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Background: Cancer is among the world’s top causes of death, and diet 
plays an important role in cancer risk. However, few studies have addressed a 
comprehensive atlas that details the connections between dietary carbohydrates 
and cancer risk.

Methods: We conducted a large population-based prospective cohort research 
based on the UK Biobank including 194,388 participants. The Oxford WebQ, a 
web-based 24-h recall questionnaire, was used to collect dietary information of 
each study participant. Using the Cox proportional hazards model, we calculated 
the hazard ratios (HRs) with 95% confidence intervals (CIs) for the associations 
of energy-adjusted carbohydrates intake and the incidence of overall cancer as 
well as 21 site-specific cancers.

Results: A total of 19,990 incidences of cancer (excluding non-melanoma skin 
cancer) were recorded with a median follow-up of 12.8 years. Energy-adjusted 
fiber was associated with a reduced risk of overall cancer [HR per IQR increase (95% CI): 
0.97 (0.96, 0.99); PFDR: 0.045] and esophageal [0.79 (0.68, 0.91); 0.024], colorectal 
[0.92 (0.87, 0.97); 0.025], lung [0.87 (0.81, 0.94); 0.014], and kidney cancer [0.85 
(0.76, 0.94); 0.031]. Energy-adjusted free sugars were tied to a higher risk of lung 
[1.12 (1.05, 1.19); 0.024] and kidney cancer [1.15 (1.05, 1.26); 0.039], while non-
free sugars were associated with a reduced risk of overall cancer [0.97 (0.95, 
0.99); 0.031], colorectal [0.89 (0.84, 0.94); 0.006] and lung cancer [0.86 (0.79, 
0.93); 0.014]. Finally, energy-adjusted sucrose was associated with an elevated 
risk of both lung cancer [1.10 (1.04, 1.17); 0.024] and non-Hodgkin lymphoma 
[1.15 (1.07, 1.23); 0.008].

Conclusion: Increased consumption of dietary fiber and non-free sugars is 
associated with a reduced risk of certain cancers (e.g., overall cancer, esophageal, 
colorectal, lung, and kidney cancers), potentially due to their anti-inflammatory 
effects, short-chain fatty acid production, and other protective mechanisms. 
In contrast, higher intakes of free sugars and sucrose are associated with an 
elevated risk (e.g., lung, kidney cancer, and non-Hodgkin lymphoma), which 
may be attributed to inflammation and oxidative stress.
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Background

Cancer is among the world’s top causes of death, with rates of both 
incidence and mortality rising at an accelerated pace (1). In 2020, there 
were 19.3  million new cases of cancer worldwide, and roughly 
10  million deaths from the illness (2), putting a heavy load on 
healthcare systems and economies almost everywhere. However, a 
study in the UK pointed that nearly 40% of cancer cases could 
potentially be avoided by addressing modifiable factors, such as diet 
(3). Given this substantial potential for cancer prevention, it is essential 
to look into the connection between dietary nutrients and cancer risk.

Carbohydrates are a primary source of energy in daily diets, 
supporting brain function and physical performance (4). Recent 
evidence suggests that total carbohydrate intake may affect cancer risk. 
For example, a meta-analysis revealed that high carbohydrate 
consumption was protective against esophageal cancer (5), while 
another study found that high carbohydrate intake was associated with 
an elevated risk of colorectal cancer (6). These conflicting findings 
suggest that the impact of total carbohydrate intake on cancer may 
vary by cancer site. Thus, more comprehensive investigation is required 
to evaluate the relationship between total carbohydrate and cancer risk.

Recent research suggests that understanding specific types of 
carbohydrates consumed, rather than total carbohydrate consumption, 
may be more effective for cancer prevention (7). The main components 
of carbohydrates include sugars, starches, and fiber (8), with their 
detailed classifications illustrated in Supplementary Figure S1. Previous 
studies have concentrated on isolated associations between individual 
types of carbohydrates and specific cancers. This approach has resulted 
in fragmented insights, with findings often lacking consistency. For 
instance, Meinhold et al. (9) and Jiao et al. (10) conducted separate 
prospective studies examining the impacts of sugars on the risk of 
pancreatic cancer. However, one study found that high sucrose intake 
was associated with increased cancer risk (9), whereas the other study 
found the opposite, with high fructose intake associated with increased 
cancer risk (10). Similarly, studies examining the impact of fiber on 
kidney cancer and bladder cancer also obtained inconsistent findings 
(11, 12). Therefore, to date, the relationships of different types of 
carbohydrates with various types of cancer remain unresolved, and 
there is a lack of a comprehensive atlas that details the comprehensive 
connections of different types of carbohydrates with cancer risk.

