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Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD)

is a global health burden with an increasing incidence of hepatocellular

carcinoma (HCC), yet early risk predictors remain elusive. This study investigated

trans-palmitoleic acid (TPA) as a potential biomarker for MASLD-HCC risk.

Methods: Using National Health and Nutrition Examination Survey (NHANES)

data (n = 548), propensity score matching (PSM) minimized sociobehavioral

confounders. Multivariable logistic regression and restricted cubic spline (RCS)

models were employed to assess the association between TPA and HCC risk.

Results: A striking nonlinear association between TPA and HCC risk was

observed (P-nonlinear <0.001). Each unit increase in TPA elevated HCC risk

by 52.4% (OR = 1.524, 95% CI = 1.397–1.677), with quartile analysis showing

exponential risk escalation (Q4 OR = 753.7). Subgroup analyses identified

heightened susceptibility in women (Q4 OR = 1148.83) and younger individuals

(OR = 612.11). TPA correlated positively with lipid factors (triglycerides β = 1.236,

LDL β = 0.557) and hematologic indices, while exhibiting a negative association

with BMI (β = −0.037). Mediation analysis implicated triglycerides as a key

metabolic intermediary (39.18% effect proportion).

Discussion: These findings establish TPA as an independent MASLD-HCC

risk factor with distinct demographic variability, potentially mediated through

lipid dysregulation. While limited by observational design, this study highlights

TPA’s prognostic value for HCC risk stratification, especially in non-diabetic

populations (OR = 257.14). Future mechanistic studies should validate TPA’s

oncogenic pathways and explore therapeutic targeting of trans-fatty acid

metabolism to mitigate MASLD progression. The robust dose-response

relationship and metabolic mediation effects position TPA as a promising

candidate for incorporation into existing HCC prediction models.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease
(MASLD) has emerged as a global health crisis, affecting over 30%
of the adult population worldwide (1–3). This condition represents
a spectrum of liver disorders ranging from simple steatosis
to progressive inflammation and fibrosis, with hepatocellular
carcinoma (HCC) being the most devastating endpoint (4).
The annual incidence of MASLD-related HCC has shown a
concerning upward trajectory, contributing significantly to liver-
related mortality and imposing substantial economic burdens
on healthcare systems (5). Current epidemiological data reveal
that MASLD-associated HCC accounts for 10%–30% of all HCC
cases in Western countries (6–8), with projections suggesting
this proportion will continue to rise in parallel with the obesity
pandemic (9–11). The transition from MASLD to HCC involves
complex pathophysiological processes that remain incompletely
understood (12), highlighting the urgent need for mechanistic
insights and predictive biomarkers.

Current diagnostic and therapeutic approaches for MASLD-
HCC face significant limitations (13). Non-invasive diagnostic
tools, including ultrasound and transient elastography, often
fail to detect early malignant transformation (14, 15), while
serum biomarkers such as alpha fetoprotein lack sufficient
specificity for clinical implementation (16). Therapeutic strategies
primarily focus on lifestyle modifications and metabolic control,
with limited efficacy in preventing HCC development (17–20).
Pharmacological interventions targeting metabolic pathways show
promise but have not demonstrated consistent benefits in HCC
prevention (4). The absence of reliable early warning indicators
and incomplete understanding of the molecular mechanisms
driving MASLD progression to HCC represent critical knowledge
gaps in clinical hepatology. This underscores the necessity for
identifying novel risk factors and elucidating their pathogenic roles
in hepatocarcinogenesis.

A significant research gap exists regarding the role of trans-
palmitoleic acid (trans-9-hexadecenoic acid, trans-C16:1 n-7,
TPA), an understudied fatty acid metabolite, in MASLD-HCC
development. This unusual fatty acid, primarily derived from dairy
products, exhibits unique biological properties that distinguish
it from other fatty acids (21). Interestingly, TPA levels have
been associated with both beneficial and detrimental metabolic
effects in epidemiological studies, creating a paradoxical scenario
that warrants further investigation. While some reports link
TPA to improved glucose metabolism (22), others highlighted
a neutral role of TPA on diabetes (23), and others report
elevated erythrocyte membrane TPA levels correlate with increased
diabetes risk (24). Thus, understanding whether TPA serves as a
biomarker of risk or an active participant in hepatocarcinogenesis
could provide valuable insights for both risk stratification and
therapeutic development.

To address these limitations, we employed a rigorous analytical
approach utilizing data from the National Health and Nutrition
Examination Survey (NHANES), a nationally representative
dataset with extensive biochemical and clinical measurements.
Our study design incorporated multiple statistical techniques:
propensity score matching (PSM) to balance potential confounders
across exposure groups (25); linear and nonlinear models [box

plots, linear regression, and restricted cubic splines (RCSs)] to
elucidate the dose-response relationship between TPA and HCC
(26); subgroup stratification by gender, age and socioeconomic
status to assess population differences in risk effects; and mediation
effect models to dissect the mediating roles of various metabolic
factors in the pathway linking TPA to HCC development (27).
Our primary objectives were to establish the strength and nature
of the association between TPA and MASLD-HCC, characterize
population-specific risk patterns, and identify key metabolic
mediators in this relationship. These findings may contribute to
the development of novel risk prediction tools and inform targeted
prevention strategies for high-risk populations.

