based diagnostic 
system—to assess postoperative malnutrition (27, 28). We aimed to 
develop and validate accurate predictive models to improve 
preoperative risk stratification, providing clinicians with interpretable 
tools for personalized nutritional interventions based on individual 
risk profiles.

2 Methods

2.1 Study population and data collection

The development cohort included 1,251 esophageal cancer 
patients treated at Fujian Cancer Hospital, with data retrospectively 
analyzed from a prospective database spanning September 2021–
January 2025. For external validation, an independent cohort of 442 
patients was established from the First Affiliated Hospital of Fujian 
Medical University, covering March 2022–January 2025. Extracted 
variables encompassed baseline characteristics, preoperative 

laboratory values, intraoperative parameters, oncological profiles, and 
postoperative outcomes.

Inclusion Criteria: patients were eligible for inclusion if they (1) 
had histologically confirmed esophageal cancer; (2) underwent radical 
esophagectomy; (3) were aged ≥18 years.

Exclusion Criteria: patients were excluded if they (1) required 
emergency surgery (e.g., obstruction, bleeding); (2) died within 
30 days postoperatively; (3) had communication barriers (e.g., 
language barriers, severe cognitive impairment); (4) lacked complete 
hospitalization or 1-month follow-up data. The study flowchart is 
presented in Figure 1.

2.2 Definition

At our institution, esophageal cancer patients routinely undergo 
follow-up appointments 1 month after surgery. The GLIM criteria 
were employed to diagnose malnutrition during these follow-ups, 
with assessments conducted by trained research assistants or nurses. 
This method is recognized for its reliability in evaluating the 
nutritional status of cancer patients (29–31). The GLIM criteria 
involve a two-step diagnostic process: initial screening using the 
Nutritional Risk Screening 2002 (NRS-2002) tool to identify at-risk 
individuals (scores ≥3 indicating malnutrition risk) (32), followed by 
confirmation and severity assessment based on phenotypic and 
etiological criteria. Specifically, malnutrition diagnosis requires at least 
one phenotypic criterion (e.g., weight loss, low BMI, or reduced 
muscle mass) and one etiological criterion (e.g., decreased food 
intake/assimilation, inflammation, or disease burden) (33, 34). Given 
the chronic inflammatory nature of esophageal cancer, all patients in 
this study were considered to meet the etiological criteria related to 
disease burden and inflammation.

According to the diagnostic criteria established by the Asian 
Working Group for Sarcopenia (AWGS), sarcopenia is characterized 
by the presence of low skeletal muscle mass combined with decreased 
muscle strength and/or impaired physical performance (35). In this 
study, preoperative computed tomography (CT) images at the third 
lumbar vertebra (L3) level were analyzed using SliceOmatic software 
(v5.0, TomoVision) to quantify skeletal muscle area (SMA, cm2; 
Supplementary Figure 1). The skeletal muscle index (SMI, cm2/m2) 
was subsequently calculated by normalizing SMA to height squared. 
Sex-specific thresholds for low SMI were applied based on AWGS 
recommendations: 34.9 cm2/m2 for females and 40.8 cm2/m2 for males 
(36). Muscle strength assessment was performed using standardized 
handgrip dynamometry, with diagnostic cutoffs defined as <28 kg for 
males and <18 kg for females (35).

Smoking status was categorized into current smokers and 
non-smokers (including former and never smokers) (37). Drinking 
was defined as consuming at least one alcoholic drink per week (38). 
Postoperative complications were evaluated using the Clavien-Dindo 
classification, with major complications defined as those of grade IIIa 
or higher (39). Chronic pulmonary diseases, as considered in this 
study, encompass conditions like chronic obstructive pulmonary 
disease (COPD), asthma, restrictive lung disease, and obstructive 
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sleep apnea (40). Cerebrovascular diseases encompassed intracerebral 
hemorrhage, ischemic stroke, and transient ischemic attack (TIA) 
(41). Ischemic heart disease was defined as impaired blood flow to the 
myocardium, encompassing acute myocardial infarction, stable 
angina, and chronic ischemic heart disease, potentially leading to 
heart failure (42).