The UK Biobank (UKB) is a large-scale, prospective population 
cohort that has conducted dietary surveys on over 210,000 
participants, providing a rich source of data on dietary habits, 
including information on more than 206 different foods (13). Using 
the UK Nutritional Database, carbohydrates have been categorized 
into three main groups (sugars, starch, and fiber) and further divided 
into up to 11 subtypes (14). This comprehensive dataset enables 
detailed analyses of dietary carbohydrate consumption and provides 
robust, high-quality evidence for understanding the role of 
carbohydrate intake in cancer risk. Given this unique resource, our 
study aims to fill the existing research gaps by examining the 

associations between total carbohydrate intake, various carbohydrate 
subtypes, and the incidence of overall cancer and 21 site-specific 
cancers in a large-scale prospective cohort. In addition, we conducted 
stratified analyses to explore potential modification effects by age 
and sex.

Methods

Design of the study and participants

We conducted a population-based prospective cohort study based 
on the UKB. From 2006 to 2010, 22 centers in the UK recruited more 
than 500,000 participants aged 37–73 years. Personal data, including 
as demographics, lifestyle variables, and health-related ailments, were 
gathered at baseline. North West Multi-center Research Ethics 
Committee approved the research project, and informed consent 
forms were signed by all participants (15).

A total of 502,355 participants were included in this study. After 
excluding individuals who withdrew (N = 116), those who had any 
cancer diagnosis before baseline [International Classification of 
Diseases, Tenth Revision (ICD-10) codes: C00-C97, excluding C44] 
(N = 23,799), individuals without 24-h dietary assessment data 
(N = 227,143), those with extreme energy intake [men: >17,573 kJ/d 
or <3,347 kJ/d; women: >14,644 kJ/d or <2,092 kJ/d (16)] (N = 2,033), 
or those with missing covariates information (N = 4,876), a final 
sample of 194,388 participants were remained for the primary 
analyses. Among these participants, only 88,017 men were included 
in the prostate cancer analysis, and 106,371 women were included in 
the breast, corpus uteri, and ovarian cancer analyses (17). A flow chart 
of study participants inclusion and exclusion is present in Figure 1.

Assessment of dietary carbohydrate

Dietary data for this study were collected using the Oxford WebQ, 
a web-based 24-h recall questionnaire, which captured information 
on up to 206 food items and 32 beverage items (13). Nutrient intake 
was estimated using the food composition tables from the UK 
Nutritional Database (14). Carbohydrates were categorized into three 
main types: sugars, starch, and fiber. Sugars were further divided into 
free sugars and non-free sugars, based on whether they were added 
during food processing or naturally present in whole foods. 
Additionally, sugars were classified by chemical structure into 
monosaccharides (e.g., glucose, fructose) and disaccharides (e.g., 
sucrose, lactose, maltose).

The dietary survey included up to five rounds of data collection. 
The first round was conducted between April 2009 and September 
2010, during which approximately 210,000 participants were invited 
to complete the baseline Oxford WebQ questionnaire at the assessment 
centers. Participants who provided a valid email address were then 
invited to complete four additional online assessments between 
February 2011 and June 2022 (14). For the current analyses, when 
only a single 24-h dietary assessment was available, carbohydrate 
intake was calculated based on that single measurement. For 
participants with two or more assessments, intake was averaged to 
reduce measurement error and better reflect long-term dietary 
patterns (18).

Abbreviations: BMI, body mass index; CI, confidence interval; FDR, false discovery 

rate; HR, hazard ratio; ICD-10, the International Classification of Diseases, tenth 

revision; IQR, interquartile range; SSB, sugar-sweetened beverage; TDI, Thomson 

deprivation index; UKB, UK Biobank; VIF, variance inflation factor; WHO, World 

Health Organization.
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We adjusted each carbohydrate type for total energy intake using 
the residual method (19). Specifically, we fitted a linear regression 
model with each carbohydrate type as the dependent variable and total 
energy intake as the independent variable. The resulting residuals 
capture the variation in carbohydrate intake that is independent of 
total energy intake. All carbohydrate variables used in the subsequent 
analyses are based on these energy-adjusted values to account for the 
effect of total energy intake on nutrient consumption.

Assessment of outcome

Data on individuals’ cancer outcomes were obtained from the UK 
national cancer registry.1 Our study outcomes included overall cancer 
and site-specific cancers. Based on the World Health Organization’s 
(WHO) list of prevalent cancer types,2 we selected the most common 
cancer types for analysis. Following the approach of previous studies 
(20, 21), we  included specific cancer types with more than 100 
incident cases during the follow-up. Non-melanoma skin cancer was 

1 https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=100092

2 https://gco.iarc.who.int

excluded from the overall cancer analysis due to incomplete 
registration and inconsistent recording practices, as it is common, 
typically non-fatal, and often managed outside major cancer registries 
(22–24). As a result, the final analyses encompassed overall cancer 
(excluding non-melanoma skin cancer) and 21 site-specific cancers 
(including head and neck, esophageal, stomach, colorectal, liver, 
gallbladder, pancreas, lung, melanoma of skin, mesothelioma, breast, 
corpus uteri, ovary, prostate, kidney, bladder, brain and central 
nervous system, thyroid, non-Hodgkin lymphoma, multiple myeloma, 
and leukaemia), with the corresponding diagnostic ICD-10 codes 
shown in Supplementary Table S1. The follow-up period was 
determined by measuring the time from the date of baseline 
recruitment to the first outcome diagnosis, death, loss to follow-up, or 
the end of follow-up (June 1, 2022), whichever occurred first.