2 Materials and methods

2.1 Data and preprocessing

The NHANES represents an ongoing, cross-sectional,
and nationally representative investigation conducted in the
United States. This significant research initiative is managed by
the National Center for Health Statistics (NCHS) and receives
authorization and funding from the Centers for Disease Control
and Prevention (CDC) with the aim of evaluating the health
and nutritional conditions of the civilian population in the
United States who are not institutionalized. Data collection
occurs biennially through a sophisticated multistage probability
sampling methodology, which encompasses in-home, face-to-face
interviews followed by comprehensive physical assessments at
the Mobile Examination Center (MEC), during which blood and
urine specimens are obtained. The NHANES protocol undergoes
scrutiny and receives endorsement from the NCHS Research Ethics
Review Board, ensuring that informed consent has been acquired
from all participants involved. In our study, we utilized data from
10 cycles (1999–2018) of the NHANES database, which contains
comprehensive test data on MASLD-HCC for participants. To
account for inter-cycle variability, we applied survey weights
provided in the NHANES documentation. Missing data were
handled using multiple imputation methods. TPA level in plasma
were measured by GC/MS as described in NHANES trans fatty
acids procedure. The specific procedures included: converting
fatty acids into their free forms for extraction, derivatization
with pentafluorobenzyl bromide, separation via capillary gas
chromatography, and detection by negative chemical ionization
mass spectrometry. Fatty acids were identified by comparing
retention times with standards and specific mass-to-charge
ratios, while quantitative analysis was performed using a stable
isotope-labeled internal standard method.

2.2 Diagnostic criteria for MASLD

The initial stage of MASLD is considered to be characterized by
abnormal hepatic fat accumulation. Due to the absence of transient
elastography data for liver assessment in the 1998–2018 NHANES
database cycle, this study employs the Fatty Liver Index (FLI) as
a surrogate assessment indicator. The FLI is calculated using the
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formula:

FLI =
e[0.953 × ln(TG) + 0.139 × BMI + 0.718 × ln(GGT) + 0.053 × WC −15.745]

(
1 + e [0.953 × ln(TG) + 0.139 × BMI + 0.718 × ln(GGT) + 0.053 × WC −15.745]) × 100

TG denotes total triglycerides, BMI refers to body mass index,
GGT represents gamma-glutamyl transferase, and WC stands for
waist circumference (28–32). After excluding other liver diseases
associated with the aforementioned etiological factors, participants
with a FLI> 60 were diagnosed with MASLD.

2.3 Patients inclusion criteria

From the initial cohort of 18,017 participants, exclusions were
made for the following reasons: (1) removal of samples lacking
FLI data (N = 3,741), (2) exclusion of samples without MASLD
(N = 11,035), and (3) exclusion of samples lacking TPA (N = 2,693).
The final study population comprised 548 participants, including
239 cases of MASLD-HCC and 309 MASLD samples (Figure 1).

2.4 Propensity score matching

Propensity score matching is a statistical technique utilized to
address data from observational studies. In observational studies,
data bias and the presence of confounding variables are common
due to various reasons. The method of PSM is designed to
reduce the impact of these biases and confounding factors, thereby
enabling a more rational comparison between the experimental
group and the control group. This method was first introduced
by Rosenbaum and Rubin (33) and is frequently employed in
fields such as medicine, public health, and economics to match
baseline characteristics (34). In our study, we implemented a
1:1 nearest-neighbor matching algorithm to ensure balanced
group comparisons.

2.5 Weighted logistic regression analysis

Weighted binary logistic regression was utilized to investigate
explore the possible association between levels of TPA and the
occurrence of MASLD-HCC. In the regression model, TPA
levels were incorporated as both continuous and categorical
variables. This methodological framework enabled the estimation
of odds ratios (ORs) along with their respective 95% confidence
intervals (95% CIs). The TPA concentrations were first treated as
a continuous variable. Subsequently, these concentrations were
categorized into quartiles according to the interquartile range,
organized from the lowest to the highest levels. These quartiles
were designated as the first quartile (Q1), second quartile (Q2),
third quartile (Q3), and fourth quartile (Q4), and were also assessed
as categorical variables. In cases where TPA levels were analyzed
as categorical variables, the lowest quartile (Q1) served as the
reference group. The study delineated three distinct statistical
analysis groups: model 1 constituted the unadjusted model,
whereas model 2 incorporated adjustments for demographic
factors including gender, age, race, education, and poverty-income

ratio (PIR). Building on the adjustments made in model 2,
model 3 additionally accounted for factors such as diabetes, lipid
profiles, cholesterol levels, low-density lipoprotein, high-density
lipoprotein, albumin, creatinine, blood urea nitrogen, hemoglobin,
platelet count, and glycated hemoglobin. All regression analyses
were conducted with the inclusion of survey weights, and
non-normally distributed continuous covariates underwent
transformation utilizing weighted quartiles. Furthermore, the
study evaluated potential interactions among factors associated
with TPA levels through the application of the variance inflation
factor (VIF), where a VIF value of less than 10 indicated no
interaction between the examined factor and other variables. The P
values were adjusted to account for the false discovery rate (FDR).