2.3 Statistical analysis

Data conforming to a normal distribution were presented as mean 
± standard deviation (SD) and analyzed using an independent-
samples t-test. Non-normally distributed data were expressed as 
medians (first quartile [Q1] and third quartile [Q3]) and analyzed 
using the Wilcoxon rank-sum test. Categorical variables were 
described using frequencies and percentages, and compared using the 
Chi-square test or Fisher’s exact test, as appropriate. Feature selection 
was performed using the least absolute shrinkage and selection 
operator (LASSO) logistic regression method. Eight machine learning 
algorithms were employed for model development: Random Forest 
(RF), K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), 
Partial Least Squares (PLS), Neural Network (NN), TreeBagger (TB), 
Extreme Gradient Boosting (XGBoost), and Support Vector Machine 
(SVM). The SHapley Additive exPlanations (SHAP) framework was 
applied to interpret feature contributions in the top-performing 
model. Multivariate logistic regression analysis of LASSO-identified 
predictors facilitated the identification of independent risk factors for 
malnutrition. A dynamic nomogram was then developed based on 
these independent risk factors. Model discrimination was assessed by 

calculating the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve, while calibration was evaluated using 
calibration plots along with the Hosmer–Lemeshow (H-L) test. 
Decision curve analysis (DCA) was utilized to estimate the model’s 
clinical utility. Statistical significance was established at a two-tailed P 
of <0.05.

3 Results

3.1 Patient characteristics

Among the 1,693 patients who underwent esophageal cancer 
surgery, 46.8% (792/1,693) developed postoperative malnutrition. The 
incidence of malnutrition was 45.4% (568/1,251) in the development 
cohort and 50.7% (224/442) in the validation cohort. Comparative 
analysis of baseline characteristics revealed no significant differences 
between the two cohorts, except for education level and hypertension 
(Supplementary Table  1), indicating comparability across most 
examined parameters.

3.2 Machine learning model construction

In the development cohort, the LASSO regression, optimized via 
10-fold cross-validation (λ  = 0.019), identified eight predictors of 
postoperative malnutrition: female sex, age, preoperative body mass 
index (BMI) < 18.5 kg/m2, ASA score III–IV, drinking, diabetes 
mellitus, neoadjuvant therapy, and preoperative sarcopenia (Figure 2). 

FIGURE 1

Flowchart depicting patient allocation in both the development and validation cohorts.
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This method minimizes overfitting while prioritizing variables with 
robust clinical relevance.

Based on these selected variables, eight machine learning models 
were constructed and evaluated: RF, KNN, GNB, PLS, NN, TB, 
XGBoost, and SVM. Comprehensive model performance was 
evaluated using sensitivity, specificity, accuracy, positive predictive 
value (PPV), negative predictive value (NPV), precision, recall, 
F1-score, Youden’s index, and AUC.

The RF model demonstrated optimal overall performance in 
both development and validation cohorts. In the development 
cohort, RF achieved the highest scores in discriminative ability 
(AUC = 0.820, 95% CI: 0.796–0.845), accuracy (0.766), NPV (0.733), 
Youden’s index (0.505), and F1-score (0.702). In the validation 
cohort, RF maintained superiority in specificity (0.724), accuracy 
(0.735), PPV (0.665), precision (0.665), Youden’s index (0.475), 
F1-score (0.706), achieving an AUC of 0.805 (95% CI: 0.771–0.839) 
(Figure  3 and Supplementary Figures  2, 3). The RF model 
demonstrated excellent calibration accuracy in both cohorts 
(Figure 4), with DCA further validating its clinical utility. Superior 
net benefits were observed across threshold probabilities of 15–100% 
(development) and 13–92% (validation) (Figure 5), highlighting its 
advantages over alternative strategies within clinically relevant 
risk ranges.

3.3 Model interpretability

The out-of-bag (OOB) error rate decreased with increasing 
numbers of decision trees and stabilized after 300 trees, indicating 
optimal performance of the random forest model 
(Supplementary Figure  4). To quantify variable contributions to 
postoperative malnutrition risk, the SHAP framework was applied. As 
shown in the SHAP summary plot (Figure 6), the top predictors of 
postoperative malnutrition, ranked by mean absolute SHAP values, 

were: neoadjuvant therapy (SHAP value: 0.24), preoperative BMI 
(0.23), age (0.18), female sex (0.15), and preoperative sarcopenia (0.12).