Covariates

According to previous studies, we selected covariates including 
age at recruitment, sex, ethnicity, Townsend Deprivation Index (TDI), 
education, smoking status, alcohol drinking status, body mass index 
(BMI), physical activity, energy-adjusted protein intake, and energy-
adjusted fat intake (8, 25). TDI was used to gauge socioeconomic 
status, which integrates four indicators: household overpopulation, 

FIGURE 1

The inclusion and exclusion process of participants in this study. ICD-10, the International Classification of Diseases, tenth revision.
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unemployment, and non-ownership of a vehicle or home. We classified 
participants into three tiers based on TDI tertiles, where tertile 1 (T1) 
group represents the least deprived population and tertile 3 (T3) 
group represents the most deprived population (26). Weight (in 
kilograms, kg) divided by height (in meters, m) squared yields the 
BMI (kg/m2). A person was considered to be physically active if he/
she completed a weekly commitment of 150 min of moderate activity 
or 75 min of intense exercise, or if he/she engaged in vigorous exercise 
once a week or moderate exercise 5 days a week (27).

Statistical analysis

R software version 4.4.1 was used for all statistical analyses. 
Categorical variables were reported as counts (percentages) and 
compared with Chi-square tests, whereas continuous variables were 
expressed as medians (interquartile ranges, IQRs) and compared using 
Mann–Whitney U tests. The relationships of energy-adjusted 
carbohydrates with the incidence of overall cancer and 21 site-specific 
cancers were examined using the Cox proportional hazards model. 
Model 1 was adjusted for age at recruitment and sex (not adjusted in 
prostate, breast, corpus uteri, and ovary cancer analyses) and model 2 
was further adjusted for ethnicity, TDI, education, smoking status, 
alcohol drinking status, BMI, physical activity, energy-adjusted 
protein intake, and energy-adjusted fat intake. To evaluate the 
potential for multicollinearity, we calculated the variance inflation 
factors (VIF) for all variables in each carbohydrate analysis. These 
results indicated that all VIF values were below 5, suggesting no 
substantial multicollinearity. The false discovery rate (FDR) approach 
was utilized to correct the p-values of the associations of each IQR 
increase in carbohydrate intake with the risk of overall cancer and 21 
site-specific cancers. For the statistically significant associations of 
carbohydrates with cancer that were noted in the above analyses 
(FDR-p < 0.05), further stratified analyses were performed by age at 
recruitment (<60 or ≥60) and sex (male or female). The heterogeneity 
between the different strata was evaluated using Cochran’s Q tests 
(meta R package). Sensitivity analyses in this study included: (1) 
eliminating those who were diagnosed with any cancer (ICD-10 
codes: C00-C97, excluding C44) within the first 2 years of the 
follow-up; (2) limiting participants to those with typical diet 
throughout 24-h dietary evaluations; (3) executing multiple 
imputations for missing covariates using the mice R package, and 
reanalyzing the relationships of energy-adjusted carbohydrates with 
the incidence of overall cancer and various types of cancers; (4) 
additionally adjusting for prevalent hypertension (ICD-10 codes: 
I10-I13, I15), diabetes (ICD-10 codes: E10-E14), and dyslipidemia 
(ICD-10 code: E78); (5) additionally adjusting for overall fruit, 
vegetable, and processed meats intake.

Results

Baseline characteristics

A total of 19,990 incidences of cancer were recorded with a 
median follow-up of 12.8 years, with 10,530 (52.7%) occurring in 
males and 9,460 (47.3%) in females. Table 1 shows the baseline 
characteristics of the study participants. Compared to those 

without cancer, cancer cases were more likely to be men and older, 
predominantly White, and from more affluent backgrounds (with 
a greater proportion of “Low TDI” and “Medium TDI” and lower 
proportions of “High TDI”). However, they exhibited lower 
educational attainment, with a higher proportion holding 
vocational qualifications and a lower proportion with any school 
degree or higher degree. Additionally, cancer cases were more 
prone to smoking and alcohol use, had a higher BMI, and were 
physically inactive.

In terms of dietary intake, compared to participant without 
cancer, cancer cases consumed more energy and energy-adjusted 
lactose, but fewer energy-adjusted total carbohydrates, energy-
adjusted starch and energy-adjusted other sugars (all p < 0.05), more 
details are shown in Supplementary Table S2.