2.6 Clinical subgroup analysis

Forest plots are primarily used for visualizing the comparison
of effect sizes and CIs across multiple study results. They are
commonly employed to summarize and compare outcomes from
different studies, providing a more intuitive representation of the
effect size (such as RR, OR, HR, or WMD) and their corresponding
95% CIs. This visualization aids in better understanding the
consistency and discrepancies between different studies.

2.7 Restricted cubic spline

Restricted cubic spline is a concept in statistics, particularly
frequently used in regression analysis and curve fitting. It is
a method for fitting and modeling continuous variables by
dividing the data range into several intervals and using a cubic
polynomial for fitting within each interval to create a smooth
curve. These polynomials are smoothly connected across adjacent
intervals, often with additional smoothness constraints to avoid
sharp fluctuations in the curve. In statistical modeling, RCS is
commonly used to model the relationship between continuous
variables and the dependent variable. In regression analysis, it
allows for capturing nonlinear relationships while maintaining
smoothness and avoiding overfitting. In this study, the RCS
analysis was performed using the R “rms” package, with three
knots automatically selected as the optimal number based on
statistical algorithms.

2.8 Multilevel logistic regression model

In the realm of statistics, the multilevel logistic regression
model serves as an advanced classification technique that extends
traditional logistic regression to accommodate multicategory
scenarios. This model is particularly designed to forecast the
probabilities associated with various potential outcomes of a
dependent variable that has a categorical distribution. Within the
framework of a multilevel logistic regression model, the dependent
variable’s predictions are made utilizing a series of independent
variables, also known as features or observed variables. This
model operates by computing the likelihood of achieving a specific
outcome in the dependent variable through a linear combination of
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FIGURE 1

Flow chart of participant selection.

the independent variables along with their respective parameters,
all framed within a probabilistic model. The parameters linked to
the independent variables are derived from the training dataset,
and they are commonly referred to as regression coefficients.
Importantly, the multilevel logistic regression model empowers
researchers to account for the inherent clustered structure of the
data, explore the origins of variation both within and between
clusters, identify which variables account for individual differences,
and ascertain which factors influence variations at the cluster level.

2.9 Statistical analysis

All data processing and analytical procedures were performed
utilizing R software (version 4.4.0). For the analysis of baseline
characteristics, medians and interquartile ranges were utilized
to characterize continuous variables that exhibited non-normal
distributions. Classification variables were reported as sample
counts and weighted percentages. To check for changes in
variable characteristics between groups of TPA (quartiles), we used
Wilcoxon rank sum tests to test continuous variables and Rao-
Scott Chi-square tests to test weighted percentages of categorical
variables, providing a comprehensive description of the entire
population. The “mediation” package was used for mediation
analysis to assess the mediating effects of lipid indicators (including
cholesterol, low density lipoprotein, high density lipoprotein,
and triglycerides) on the association between TPA and MASLD-
HCC. The existence of mediation effects was characterized by
the presence of a notable indirect effect, a significant overall
effect, and a positive ratio of the mediation effect. All statistical
evaluations were conducted as two-tailed tests, with a P-value
of less than 0.05 deemed to indicate statistical significance. For
all hypothesis tests (including primary, subgroup, and mediation
analyses), Benjamini–Hochberg method was applied to adjust
P values for FDR.

3 Results

3.1 Baseline characteristics of the
participants

In this study, a final cohort of 548 patients was incorporated
to evaluate the baseline characteristics, including factors such
as gender, age, and race, in connection with the occurrence of
HCC. The baseline characteristics of participants were presented in
Table 1. Before PSM, education and smoking showed differences
between the HCC and non-HCC groups (P-value = 0.038,
P-value = 0.039), whereas no differences were observed after
PSM (P-value = 0.1, P-value = 0.87). Some other baseline data
also showed differences before and after PSM in both the HCC
and non-HCC groups, such as race (P-value < 0.001 before
PSM, P-value = 0.026 after PSM), BMI (P-value = 0.003 before
PSM, P-value = 0.002 after PSM), diabetes (P-value = 0.013
before PSM, P-value = 0.027 after PSM), total cholesterol (P-
value< 0.001 before PSM, P-value< 0.001 after PSM), triglycerides
(P-value = 0.015 before PSM, P-value = 0.039 after PSM), and low-
density lipoprotein (P-value = 0.001 before PSM, P-value < 0.001
after PSM). These indicators, which showed differences before
and after PSM in both the HCC and non-HCC groups, could be
considered for mediation effect analysis. Some baseline indicators,
however, showed no differences before and after PSM in both the
HCC and non-HCC groups, such as gender, age, education, and
PIR. This indicates that these indicators were relatively balanced
between the HCC and non-HCC groups, and their confounding
factors were excluded when comparing the two groups.