3.4 Construction of the nomogram in the 
development cohort

To enhance clinical utility, continuous variables were 
dichotomized based on optimal cutoff values determined by ROC 
analysis. The optimal cutoff for age was 60 years, with an AUC of 0.662 
(95% CI: 0.632–0.693), as detailed in Supplementary Figure  5. 
Subsequent multivariate logistic regression analysis identified female 
sex, age ≥ 60 years, BMI < 18.5 kg/m2, neoadjuvant therapy, and 
preoperative sarcopenia. The statistical significance and effect sizes of 
these predictors are illustrated in Figure 7.

Based on these independent predictors, a nomogram was 
developed to estimate the likelihood of postoperative malnutrition 
(Figure 8). To further improve clinical applicability, an interactive 
online version of the nomogram was created (Figure 9) and is publicly 
available at: https://lzmdoc123456789.shinyapps.io/pomnt/.

3.5 Validation of the nomogram

The nomogram demonstrated robust predictive accuracy for 
postoperative malnutrition, with AUC values of 0.801 (95% CI: 0.775–
0.826) in the development cohort and 0.795 (95% CI: 0.764–0.828) in 
the validation cohort (Figure 10). Notably, no statistically significant 
difference in AUC was observed between the nomogram and the 
top-performing machine learning model, RF (Table 1).

It demonstrated good calibration in both cohorts, with calibration 
curves showing close agreement between predicted and observed 
probabilities (Figure 11). The H-L test results were non-significant 
(development: χ2 = 6.99, p = 0.635; validation: χ2 = 7.18, p = 0.620). 

FIGURE 2

Feature selection via the LASSO regression model. (A) Selection of the optimal penalty parameter (λ) using 10-fold cross-validation based on the 
minimum criterion. The vertical black line indicates the optimal λ = 0.019, balancing model complexity and accuracy. (B) LASSO coefficient profiles 
showing eight optimal predictors identified at the selected log(λ) value.
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DCA confirmed clinical utility, showing superior net benefits across 
threshold probabilities of 6–94% (development) and 8–95% 
(validation) compared to “treat all” or “treat none” strategies (Figure 12 
and Supplementary Figure 6).

4 Discussion

4.1 Epidemiological context

In contemporary clinical practice, advancements in multimodal 
therapeutic approaches and surgical techniques have significantly 
improved survival outcomes for esophageal cancer patients, 

particularly those eligible for curative interventions (43, 44). As the 
survival rate for patients increases, it becomes essential to focus on 
factors beyond just cancer-related outcomes in their long-term care, 
particularly the importance of maintaining good nutritional status. 
However, the prevalence of malnutrition varies significantly across 
studies due to differences in diagnostic criteria and follow-up 
duration. For instance, Schandl et al. (45) prospectively analyzed 
351 esophagectomy patients and reported that 35.6% (125/351) 
experienced significant postoperative weight loss. In contrast, 
Martin et  al. (46) observed a consistently high proportion of 
patients facing malnutrition risk: 77% prior to treatment, 71% at 
2 months post-treatment, 85% at 4 months, and 72% at 6 months. 
Lidoriki et al. (47) found that patients undergoing esophagectomy 

FIGURE 3

Receiver operating characteristic (ROC) curves of the eight machine learning models. (A) Development cohort. (B) Validation cohort.

FIGURE 4

Calibration plots of the eight machine learning models. (A) Development cohort. (B) Validation cohort.

https://doi.org/10.3389/fnut.2025.1606470
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Lin et al. 10.3389/fnut.2025.1606470

Frontiers in Nutrition 06 frontiersin.org

experienced the most significant postoperative weight loss, with a 
mean reduction of 16.2 ± 9.6% at 6 months. Notably, our findings 
provide enhanced validity through rigorous application of GLIM 
criteria and a large multicenter cohort (n = 1,693), ensuring 
standardized diagnosis and generalizability of the observed 46.8% 
malnutrition incidence.

4.2 Predictive models

Given the high prevalence and profound clinical consequences of 
postoperative malnutrition in esophageal cancer patients, early 
identification of high-risk individuals and optimized nutritional 
support are critical for preserving lean body mass and metabolic 

FIGURE 5

Decision curve analysis (DCA) of the eight machine learning models. (A) Development cohort. (B) Validation cohort.

FIGURE 6

SHapley Additive exPlanations (SHAP) analysis of the predictive model. (A) Mean absolute SHAP values for top predictors (bar plot). (B) Individual 
prediction explanation (waterfall plot).
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FIGURE 7

Forest plot of multivariable logistic regression.

