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Background: Serum neurofilament light chain (sNfL) is a promising blood-

based biomarker for detecting neuroaxonal injury, with elevated levels observed

in various neurological disorders. While polyunsaturated fatty acids (PUFAs)

have been linked to favorable neurological outcomes, the relationship between

dietary PUFAs intake and sNfL levels remains unclear. This study aimed

to investigate the association between PUFAs intake and sNfL levels in

American adults.

Methods: A cross-sectional study was conducted using data from the National

Health and Nutrition Examination Survey (NHANES) 2013–2014. Multivariable

regression analyses were applied to examine the associations between individual

PUFA, omega-3 PUFAs, omega-6 PUFAs, and omega-6/omega-3 ratio and

sNfL levels. Restricted cubic spline (RCS) models were used to assess potential

non-linear relationships. The overall e�ect of PUFAs mixtures on sNfL was

assessed using quantile g-computation (QGC), while weighted quantile sum

(WQS) regression was applied for sensitivity analysis.

Results: A total of 1,109 eligible participants were included in the study.

Alpha-linolenic acid (ALA), linoleic acid (LA), docosahexaenoic acid (DHA),

docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA) were inversely

associated with sNfL levels after adjusting for all covariates. Omega-3 and

omega-6 PUFAs were negatively associated with sNfL, whereas the omega-

6/omega-3 ratio was positively associated with sNfL. Findings from WQS and

QGC analyses further supported an inverse association between PUFA mixtures

and sNfL levels.

Conclusion: This study indicates that PUFAs intake is associated with decreased

levels of sNfL, suggesting a potential association with reduced neuroaxonal

injury. Further studies are needed to validate these findings and explore the

biological pathways.
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Introduction

Neurofilament light chain (NfL) is a neuron-specific

cytoskeletal protein predominantly found in myelinated axons

(1). Studies have shown that when axons are damaged or neurons

degenerate, NfL is released from cells into extracellular fluid

and eventually enters the blood circulation. Studies have shown

that when nerve damage or neuronal degeneration occurs,

NfL fragments are released into the extracellular fluid and

enter the blood and cerebrospinal fluid (CSF) (2, 3). In recent

years, serum neurofilament light chain (sNfL) has become an

important biomarker for the assessment of nerve injury and

neurodegenerative diseases (4, 5). The increased levels of sNfL

have been observed to be associated with an elevated risk of

onset of a variety of nervous system diseases, including multiple

sclerosis (MS), Parkinson’s disease (PD), Alzheimer’s disease

(AD), and traumatic brain injury (6–9). In addition, sNfL is

thought to be involved in the accumulation of neuronal damage

during the normal aging process, and its levels can increase

with age (10). Despite the importance of sNfL in the study of

neurodegenerative diseases and nerve injury, few studies have

explored the environmental and dietary factors that influence

its levels.

Dietary factors play an important role in human health (11, 12).

Polyunsaturated fatty acids (PUFAs) are essential fatty acids in

the body, which have physiological functions such as maintaining

the structure of cell membranes, regulating neurotransmitters,

and inflammatory responses (13). PUFAs can be classified into

omega-3 and omega-6 PUFAs according to their carbon chain

structure and double bond position (14). The consumption of

omega-6 PUFAs, which are primarily derived from vegetable oils,

seeds, and meat, has been demonstrated to decrease low-density

lipoprotein cholesterol levels in the blood, thereby contributing to a

reduction in cardiovascular mortality (15, 16). The primary sources

of omega-3 PUFAs include deep-sea fish, nuts, and algae (17).

Omega-3 polyunsaturated fatty acids have many health benefits,

including enhanced visual and brain development in the fetus,

and are associated with reduced risk of rheumatoid arthritis,

obesity, diabetes, metabolic syndrome, cardiovascular disease, and

other diseases (18–21). In addition, omega-3 PUFAs have been

demonstrated to possess anti-inflammatory and anti-oxidative

properties, with the capacity to modulate the synthesis and

release of pro-inflammatory mediators, thereby contributing to the

inhibition of neuroinflammation (22). Furthermore, maintaining

an appropriate balance between omega-6 and omega-3 PUFAs

intake is important for nervous system health (23).

Dietary factors play an important role in human health (12, 24).

In recent years, an increasing number of studies have focused

on the potential protective effects of PUFAs on the nervous

system. Studies have shown that higher PUFAs intake may be

associated with improved cognitive function and decreased risk of

major depression, AD, and PD (25–27). However, although intake

of PUFAs may protect neurons by reducing neuroinflammation

and oxidative stress, the specific association between PUFAs and

sNfL levels remains unclear. Current studies mainly focus on the

effects of PUFAs on cognitive function, but there is still a lack of

evidence on whether PUFAs can reduce neuronal axonal damage.