3.2 Association of MASLD-HCC with TPA

We utilized box plots to illustrate the relationship between
MASLD-HCC and TPA, revealing a significant difference in TPA
levels between the cancer and non-cancer groups (Figure 2).
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TABLE 1 Baseline characteristics of participants.

Variable Before PSM After PSM

Overall Liver
cancer

Normal P-value2 Liver
cancer

Normal P-value2

N = 5481 N = 2391 N = 3091 N = 2391 N = 2391

Gender 0.36 0.17

Male 279 (51%) 127 (53%) 152 (49%) 127 (53%) 112 (47%)

Female 269 (49%) 112 (47%) 157 (51%) 112 (47%) 127 (53%)

Age (years) 53 (16) 54 (16) 52 (16) 0.17 54 (16) 52 (16) 0.1

Race < 0.001 0.026

Mexican American 100 (18%) 61 (26%) 39 (13%) 61 (26%) 39 (16%)

Other Hispanic 40 (7.3%) 11 (4.6%) 29 (9.4%) 11 (4.6%) 4 (1.7%)

Non-Hispanic White 263 (48%) 107 (45%) 156 (50%) 107 (45%) 127 (53%)

Non-Hispanic Black 125 (23%) 54 (23%) 71 (23%) 54 (23%) 59 (25%)

Others 20 (3.6%) 6 (2.5%) 14 (4.5%) 6 (2.5%) 10 (4.2%)

Education 0.038 0.1

Less than 9th grade 58 (11%) 36 (15%) 22 (7.1%) 36 (15%) 17 (7.1%)

9th–11th grade 80 (15%) 37 (15%) 43 (14%) 37 (15%) 40 (17%)

High school 142 (26%) 60 (25%) 82 (27%) 60 (25%) 66 (28%)

AA degree 176 (32%) 70 (29%) 106 (34%) 70 (29%) 77 (32%)

College graduate 92 (17%) 36 (15%) 56 (18%) 36 (15%) 39 (16%)

PIR 0.17 0.14

High 393 (79%) 172 (82%) 221 (76%) 172 (82%) 168 (76%)

Low 107 (21%) 39 (18%) 68 (24%) 39 (18%) 54 (24%)

BMI 34.8 (6.0) 34.0 (5.8) 35.4 (6.2) 0.003 34.0 (5.8) 35.7 (6.4) 0.002

Smoke 0.039 0.87

Regularly 117 (21%) 61 (26%) 56 (18%) 61 (26%) 56 (23%)

Sometimes 33 (6%) 9 (3.8%) 24 (7.8%) 9 (3.8%) 9 (3.8%)

Never 398 (73%) 169 (71%) 229 (74%) 169 (71%) 174 (73%)

Hypertension 0.17 0.2

Hypertension 266 (49%) 108 (45%) 158 (51%) 108 (45%) 122 (51%)

Health 282 (51%) 131 (55%) 151 (49%) 131 (55%) 117 (49%)

Diabetes 0.013 0.027

Diabetes 73 (13%) 22 (9.2%) 51 (17%) 22 (9.2%) 38 (16%)

Health 475 (87%) 217 (91%) 258 (83%) 217 (91%) 201 (84%)

Heart failure 0.52 0.5

Heart failure 24 (4.4%) 12 (5.0%) 12 (3.9%) 12 (5.0%) 9 (3.8%)

Health 524 (96%) 227 (95%) 297 (96%) 227 (95%) 230 (96%)

CHD 0.93 > 0.99

CHD 27 (4.9%) 12 (5.0%) 15 (4.9%) 12 (5.0%) 12 (5.0%)

Health 521 (95%) 227 (95%) 294 (95%) 227 (95%) 227 (95%)

Fasting insulin (µU/ml) 20 (15) 20 (19) 20 (11) 0.13 20 (19) 20 (11) 0.071

TC (mmol/L) 5.29 (1.07) 5.47 (1.05) 5.15 (1.07) < 0.001 5.47 (1.05) 5.15 (1.06) < 0.001

TG (mmol/L) 1.97 (1.41) 2.10 (1.50) 1.86 (1.33) 0.015 2.10 (1.50) 1.89 (1.40) 0.039

LDL-C (mmol/L) 3.25 (0.98) 3.40 (0.92) 3.13 (1.02) 0.001 3.40 (0.92) 3.12 (1.00) < 0.001

UACR (mg/g) 0.68 (7.50) 1.17 (11.25) 0.29 (1.29) 0.05 1.17 (11.25) 0.26 (1.02) 0.14

(Continued)
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TABLE 1 (Continued)