Primary analyses

Regarding the relationships between energy-adjusted 
carbohydrates per IQR increase and the risk of cancer at overall and 
21 site-specific cancers, 54 associations were statistically significant, 
and 21 remained significant after FDR adjustment (Figure 2). To 
be specific, the energy-adjusted total carbohydrates was linked to a 
reduced risk of esophageal cancer [HR per IQR increase (95% CI): 0.82 
(0.71, 0.94); PFDR: 0.049] but an elevated risk of non-Hodgkin 
lymphoma [HR per IQR increase (95% CI): 1.18 (1.07, 1.31); PFDR: 0.024]. 
Energy-adjusted starch was associated with a higher risk of 
mesothelioma [HR per IQR increase (95% CI): 1.40 (1.14, 1.72); PFDR: 
0.025]. Meanwhile, energy-adjusted fiber was associated with a 
reduced risk of overall cancer [HR per IQR increase (95% CI): 0.97 (0.96, 
0.99); PFDR: 0.045] and esophageal [HR per IQR increase (95% CI): 0.79 
(0.68, 0.91); PFDR: 0.024], colorectal [HR per IQR increase (95% CI): 0.92 
(0.87, 0.97); PFDR: 0.025], lung [HR per IQR increase (95% CI): 0.87 (0.81, 
0.94); PFDR: 0.014], and kidney cancer [HR per IQR increase (95% CI): 0.85 
(0.76, 0.94); PFDR: 0.031]. Energy-adjusted total sugars were linked to 
an increased risk of non-Hodgkin lymphoma [HR per IQR increase (95% 
CI): 1.18 (1.09, 1.29); PFDR: 0.008]. When we delved deeper into the 
categories of sugar, we found that energy-adjusted free sugars were 
tied to a higher risk of lung [HR per IQR increase (95% CI): 1.12 (1.05, 
1.19); PFDR: 0.024] and kidney cancer [HR per IQR increase (95% CI): 1.15 
(1.05, 1.26); PFDR: 0.039], and non-free sugars appeared to offer a 
protective effect, associating with a reduced risk of overall cancer 
[HR per IQR increase (95% CI): 0.97 (0.95, 0.99); PFDR: 0.031] as well as 
specific cancers, including colorectal [HR per IQR increase (95% CI): 0.89 
(0.84, 0.94); PFDR: 0.006] and lung cancer [HR per IQR increase (95% CI): 
0.86 (0.79, 0.93); PFDR: 0.014]. Additionally, energy-adjusted fructose 
[HR per IQR increase (95% CI): 0.84 (0.77, 0.91); PFDR: 0.006] and glucose 
[HR per IQR increase (95% CI): 0.86 (0.79, 0.94); PFDR: 0.014] intake 
corresponded to a lower risk of lung cancer. Energy-adjusted lactose 
was linked to a reduced risk of colorectal cancer [HR per IQR increase (95% 
CI): 0.91 (0.87, 0.96); PFDR: 0.024]. On the flip side, energy-adjusted 
maltose intake was related to an increased risk of lung cancer [HR 
per IQR increase (95% CI): 1.05 (1.02, 1.09); PFDR: 0.048] but a slightly 
reduced risk of prostate cancer [HR per IQR increase (95% CI): 0.97 (0.96, 
0.99); PFDR: 0.025]. Finally, energy-adjusted sucrose was associated 
with an elevated risk of both lung cancer [HR per IQR increase (95% CI): 
1.10 (1.04, 1.17); PFDR: 0.024] and non-Hodgkin lymphoma 
[HR per IQR increase (95% CI): 1.15 (1.07, 1.23); PFDR: 0.008]. Detailed HRs 
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with 95% CIs for the associations across quartiles are presented in 
Supplementary Table S3.

Stratified analyses and sensitivity analyses

In the secondary analyses, we conducted stratified analyses on the 
significant associations identified in the primary analyses (Figures 3, 
4). We observed heterogeneity in the associations between fiber and 
non-free sugars with overall cancer and gastrointestinal cancer across 

different age and sex strata (all P heterogeneity < 0.05). Specifically, for fiber, 
the protective effect of increased intake against overall cancer was 
significant only in individuals over the age of 60, with estimates of HR 
per IQR increase (95% CI): 1.02 (0.99, 1.05) for those under 60 years and HR 
per IQR increase (95% CI): 0.97 (0.95, 1.00) for those 60 years and older 
(P heterogeneity = 0.010). Similarly, the protective effect against esophageal 
cancer was significant only in individuals over 60, showing HR per IQR 

increase (95% CI): 1.04 (0.82, 1.30) for those under 60 years versus HR per 

IQR increase (95% CI): 0.72 (0.60, 0.86) for those 60 years and older 
(P heterogeneity = 0.014). In addition, the inverse association between fiber 

TABLE 1 Baseline characteristics of the study population.