Furthermore, the effects of PUFAs on sNfL may vary depending

on individual characteristics (age, sex, ethnicity, etc.). Therefore,

further investigation of the relationship between PUFAs intake

and sNfL levels may provide new epidemiological evidence for the

potential association with reduced neuroaxonal injury.

To comprehensively evaluate the relationship between

individual and combined PUFA intake and sNfL levels, we

conducted a cross-sectional analysis based on data from the

National Health and Nutrition Examination Survey (NHANES),

a large and nationally representative dataset. The analysis was

rigorously adjusted for a wide range of confounding factors,

including demographic variables and health-related characteristics,

to enhance the validity and reliability of the findings.

Methods

Study population

This study extracted data spanning one NHANES cycle. A

total of 10,175 participants were initially considered from the

2013–2014 NHANES cohort. The following are the exclusion

criteria on participants: (1) non-adult participants (<20 years, N

= 4,406); (2) missing data on sNfL (N = 3,698); (3) missing data

on dietary PUFAs intake (N = 839); (4) missing data on other

variates including sex, age, race, education level, ratio of family

income to poverty (PIR), body mass index (BMI), alcohol drinking,

smoking status, blood high-density lipoprotein cholesterol (HDL-

C), blood total cholesterol (TC), serum creatinine (Scr), energy

intake, protein intake, diabetes, and cancer (N = 123). Finally, a

total of 1,109 participants were enrolled in the study (Figure 1).

Assessment of PUFAs intake

The estimation of PUFAs intake was conducted using dietary

data. The assessment of dietary intake was undertaken through

two non-consecutive 24-h dietary recall interviews, with the initial

interview conducted in person and the subsequent interview

conducted via telephone after 3–10 days. Nutrient intakes were

derived using the American Department of Agriculture’s Food and

Nutrient Database for Dietary Studies (FNDDS), which converts

reported food and beverage consumption into nutrient values,

including PUFAs intake.

A total of seven PUFAs were included in this study, including

linoleic acid (LA, 18:2), α-linoleic acid (ALA, 18:3), stearidonic

acid (SDA, 18:4), arachidonic acid (AA, 20:4), eicosapentaenoic

acid (EPA, 20:5), docosapentaenoic acid (DPA, 22:5), and

docosahexaenoic acid (DHA, 22:6). According to the classification

of previous studies, omega-3 PUFAs consists of five subtypes: ALA,

SDA, EPA, DPA, and DHA, while omega-6 PUFAs consists of

two subtypes: LA and AA (28). The total polyunsaturated fatty

acid (TPFA) was the sum of seven PUFAs. The average intake

from the two dietary recall days was calculated and used in the

statistical analyses.
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FIGURE 1

Flowchart of inclusion criteria for NHANES study participants (2005–2016).

Measurement of sNfL

Serum neurofilament light chain (sNfL) levels were measured

using a high-sensitivity chemiluminescence immunoassay

(Siemens Healthineers) on the fully automated Atellica system.

The assay employs acridinium ester-labeled antibodies and

paramagnetic particles for antigen detection, with signal

quantification based on chemiluminescence. All measurements

were conducted following standardized quality control procedures,

including routine analysis of low, medium, and high concentration

QC samples to ensure accuracy and reliability. Levels of sNfL

were measured from fasting blood samples collected at the Mobile

Examination Center (MEC) during the participants’ in-person

visit, coinciding with the first 24-h dietary recall.

Covariates

The selection of covariates was based on prior literature and

biological plausibility. Variables that may influence both PUFA

intake and sNfL levels, including demographics, socioeconomic

status, lifestyle behaviors, metabolic factors, and comorbidities

(e.g., diabetes, cancer), were included to control for potential

confounding. Demographic variables included sex (male or

female), age group (<50 or ≥50 years), race/ethnicity (Mexican

American, other Hispanic, non-Hispanic White, non-Hispanic

Black, and other racial groups), educational attainment (less than

high school, high school graduate, and college graduate), and

poverty income ratio (PIR), categorized as <1, 1–3, and >3.

Additional covariates included body mass index (BMI, kg/m²),

alcohol consumption (yes, no), smoking status (yes, no), blood

levels of high-density lipoprotein cholesterol (HDL-C, mg/dl) and

total cholesterol (TC, mg/dl), estimated glomerular filtration rate

(eGFR, ml/min), total energy intake (kcal), protein intake (g), as

well as diabetes status (yes, no, or borderline), and cancer (yes,

no). Estimated glomerular filtration rate was calculated using the

CKD-EPI 2009 equation based on age, sex, race, and Scr levels (29).