Variable Before PSM After PSM

Overall Liver
cancer

Normal P-value2 Liver
cancer

Normal P-value2

N = 5481 N = 2391 N = 3091 N = 2391 N = 2391

ALB (g/L) 42.2 (3.3) 43.4 (3.2) 41.2 (3.1) < 0.001 43.4 (3.2) 41.1 (3.2) < 0.001

Cr (µmol/L) 75 (42) 68 (48) 81 (35) < 0.001 68(48) 81 (38) < 0.001

BUN (mg/dl) 14.4 (6.0) 14.9 (5.0) 14.1 (6.6) 0.003 14.9 (5.0) 13.7 (6.1) < 0.001

WBC (%) 7.12 (1.94) 7.10 (1.93) 7.13 (1.95) 0.9 7.10 (1.93) 7.18 (1.95) 0.87

Neutrophils (%) 4.26 (1.59) 4.24 (1.54) 4.26 (1.63) 0.72 4.24 (1.54) 4.29 (1.59) 0.97

Lymphocytes (%) 2.08 (0.68) 2.07 (0.66) 2.08 (0.70) 0.74 2.07 (0.66) 2.09 (0.70) 0.58

HB (g/dl) 14.36 (1.46) 14.58 (1.42) 14.19 (1.48) 0.004 14.58 (1.42) 14.21 (1.49) 0.015

PLT (%) 250 (63) 259 (61) 243 (64) 0.002 259 (61) 242 (66) < 0.001

HBA1c (%) 5.89 (1.07) 5.89 (1.32) 5.88 (0.83) 0.002 5.89 (1.32) 5.87 (0.83) 0.006

TPA (µmol/L) 6.8 (3.8) 8.6 (4.0) 4.9 (2.4) < 0.001 8.6 (4.0) 5.0 (2.6) < 0.001

PIR < 1.2: low; PIR ≥ 1.2: high. PIR, poverty-to-income ratio; BMI, body mass index; CHD, coronary heart disease; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein
cholesterol; UACR, urinary albumin/creatinine ratio; ALB, albumin; Cr, creatinine; BUN, blood urea nitrogen; WBC, white blood cell count; HB, hemoglobin; PLT, platelet count; HBA1c,
hemoglobin A1c; TPA, trans-palmitoleic acid; PSM, propensity score matching. 1Mean (SD) or frequency (%). 2Pearson’s Chi-squared test; Wilcoxon rank sum test.

FIGURE 2

Bar chart of TPA serum level between MASLD-HCC and
non-cancerous group.

To further analyze this difference, we utilized linear regression
analysis and multilevel logistic regression model to demonstrate
the relationship (Table 2). Model 1, without covariates, revealed

a positive correlation between TPA levels and MASLD-HCC
(OR = 1.524, 95% CI = 1.397–1.677, P-value < 0.001); when
compared to Q1, Q2 had an OR of 3.671 (95% CI = 1.997–6.987,
P-value < 0.001), Q3 had an OR of 7.519 (95% CI = 4.132–
14.258, P-value < 0.001), and Q4 had an OR of 42.905 (95%
CI = 20.946–94.294, P-value < 0.001), indicating that with
each increase in TPA, the probability of developing MASLD-
HCC increased. Model 2, with gender, age, race, education,
and PIR as covariates, and model 3, further adding diabetes,
blood lipids, cholesterol, low-density lipoprotein, high-density
lipoprotein, albumin, creatinine, blood urea nitrogen, hemoglobin,
platelet count, and glycated hemoglobin as covariates, both showed
a similar positive correlation between TPA and MASLD-HCC
(model 2 OR = 1.654, 95% CI = 1.487–1.862, P-value < 0.001;
model 3 OR = 2.276, 95% CI = 1.921–2.767, P-value < 0.001).
When grouped by quartile intervals, both model 2 and model
3 revealed that, compared to Q1, the OR values for Q2 (model
2 OR = 6.170, 95% CI = 2.983–13.500, P-value < 0.001; model
3 OR = 9.500, 95% CI = 4.069–23.801, P-value < 0.001), Q3
(model 2 OR = 15.239, 95% CI = 7.183–34.719, P-value < 0.001;
model 3 OR = 26.202, 95% CI = 10.721–70.020, P-value < 0.001),
and Q4 (model 2 OR = 110.166, 95% CI = 44.800–296.784,
P-value < 0.001; model 3 OR = 753.702, 95% CI = 196.665–
3,490.227, P-value < 0.001) increased progressively, indicating
that with the addition of covariates, the probability of developing
MASLD-HCC also increased with increasing TPA.

3.3 Restricted cubic spline curves for
MASLD-HCC and its subgroups

Restricted cubic spline curves were utilized to explore
the association between TPA levels and the incidence of
MASLD-HCC, while accounting for all pertinent covariates.
A statistically significant nonlinear relationship was observed
between TPA and MASLD-HCC (P non-linear < 0.001, cutoff
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TABLE 2 Relationship between TPA and promotion of MASLD-HCC development.