Characteristics Overall Incident cancer eventsa No cancer participants

Number 194,388 19,990 174,398

Age at recruitment (years), median 

(IQR)
57.00 (50.00, 62.00) 61.00 (55.00, 65.00) 56.00 (49.00, 62.00)

Sex, N (%)

  Female 106,371 (54.7) 9,460 (47.3) 96,911 (55.6)

  Male 88,017 (45.3) 10,530 (52.7) 77,487 (44.4)

Ethnicity, N (%)

  White 185,957 (95.7) 19,392 (97.0) 166,565 (95.5)

  Others 8,431 (4.3) 598 (3.0) 7,833 (4.5)

TDI, N (%)

  Low 69,784 (35.9) 7,406 (37.0) 62,378 (35.8)

  Medium 66,716 (34.3) 6,975 (34.9) 59,741 (34.3)

  High 57,888 (29.8) 5,609 (28.1) 52,279 (30.0)

Education, N (%)b

  Vocational qualification 10,560 (5.4) 1,271 (6.4) 9,289 (5.3)

  Any school degree 74,245 (38.2) 7,134 (35.7) 67,111 (38.5)

  Higher degree 93,766 (48.2) 9,393 (47.0) 84,373 (48.4)

  None of the preceding groups 15,817 (8.1) 2,192 (11.0) 13,625 (7.8)

Smoking status, N (%)

  Never 110,387 (56.8) 9,944 (49.7) 100,443 (57.6)

  Previous 68,803 (35.4) 8,207 (41.1) 60,596 (34.7)

  Current 15,198 (7.8) 1,839 (9.2) 13,359 (7.7)

Alcohol drinking status, N (%)

  Never 6,074 (3.1) 560 (2.8) 5,514 (3.2)

  Previous 5,771 (3.0) 637 (3.2) 5,134 (2.9)

  Current 182,543 (93.9) 18,793 (94.0) 163,750 (93.9)

BMI (kg/m2), N (%)

  <25 73,256 (37.7) 6,561 (32.8) 66,695 (38.2)

  25–29.9 80,777 (41.6) 8,844 (44.2) 71,933 (41.2)

  ≥30 40,355 (20.8) 4,585 (22.9) 35,770 (20.5)

Physical activity, N (%)

  No 38,530 (19.8) 4,151 (20.8) 34,379 (19.7)

  Yes 155,858 (80.2) 15,839 (79.2) 140,019 (80.3)

BMI, body mass index; ICD-10, the International Classification of Diseases, tenth revision; IQR, interquartile range; TDI, Thomson deprivation index.
aIncident cancer events refer to any cancers that occurred during the follow-up period (ICD-10 codes: C00-C97, excluding C44).
bVocational qualification (NVQ, HND, HNC, or equivalent), Any school degree (A level, AS level, O level, GCSE, CSE, or equivalent), Higher degree (college, university, or professional degree 
or qualification).
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intake and colorectal cancer risk was considerable only in men, with 
estimates of HR per IQR increase (95% CI): 1.03 (0.95, 1.12) for females and 
HR per IQR increase (95% CI): 0.85 (0.79, 0.91) for males (P heterogeneity = 0.001). 
For non-free sugars, increased consumption was linked to a decreased 
risk of colorectal cancer, but this effect was significant only in 
individuals over 60, with estimates of HR per IQR increase (95% CI): 1.02 
(0.93, 1.12) for those under 60 years and HR per IQR increase (95% CI): 0.86 
(0.80, 0.93) for those 60 years and older (P heterogeneity = 0.003). This 
association was significant in males, showing HR per IQR increase (95% CI): 
0.97 (0.89, 1.06) for females and HR per IQR increase (95% CI): 0.84 (0.78, 

0.90) for males (P heterogeneity = 0.014). Furthermore, higher non-free 
sugar intake was associated with a lower overall cancer risk in those 
over 60, while it increased the risk in those under 60, with estimates 
of HR per IQR increase (95% CI): 1.05 (1.02, 1.08) for those under 60 years 
and HR per IQR increase (95% CI): 0.96 (0.94, 0.99) for those 60 years and 
older (P heterogeneity < 0.001).

In sensitivity analysis, the association between carbohydrates 
and the risk of overall cancer and the 21 site-specific cancers 
identified in the main analyses did not significantly alter after 
eliminating those who were diagnosed with any cancer within the 

FIGURE 2

Associations between dietary carbohydrates per interquartile range increase and the risk of overall and site-specific cancers, with hazard ratios 
displayed only for FDR-adjusted significant associations. aAll carbohydrates were adjusted for total energy intake. Models were adjusted for age at 
recruitment, sex (not adjusted in prostate, breast, corpus uteri, and ovary cancer analyses), ethnicity, TDI, education, smoking status, alcohol drinking 
status, BMI, physical activity, energy-adjusted protein intake, and energy-adjusted fat intake. Red point indicates a positive association between 
carbohydrates and cancer risk, with darker shades representing stronger associations. Blue point indicates a negative association between 
carbohydrates and cancer risk, with darker shades also representing stronger associations. BMI, body mass index; FDR, false discovery rate; HR, hazard 
ratio; TDI, Thomson deprivation index.
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FIGURE 3