FIGURE 8

Nomogram for the individualized prediction of malnutrition after esophageal cancer surgery.
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reserve (48–50). The nomogram, as a visual predictive tool, translates 
complex regression models into intuitive graphical interfaces, 

significantly enhancing clinical accessibility compared to traditional 
scoring systems (51). This study developed and validated a robust 
nomogram demonstrating strong discriminative ability 
(AUC = 0.795–0.801) and calibration in both internal and external 
cohorts. DCA confirmed its clinical utility across threshold 
probabilities of 6–95%, supporting its role in guiding interventions 
like prophylactic feeding jejunostomy for high-risk patients.

To advance predictive performance, we  explored machine 
learning algorithms capable of capturing complex variable 
interactions. Among eight ML models, the RF demonstrated optimal 
performance (AUC = 0.805–0.820). Notably, The RF model showed 
marginally higher discriminative ability than the nomogram, though 
no significant difference was observed. Although machine learning 
models may offer slight accuracy gains, their “black-box” nature and 

FIGURE 9

Dynamic nomogram for predicting postoperative malnutrition in esophageal cancer patients. Upon entering the relevant features in the left panel, the 
predicted probability of malnutrition is displayed in the right panel.

FIGURE 10

Receiver operating characteristic (ROC) curves of the nomogram. (A) Development cohort. (B) Validation cohort.

TABLE 1 Comparison of AUC values between the RF model and 
nomogram.

Model Type AUC (95% CI) P

Development cohort 0.231

  RF 0.820 (95% CI: 0.796–0.845)

  Nomogram 0.801 (95% CI: 0.775–0.826)

Validation cohort 0.080

  RF 0.805 (95% CI: 0.771–0.839)

  Nomogram 0.795 (95% CI: 0.761–0.830)
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computational demands limit real-world implementation, particularly 
in resource-limited settings (52). Our findings highlight that the 
nomogram’s balance of accuracy, interpretability, and simplicity better 
aligns with clinical pragmatism.

4.3 Key risk factors

Our findings identified female sex as an independent predictor of 
postoperative malnutrition. Compared to males, females generally 
exhibit a higher proportion of adipose tissue and lower skeletal muscle 
mass. Following surgery, the increased demand for nutrients—
particularly protein, required for tissue repair and muscle 
preservation—may disproportionately affect females, as reduced 
skeletal muscle mass limits metabolic reserves and adaptive capacity, 
thereby heightening the risk of malnutrition (24, 53). Furthermore, 

female patients often face heightened psychological stressors, such as 
anxiety and depression, as well as socioeconomic challenges including 
caregiving responsibilities and financial constraints. These factors may 
compromise dietary adherence and exacerbate nutritional deficits, 
potentially establishing a bidirectional pathway that contributes to the 
progression of malnutrition (54, 55).

Advanced age was significantly associated with malnutrition risk, 
likely due to multifactorial physiological and social determinants. Key 
contributors include age-related sarcopenia, which diminishes muscle 
mass and metabolic reserve, and polypharmacy that may interfere 
with nutrient absorption or appetite regulation. Chronic comorbidities 
such as diabetes or cardiovascular diseases further exacerbate 
metabolic dysregulation and dietary restrictions (56). Reduced 
mobility and functional decline limit access to nutrient-dense foods, 
while diminished gustatory and olfactory senses lower food enjoyment 
and intake (57). Prolonged postoperative recovery in elderly patients 

FIGURE 11

Calibration plots of the nomogram. (A) Development cohort. (B) Validation cohort.

FIGURE 12

Decision curve analysis (DCA) plots of the nomogram. (A) Development cohort. (B) Validation cohort.
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often necessitates increased protein and caloric demands, yet 
diminished gastrointestinal efficiency and psychological stressors 
(e.g., depression, social isolation) create barriers to meeting these 
needs (58, 59). These intersecting factors highlight the importance of 
tailored nutritional interventions and comprehensive geriatric 
assessments in mitigating malnutrition risk in older 
surgical populations.