Model 1 Model 2 Model 3

Characteristic OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

TPA continuous 1.524 (1.397,
1.677)

P < 0.001 1.654 (1.487,
1.862)

P < 0.001 2.276 (1.921,
2.767)

P < 0.001

TPA quantile

Q1 (low) Ref Ref Ref Ref Ref Ref

Q2 3.671 (1.997,
6.987)

P < 0.001 6.17 (2.983, 13.5) P < 0.001 9.5 (4.069,
23.801)

P < 0.001

Q3 7.519 (4.132,
14.258)

P < 0.001 15.239 (7.183,
34.719)

P < 0.001 26.202 (10.721,
70.02)

P < 0.001

Q4 (high) 42.905 (20.946,
94.294)

P < 0.001 110.166 (44.8,
296.784)

P < 0.001 753.702 (196.665,
3,490.227)

P < 0.001

P-value for trend P < 0.001 P < 0.001 P < 0.001

Q1 (low) < 4.1, 4.1 ≤ Q2 < 5.83, 5.83 ≤ Q3 < 8.29, and Q4 ≥ 8.29. The model 1 was the crude model. The model 2 was adjusted by gender, age, race, education, and PIR. The model 3 was
adjusted by gender, age, race, education, PIR, diabetes, TC, TG, LDL_C, ALB, SCR, BUN, HB, PLT, and HBA1C. TPA, trans-palmitoleic acid.

FIGURE 3

Restricted cubic spline regression analysis revealed an association between MASLD-HCC and TPA levels in (A) the overall population, (B) males, and
(C) females.

value = 5.85 µmol/L, Figure 3A). Furthermore, a significant
nonlinear relationship was found between TPA and the incidence
of MASLD-HCC in the male subgroup (P non-linear < 0.001,

cutoff value = 5.92 µmol/L, Figure 3B), as well as in the female
subgroup (P non-linear < 0.001, cutoff value = 5.83 µmol/L,
Figure 3C).
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FIGURE 4

Association of TPA with MASLD-HCC in various subgroups of baseline characteristics. In the age subgroup, “Young” refers to age ≤ 65 years, and
“Old” refers to age > 65 years; in the poverty-income ratio (PIR) subgroup, “high” is defined as PIR ≥ 1.2, and “low” is defined as PIR < 1.2.

3.4 Relationship of TPA with baseline
characteristics in various subgroups

Figure 4 illustrates the association between TPA and MASLD-
HCC, with the relationship analyzed across various subgroups
stratified by gender, age, PIR, hypertension, and diabetes using
fully adjusted multivariate logistic regression. We found that in
both male and female gender subgroups, the incidence of HCC

increased with increasing levels of TPA (male group: Q2 vs.
Q1, OR = 4.10, 95% CI = 1.61–10.43, P-value = 0.003; Q3 vs.
Q1, OR = 7.80, 95% CI = 2.95–20.64, P-value < 0.001; Q4
vs. Q1, OR = 89.27, 95% CI = 18.20–437.98, P-value < 0.001;
female group: Q2 vs. Q1, OR = 10.92, 95% CI = 2.79–42.63,
P-value = 0.001; Q3 vs. Q1, OR = 24.35, 95% CI = 5.99–98.90,
P-value < 0.001; Q4 vs. Q1, OR = 1,148.83, 95% CI = 152.86–
8,634.14, P-value < 0.001). The age young subgroup appeared
to be more sensitive to TPA, with increasing OR values for
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Q2, Q3, and Q4 compared to Q1 (Q2 vs. Q1, OR = 6.84, 95%
CI = 2.91–16.10, P-value < 0.001; Q3 vs. Q1, OR = 13.76, 95%
CI = 5.64–33.54, P-value < 0.001; Q4 vs. Q1, OR = 612.11,
95% CI = 130.62–2,868.48, P-value < 0.001), while the tendency
was observed in the age old subgroup only when comparing
Q3 and Q4 to Q1 (Q3 vs. Q1, OR = 5.96, 95% CI = 1.16–
30.71, P-value = 0.033; Q4 vs. Q1, OR = 15.17, 95% CI = 1.63–
141.21, P-value = 0.017). A similar trend was observed in
the PIR subgroup, with significant differences in Q2, Q3, and
Q4 compared to Q1 in the high PIR group (Q2 vs. Q1,
OR = 7.99, 95% CI = 3.33–19.16, P-value < 0.001; Q3 vs. Q1,
OR = 18.29, 95% CI = 7.28–45.94, P-value < 0.001; Q4 vs. Q1,
OR = 437.48, 95% CI = 102.84–1,860.99, P-value < 0.001), and
in Q3 and Q4 compared to Q1 in the low PIR group (Q3 vs.
Q1, OR = 10.00, 95% CI = 1.13–88.71, P-value = 0.039; Q4 vs.
Q1, OR = 913.50, 95% CI = 13.51–61,760.65, P-value = 0.002).
In the hypertension subgroup, an increase in the incidence of
HCC was observed with increasing levels of TPA, regardless
of whether the individual had hypertension. In the diabetes
subgroup, patients without diabetes appeared to be more sensitive
to TPA levels (Q2 vs. Q1, OR = 6.10, 95% CI = 2.74–13.59,
P-value < 0.001; Q3 vs. Q1, OR = 13.63, 95% CI = 5.91–31.43,
P-value < 0.001; Q4 vs. Q1, OR = 257.14, 95% CI = 67.62–977.92,
P-value< 0.001).