Stratified analyses of the associations between dietary carbohydrates per interquartile range increase and the risk of overall cancer and different types 
of cancers by age at recruitment. aAll carbohydrates were adjusted for total energy intake, and the significant associations between dietary 
carbohydrates and specific cancers observed in the main analyses were further analyzed in the stratified analyses. bAdjusted for sex, ethnicity, TDI, 
education, smoking status, alcohol drinking status, BMI, physical activity, energy-adjusted protein intake, and energy-adjusted fat intake. BMI, body 
mass index; CI, confidence interval; HR, hazard ratio; IQR, interquartile range; TDI, Thomson deprivation index.

FIGURE 4

Stratified analyses of the associations between dietary carbohydrates per interquartile range increase and the risk of overall cancer and different types 
of cancers by sex. aAll carbohydrates were adjusted for total energy intake, and the significant associations between dietary carbohydrates and specific 
cancers observed in the main analyses were further analyzed in the stratified analyses. bAdjusted for age at recruitment, ethnicity, TDI, education, 
smoking status, alcohol drinking status, BMI, physical activity, energy-adjusted protein intake, and energy-adjusted fat intake. BMI, body mass index; CI, 
confidence interval; HR, hazard ratio; IQR, interquartile range; TDI, Thomson deprivation index.
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first 2 years of the follow-up, executing multiple imputations for 
missing covariates or additionally adjusted for prevalent diseases 
(hypertension, diabetes, and dyslipidemia). When the analyses 
were further restricted to participants with typical diets during the 
24-h dietary assessments, the positive association between starch 
intake and mesothelioma risk persisted with a similar effect size, 
although the p value approached borderline statistical significance. 
Furthermore, after additionally adjusting for overall fruit, 
vegetable, and processed meats intake, the inverse associations 
between fiber, non-free sugars, and overall cancer risk were no 
longer statistically significant; however, their direction and 
magnitude remained largely consistent. Importantly, the 
associations for other significant carbohydrate-cancer pairs 
remained stable, further reinforcing the robustness of our main 
findings (Supplementary Table S4).

Discussion

In this investigation, we  explored the relationship between 
carbohydrates and the risk of both overall cancer and 21 site-specific 
cancers in 194,388 participants from the UKB. In two or more distinct 
cancer sites, larger intakes of dietary fiber and non-free sugars were 
consistently associated with a decreased risk, while larger intakes of 
free sugar and sucrose were consistently associated with an 
increased risk.

In light of our findings, higher intake of fiber was linked to a lower 
risk of overall cancer, and particular types including esophageal, 
colorectal, lung, and kidney cancers. Previous research has 
demonstrated the protective effect of fiber against several cancers (28). 
A prospective study investigating the link between fiber intake from 
various sources and cancer risk indicated that consuming fiber was 
linked to a lower incidence of overall cancer, esophageal, lung, and 
kidney cancer (11), which is aligning with our observations. Previous 
meta-analyses also found consistent associations between higher fiber 
intake and reduced risks of esophageal (29), renal cell cancers (30) and 
colorectal cancer (31). Compared to other cancers, the association 
between fiber intake and colorectal cancer is the most commonly 
reported. One important mechanism is that higher consumption of 
fiber enhances the production of butyrate by gut microbiota. This 
short-chain fatty acid is essential for causing apoptosis and preventing 
the development of cancer cells, thereby potentially lowering 
colorectal cancer risk. Moreover, butyrate also exerts anti-
inflammatory effects, further reinforcing its protective role in 
colorectal cancer prevention (32). In addition, fiber in the gut can 
increase stool bulk, reduce colonic transit time, influence prebiotic 
effects, and regulate bile acid concentrations in the stool, all of which 
are suggested to play a role in colorectal carcinogenesis (33). The main 
dietary sources of fiber are whole grains, vegetables, and fruits, which 
also contain a wealth of protective minerals and vitamins against 
colorectal cancer. Interestingly, our study also found that non-free 
sugars were associated with a decreased risk of overall cancer, as well 
as colorectal and lung cancers. Non-free sugars are also abundant in 
fruits and vegetables, suggesting that fiber, non-free sugars, and 
protective minerals and vitamins may have a synergistic protective 
effect against colorectal cancer. Additionally, our study revealed that 
non-free sugars were linked to a decreased risk of overall cancer and 
lung cancer. Previous epidemiological evidence supports the notion 

that fruits and/or vegetables lower the risk of overall cancer and 
various types of cancer, including lung, colorectal, breast cancers, as 
well as prostate cancer (34, 35). However, current research on the 
relationship between non-free sugars and cancer, along with the 
underlying mechanisms, is still limited, warranting further  
investigation.