According to the Malnutrition Universal Screening Tool (MUST) 
and the European Society of Clinical Nutrition and Metabolism 
(ESPEN) Malnutrition Diagnostic Criteria, a BMI of less than 18.5 kg/
m2 is recognized as indicative of malnutrition (60, 61). This threshold 
is also consistent with the underweight definition provided by the 
World Health Organization (WHO) and is one of the indicators in the 
GLIM criteria (31, 62). Therefore, we used 18.5 kg/m2 as the cutoff for 
BMI in our study. Preoperative low BMI was identified as an 
independent risk factor for postoperative malnutrition in our study, 
consistent with findings from previous studies (24, 25). As a type of 
upper gastrointestinal malignancy, esophageal cancer directly impacts 
food intake. The majority of esophageal cancer cases are diagnosed at 
an advanced stage, characterized by progressive dysphagia and 
significant weight loss as the predominant symptomatic 
manifestations. The intrinsic characteristics of esophageal cancer 
predispose patients to a higher likelihood of experiencing preoperative 
low BMI (5, 7). Surgical interventions, especially major operations like 
esophagectomy, significantly stress the body and elevate the 
requirements for energy and protein. A low BMI preoperatively 
indicates insufficient nutritional reserves, making it difficult for these 
patients to meet the increased demands for energy and nutrients 
following surgery.

The efficacy of preoperative oncological treatments (e.g., 
chemotherapy or chemoradiotherapy) in esophageal cancer 
management is well-established (63, 64). However, our study revealed 
a strong association between neoadjuvant therapy and postoperative 
malnutrition. This correlation may be attributed to treatment-related 
toxicities, including radiation-induced pneumonitis, esophagitis, 
dysphagia, esophageal strictures, and reduced physical activity, all of 
which can directly impair nutritional intake or exacerbate catabolic 
states (65). Prolonged inflammation from chemoradiotherapy may 
further disrupt energy metabolism by upregulating pro-inflammatory 
cytokines (e.g., TNF-α, IL-6), accelerating muscle proteolysis and 
adipose tissue breakdown (66). Additionally, chemotherapy-induced 
gastrointestinal mucositis and alterations in gut microbiota 
composition can compromise nutrient absorption and utilization (67, 
68). These physiological insults are compounded by treatment-related 
anorexia and taste alterations, which diminish dietary adherence and 
caloric intake.

Preoperative sarcopenia was identified as an independent risk 
factor for postoperative malnutrition in this study. Patients with 
sarcopenia exhibit significantly reduced skeletal muscle mass and 
diminished protein reserves, rendering them vulnerable to accelerated 
protein catabolism under postoperative traumatic stress. Furthermore, 
the chronic systemic inflammatory status associated with sarcopenia is 
exacerbated by surgical trauma, leading to enhanced muscle proteolysis 
and protein depletion. Additionally, compromised physical endurance 
in sarcopenic patients restricts early postoperative ambulation, which 
may adversely affect appetite regulation, gastrointestinal function, and 
subsequent nutritional intake. This functional decline creates a cyclical 

relationship, where reduced mobility further accelerates muscle loss 
and impairs metabolic homeostasis (69–71).

4.4 Limitations

Nonetheless, this study is subject to certain limitations. Firstly, the 
development and validation cohorts were independently conducted at 
separate single-center institutions within the same city. Hence, the 
applicability of our findings may not be generalizable, particularly for 
patients in Western countries, due to variations in factors such as tumor 
histology and the location of the primary tumor (72). Secondly, the 
study did not account for various clinical aspects such as socioeconomic 
status, dietary patterns, eating behaviors, and psychological well-being. 
Thirdly, we only used the GLIM criteria to assess malnutrition and did 
not compare the results with other assessment tools such as the 
Subjective Global Assessment (SGA). Finally, nutritional status was 
evaluated 1 month post-surgery without any subsequent follow-up.

5 Conclusion

This study presents a dual approach to predict postoperative 
malnutrition in esophageal cancer patients: a high-accuracy RF model 
and a clinically interpretable nomogram. While the RF model offers 
marginally superior predictive performance, the nomogram prioritizes 
usability through visual risk stratification, making it ideal for 
integration into clinical workflows (e.g., preoperative counseling) and 
electronic health records (EHRs). By embedding these tools into 
routine practice, clinicians can proactively tailor nutritional 
interventions—such as prophylactic jejunostomy placement for high-
risk patients or transient nasojejunal feeding for low-risk individuals—
while enhancing patient-clinician communication through intuitive 
risk visualization.
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