3.5 Association of metabolic indicators
with TPA and MASLD-HCC

Table 3 presents the associations of TPA with metabolic
indicators following multivariate logistic regression. Upon
controlling for all potential confounding variables, a positive
correlation was observed between TPA and cholesterol
levels (β = 0.644, 95% CI = 0.474–0.819, P-value < 0.001),
triglycerides (β = 1.236, 95% CI = 0.994–1.493, P-value < 0.001),
low-density lipoprotein (β = 0.557, 95% CI = 0.372–0.749,
P-value < 0.001), albumin (β = 0.138, 95% CI = 0.08–0.198,
P-value < 0.001), hemoglobin (β = 0.148, 95% CI = 0.009–
0.291, P-value = 0.036), and platelet count (β = 0.004,
95% CI = 0–0.007, P-value = 0.007). It was negatively
correlated with BMI (β = −0.037, 95% CI = −0.068–0.006,
P-value = 0.021).

3.6 Analysis of the mediating role of
metabolic indicators in the association
with TPA

Building upon the results of the analysis of metabolic
indicators, we conducted further mediation analysis to investigate
the role of these indicators in the association between TPA
and MASLD-HCC. The study revealed that in the mediation
by triglycerides, the direct effect of TPA on HCC was 0.08, the
indirect effect was 0.04, and the total effect was 0.12. Triglycerides
mediated 39.18% of the association between TPA and the incidence
of HCC (Figure 5). In the case of albumin, the direct effect was
0.12, the indirect effect was 0.01, and the total effect was 0.13,
with a mediating proportion of 7.79%. Additionally, we evaluated

TABLE 3 Associations between TPA and metabolic related indicators.

β value 95% CI P-value

BMI

Model 1 −0.038 (−0.065,−0.011) 0.006

Model 2 −0.045 (−0.075,−0.016) 0.002

Model 3 −0.037 (−0.068,−0.006) 0.021

TC

Model 1 0.642 (0.48, 0.808) P < 0.001

Model 2 0.644 (0.482, 0.811) P < 0.001

Model 3 0.644 (0.474, 0.819) P < 0.001

TG

Model 1 1.205 (0.98, 1.443) P < 0.001

Model 2 1.209 (0.984, 1.447) P < 0.001

Model 3 1.236 (0.994, 1.493) P < 0.001

LDL_C

Model 1 0.543 (0.367, 0.724) P < 0.001

Model 2 0.544 (0.368, 0.725) P < 0.001

Model 3 0.557 (0.372, 0.749) P < 0.001

ALB

Model 1 0.123 (0.072, 0.176) P < 0.001

Model 2 0.15 (0.094, 0.207) P < 0.001

Model 3 0.138 (0.08, 0.198) P < 0.001

Cr

Model 1 −0.005 (−0.012, 0.001) 0.039

Model 2 −0.006 (−0.014, 0.001) 0.032

Model 3 −0.001 (−0.009, 0.006) 0.644

BUN

Model 1 0.004 (−0.026, 0.034) 0.805

Model 2 0.003 (−0.03, 0.038) 0.846

Model 3 0.013 (−0.022, 0.049) 0.469

HB

Model 1 0.167 (0.06, 0.277) 0.002

Model 2 0.257 (0.127, 0.39) P < 0.001

Model 3 0.148 (0.009, 0.291) 0.036

PLT

Model 1 0.003 (0, 0.006) 0.011

Model 2 0.003 (0, 0.007) 0.01

Model 3 0.004 (0, 0.007) 0.007

HBA1C

Model 1 0.038 (−0.122, 0.194) 0.635

Model 2 0.037 (−0.128, 0.198) 0.651

Model 3 0.166 (−0.037, 0.369) 0.109

The model 1 was the crude model. The model 2 was adjusted by gender, age, race,
education, and PIR. The model 3 was adjusted by gender, age, race, education, PIR,
diabetes, TC, TG, LDL_C, ALB, SCR, BUN, HB, PLT, and HBA1C. BMI, body mass index;
TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; ALB,
albumin; Cr, creatinine; BUN, blood urea nitrogen; HB, hemoglobin; PLT, platelet count;
HBA1c, hemoglobin A1c.
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FIGURE 5

Mediating effects of triglycerides and albumin.

the mediating roles of various metabolic parameters, including
cholesterol and low-density lipoprotein, in the association
(Supplementary Table 1).