In contrast to non-free sugars, our findings indicate that 
consuming free sugars is associated with an increased risk of lung and 
kidney cancer. According to the WHO, sugar-sweetened beverages 
(SSBs) are defined as all beverages containing free sugars (36), which 
are the primary dietary source of free sugars (37). Several studies have 
specifically linked SSB consumption to a higher risk of kidney cancer 
(38, 39), while evidence for lung cancer remains limited. The potential 
carcinogenic mechanisms of free sugars may involve multiple 
pathways. First, excessive free sugar intake can lead to obesity, a well-
established risk factor for cancer (37). Obesity is associated with 
chronic inflammation, characterized by elevated levels of 
inflammatory cytokines, which can promote cancer development 
through their pro-inflammatory and pro-tumorigenic effects (40). 
Additionally, frequent consumption of free sugars can cause rapid 
postprandial blood glucose spikes, increasing oxidative stress and 
promoting the formation of DNA-damaging reactive oxygen species 
(41), potentially contributing to the initiation and progression of 
cancer. Moreover, free sugars are often associated with lower-quality 
diets and reduced micronutrient intake (42), which may further 
compromise immune function and increase susceptibility to 
cancer (43).

Our research also suggests that higher sucrose intake may 
be associated with an increased risk of lung cancer. This observation 
aligns with a prior case–control study that identified a similar 
association between sucrose consumption and lung cancer risk (44). 
In parallel, animal studies using Lewis lung carcinoma models have 
demonstrated that high-sucrose diets can promote tumor growth 
and metastasis, potentially through an imbalance characterized by 
increased pro-angiogenic factors and decreased anti-angiogenic 
factors (45). Additionally, in mouse breast cancer models, sucrose-
rich diets have been found to upregulate 12-lipoxygenase (12-LOX) 
and its arachidonic acid metabolite 12-hydroxy-5Z,8Z,10E,14Z-
eicosatetraenoic acid (12-HETE), which have been linked to 
increased cancer cell invasiveness and metastatic potential (46). 
Collectively, these findings suggest that the pro-tumor effects of 
sucrose may involve both angiogenic and inflammatory pathways, 
underscoring the need for further research to clarify these 
mechanisms in the context of other cancers, such as 
non-Hodgkin lymphoma.

Evidence from our study suggests that a potential inverse 
association between maltose intake and prostate cancer risk, but a 
positive association with lung cancer risk. Previous studies examining 
the relationship between maltose intake and cancer risk have also 
produced mixed results, with one case–control study from Iran 
reporting a positive association between maltose intake and colon 
cancer risk (47), while a cross-sectional study from Japan found no 
such relationship (48). Additionally, we observed that higher intakes 
of glucose and fructose were associated with a lower risk of lung 
cancer, while greater lactose consumption was linked to a reduced 
incidence of colorectal cancer. Review evidence on the relationship 
between dietary sugars with different chemical structures and various 
cancer risks remains unclear, with some studies yielding conflicting 
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findings (49), underscoring the need for further research to clarify 
these associations.

We observed that the inverse association between dietary fiber, 
non-free sugars, and colorectal cancer risk was significant only in 
men, while the associations in women were not statistically 
significant. This sex-specific difference may be  influenced by 
variations in gut microbiota composition and hormonal factors. 
Experimental study has shown that male mice exhibit more 
pronounced shifts in gut microbiota composition in response to 
fiber-rich diets compared to female mice, particularly marked by 
an increase in fiber-fermenting bacteria such as Proteus and 
Lactobacillus (50). These bacteria produce short-chain fatty acids 
(51), which inhibit NF-κB activation and reduce pro-inflammatory 
cytokine expression (52), thereby potentially slowing or preventing 
tumor progression. This enhanced microbial capacity for fiber 
metabolism in males may contribute to the stronger protective 
effects observed in our study. In contrast, higher estrogen levels in 
women may obscure the protective effects of dietary fiber. Estrogen 
can activate estrogen receptor beta (ERβ/ESR2) in the colon, 
promoting apoptosis and reducing polyp formation, thereby 
inhibiting the early stages of colorectal carcinogenesis through 
mechanisms that might overlap with those of dietary fiber (53). 
This natural hormonal protection provided by estrogens may 
partially obscure the additional benefits of dietary fiber and 
non-free sugars in women, potentially explaining the observed 
sex-specific differences.