4 Discussion

The present study provides compelling evidence that TPA
serves as an independent risk factor for HCC in patients with
MASLD, with a striking nonlinear dose-response relationship.
Our findings significantly advance the current understanding
of MASLD-HCC pathogenesis by identifying TPA as a novel
biomarker and elucidating its metabolic mediation pathways.
Unlike previous studies that primarily focused on traditional
risk factors such as diabetes (35, 36), our research highlights
the unique role of TPA in driving hepatocarcinogenesis,
particularly through its association with triglycerides (39.18%
mediation effect). Notably, the exponential risk escalation in
high-TPA quartiles (Q4 OR = 753.7) and pronounced gender
disparity (female Q4 OR = 1,148.83) represent previously
unrecognized dimensions of MASLD-HCC susceptibility,
challenging the conventional paradigm of metabolic liver
disease progression.

Clinically, these findings could revolutionize risk stratification
and early intervention strategies for MASLD patients. The
robust association between TPA and HCC, coupled with its
measurable metabolic correlates (e.g., triglycerides β = 1.236),
suggests that routine TPA monitoring could identify high-
risk cohorts years before malignant transformation. This is
particularly relevant given the limitations of current surveillance
tools like ultrasound elastography, which often detect late-
stage fibrosis. Notably, our subgroup analyses revealed that
females and younger individuals exhibit greater susceptibility to
TPA-mediated hepatocarcinogenesis—possibly associated with
estrogen-modulated inflammatory pathways and age-related
declines in hepatic regenerative capacity. Our RCS analysis
further provides actionable thresholds for risk mitigation—the
nonlinear inflection points could guide dietary modifications (e.g.,
reducing dairy/meat-derived TPA) or pharmacologic interventions
targeting triglyceride metabolism. TPA also offers several practical
advantages, such as low assay cost, rapid turnaround time,
and predictable gender- and age-specific risk patterns. For
policymakers, these data underscore the need to reevaluate

nutritional guidelines in MASLD management, as TPA’s dual role
as both a biomarker and modifiable risk factor bridges diagnostic
and therapeutic gaps in this burgeoning epidemic.

Current investigations into the relationship between dietary
trans fatty acids and the risk of developing cancer are significantly
limited, primarily concentrating on trans-11-octadecenoic acid
(VA) and trans-9,11,15-octadecatrienoic acid [conjugated linoleic
acid (CLA)]. A cohort study conducted in the Netherlands
indicated a potential link between the consumption of VA and
an elevated risk of breast cancer (37). In addition, another
epidemiological investigation established a direct relationship
between VA levels in serum or red blood cells and the incidence
of both breast and prostate cancers (38, 39). In terms of CLA’s
connection to cancer risk, four case-control studies have been
performed. One of the investigations revealed a negative correlation
between the consumption of CLA and the risk of developing
colorectal cancer (40). Another research effort demonstrated that
postmenopausal women with breast cancer exhibited significantly
lower dietary CLA intake and serum CLA levels than their
counterparts without breast cancer (41). It is especially noteworthy
that women identified in the uppermost quartile of CLA intake
demonstrated a 29% lower risk of developing colorectal cancer
in comparison to those in the lowest quartile. Conversely,
two other case-control studies did not establish a noteworthy
relationship between CLA intake, whether through diet (42) or
CLA concentrations in adipose tissue (43), and the risk of breast
cancer. Moreover, a prospective cohort analysis indicated a weak
association between CLA intake and the incidence of breast cancer,
a conclusion derived from a comparison of the highest and lowest
quintiles of CLA consumption (37).

Several limitations warrant consideration. First, despite
rigorous PSM, residual confounding from unmeasured metabolic
variables (e.g., adipose tissue distribution) may persist, though
the consistency of effects across multivariable models strengthens
causal inference. Second, the observational design precludes
mechanistic validation; future studies should employ experimental
models to delineate whether TPA directly induces oncogenic
mutations or acts via microenvironmental remodeling. Third,
while NHANES provides nationally representative data, batch
effects from pooled survey cycles may introduce measurement
variability. Forth, although FLI enabled MASLD classification
in NHANES, its limitations in HCC risk stratification must
be noted. Future studies should incorporate imaging and
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biopsy examinations in MASLD diagnosis. Finally, the modest
sample size (n = 548) limited statistical power for subgroup
analyses. Addressing these through multicenter cohorts with serial
TPA measurements and -omics integration will be critical for
translating these findings into precision prevention frameworks.
Nevertheless, this study establishes TPA as a pivotal player
in MASLD-HCC pathogenesis, opening new avenues for risk
prediction and targeted metabolic therapy.

5 Conclusion

This study establishes TPA as a robust, nonlinear risk factor for
MASLD-HCC, with effect sizes exceeding conventional metabolic
indicators. The pronounced gender/age disparities and the 39.18%
mediation by triglycerides underscore TPA’s dual role as a
biomarker and potential therapeutic target. Despite methodological
constraints, these findings advocate for clinical trials testing TPA-
lowering strategies in high-risk subgroups, while highlighting the
need for mechanistic studies to decode its oncogenic pathways in
hepatic metabolic reprogramming.
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