Additionally, the observed age-related heterogeneity in the 
effects of fiber and non-free sugars may reflect differences in dietary 
habits and physiological responses associated with aging. Older 
adults often have better overall diet quality (54) and longer 
cumulative exposure to dietary fiber and non-free sugars, which can 
contribute to maintaining gut microbiota balance and reducing 
chronic inflammation, thereby potentially lowering cancer risk. 
However, aging is also accompanied by immune senescence and 
chronic low-grade inflammation, partly driven by the accumulation 
of senescent cells and age-related gut microbiota dysbiosis (55, 56). 
These age-related changes can impair intestinal barrier function and 
increase systemic inflammation, creating a more vulnerable 
physiological environment. In this context, a diet rich in fiber or 
non-free sugars may help mitigate these adverse effects by 
promoting beneficial gut bacteria and reducing inflammation, 
potentially contributing to a stronger inverse association with 
overall and colorectal cancer risk in older adults compared to their 
younger counterparts.

The most recent WCRF/AICR recommendations emphasize that 
dietary and lifestyle patterns should prioritize fruit and vegetable 
consumption, as well as fiber-containing foods for overall cancer 
prevention (57). Our current research findings support this, showing 
that energy-adjusted fiber intake is associated with a reduced risk of 
overall cancer. Additionally, non-free sugars, with fruits being an 
important source, were linked to a lower risk of overall cancer. 
However, the WCRF/AICR recommendations for breast and 
colorectal cancer suggest limiting SSBs, which are a major source of 
free sugars. In our study, we did not find a significant association 
between free sugars and breast or colorectal cancer. Instead, 
we observed a link between free sugars and an increased risk of lung 
and kidney cancers. This conclusion requires further validation in 
larger cohorts with diverse dietary characteristics.

There are several advantages to this study. First, it used a design 
of a large-scale prospective cohort study, providing stronger evidence 
for causal associations. Moreover, it comprehensively assessed the 
relationships between various types of carbohydrates and multiple 
cancer types, thus allowing for a more thorough exploration of diet 
influences on cancer risk. However, this study also has some 
limitations. First, although a prospective study design was employed, 
it remains an observational study, and therefore, its causal 
relationships need further validation through approaches such as 
randomized controlled trials. Second, self-reported dietary data are 
vulnerable to various information biases, including recall bias, where 
participants may inaccurately remember their food intake, especially 
for infrequently consumed items (e.g., snacks); reporting bias, as 
individuals with obesity or chronic diseases might systematically 
misreport their energy intake; and errors in portion size 
measurement. Additionally, 24-h recall may not fully capture habitual 
intake. These biases can introduce a risk of misclassification, 
potentially weakening or strengthening the observed associations 
between exposure and outcome. In the current study, to address these 
biases, we  excluded extreme energy reporters during participant 
selection. To estimate exposure factors, we  aggregated multiple 
assessments to better approximate habitual intake. During data 
analysis, we  conducted sensitivity analyses by restricting the 
population to those whose 24-h dietary recalls aligned with their 
usual eating habits, ensuring that the results remained consistent with 
the main analysis. In future studies, incorporating more refined 
dietary assessments, alongside objective biomarkers, may help further 
reduce these biases and improve the accuracy of dietary exposure 
estimates. Third, participants may have experienced changes in their 
dietary habits during the follow-up period; however, the UKB did not 
assess dietary intake during this time. As a result, this could introduce 
bias into the estimates of the relationship between carbohydrates and 
the outcomes in this study. Fourthly, the UKB cohort is subject to a 
“healthy volunteer” selection bias, which may have implications for 
external validity. Specifically, individuals with severe health 
conditions or lower socioeconomic status are less likely to participate, 
leading to representativeness issues in the study population. If there 
are significant differences in the distribution of exposure factors and 
other important confounders between participants in the UKB and 
the general population in the UK, it could potentially lead to 
inaccurate estimates of true disease risks and limit the generalizability 
of the conclusions. Fifthly, the study participants were predominantly 
White British. Due to significant dietary cultural differences among 
various regions, the types and amounts of carbohydrate intake vary. 
For example, in Mediterranean diets, whole grain bread is 
predominant at every meal. In contrast, East Asian diets are 
characterized by high rice consumption, which serves as the primary 
source of carbohydrates. Additionally, there are significant differences 
in recommended carbohydrate intake across different countries, 
which may also influence people’s choices regarding daily 
carbohydrate consumption and types. For instance, Canada has the 
most lenient guideline for added sugars (“maximum intake ≤25% of 
total energy”), while the strictest recommendations come from the 
UK (“free sugars: 5% of total energy”) (58). In the future, it will 
be necessary to further validate these conclusions in populations with 
diverse dietary features. Lastly, this study may also have residual 
confounding that was not adjusted for, such as glycemic index 
(data unavailable).
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Conclusion

Increased consumption of dietary fiber and non-free sugars is 
associated with a reduced risk of certain cancers (e.g., overall cancer, 
esophageal, colorectal, lung, and kidney cancers), potentially due to their 
anti-inflammatory effects, short-chain fatty acid production, and other 
protective mechanisms. In contrast, higher intakes of free sugars and 
sucrose are associated with an elevated risk (e.g., lung, kidney cancer, and 
non-Hodgkin lymphoma), which may be attributed to inflammation and 
oxidative stress.
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