Statistical analyses

Continuous variables were summarized as means with

standard deviations (mean ± SD), whereas categorical variables

were reported as frequencies and corresponding percentages.

Group comparisons were performed using independent t-tests

for continuous variables and chi-square tests for categorical

variables. All statistical analyses incorporated the NHANES

complex sampling design. Specifically, the serum neurofilament

light chain 2-year subsample weights (WTSSNH2Y), along with

the corresponding strata and primary sampling units, were applied

to account for unequal probability of selection and to produce

nationally representative estimates.

Both serum neurofilament light chain concentrations and

PUFA intake were log10−transformed prior to analysis to improve

normality and reduce skewness. Weighted multivariable regression

analyses were employed to assess the association between

PUFA intake and sNfL levels, yielding beta coefficients with

corresponding 95% confidence intervals (CIs). Three models were

constructed: model 1 was unadjusted; model 2 accounted for sex,

age, race, and BMI; and model 3 further adjusted for all covariates.

A restricted cubic spline (RCS) regression was performed to

explore potential non-linear relationships between PUFA intake

and sNfL levels (30). To evaluate the overall association between

multiple PUFA exposures and sNfL, two statistical approaches were
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TABLE 1 Baseline characteristics of participants from NHANES 2013–2014.

Variables Serum neurofilament light chain (pg/ml) P-value

T1 (0.447–0.964)
N = 369

T2 (0.964–1.190)
N = 368

T3 (1.190–2.697)
N = 372

Sex (%) 0.023

Male 160 (43.48%) 195 (52.94%) 191 (51.28%)

Female 209 (56.52%) 173 (47.06%) 181 (48.72%)

Age (years) 35.37± 11.11 46.08± 13.82 54.02± 13.90 <0.001

Race (%) <0.001

Mexican American 50 (13.54%) 24 (6.39%) 21 (5.59%)

Other Hispanic 21 (5.79%) 22 (6.01%) 14 (3.70%)

Non-Hispanic White 210 (56.79%) 250 (67.93%) 279 (75.13%)

Non-Hispanic Black 61 (16.59%) 44 (12.02%) 40 (10.69%)

Other race 27 (7.29%) 28 (7.65%) 18 (4.89%)

Education level (%) 0.350

Under high school 62 (16.70%) 51 (13.90%) 52 (14.05%)

High school 78 (21.16%) 66 (17.94%) 84 (22.60%)

College graduate 229 (62.14%) 251 (68.16%) 236 (63.35%)

PIR 2.74± 1.62 3.07± 1.73 3.13± 1.67 0.003

BMI (kg/m2) 30.44± 8.03 29.08± 7.32 30.69± 8.23 0.012

TC (mg/dL) 187.03± 41.42 188.66± 38.56 191.93± 41.72 0.250

HDL (mg/dL) 52.44± 13.63 53.18± 14.96 55.08± 17.95 0.061

Scr (mg/dL) 0.81± 0.17 0.87± 0.18 0.94± 0.30 <0.001

eGFR (ml/min) <0.001

<60 1 (0.32%) 11 (3.08%) 32 (8.69%)

≥60 368 (99.68%) 357 (96.92%) 340 (91.31%)

Energy (kcal) 2,238.50± 759.10 2,214.00± 796.47 2,251.73± 850.31 0.811

Protein (gm) 88.30± 31.05 88.81± 34.08 88.84± 37.42 0.972

Alcohol drinking (%) 0.116

Yes 293 (79.51%) 300 (81.59%) 281 (75.46%)

No 76 (20.49%) 69 (18.41%) 91 (24.54%)

Smoking status (%) 0.002

Yes 134 (36.37%) 173 (46.93%) 180 (48.26%)

No 235 (63.63%) 195 (53.07%) 192 (51.74%)

Diabetes (%) <0.001

Yes 13 (3.45%) 25 (6.96%) 68 (18.24%)

No 342 (92.61%) 331 (89.90%) 293 (78.73%)

Borderline 14 (3.94%) 12 (3.14%) 11 (3.03%)

Cancer (%) <0.001

Yes 21 (5.63%) 33 (9.10%) 58 (15.65%)

No 348 (94.37%) 335 (90.90%) 314 (84.35%)

Fatty acids (mg)

TPFA 4.28± 0.20 4.25± 0.21 4.27± 0.21 0.153

Omega-6 4.22± 0.21 4.19± 0.21 4.22± 0.21 0.136

(Continued)
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TABLE 1 (Continued)

Variables Serum neurofilament light chain (pg/ml) P-value

T1 (0.447–0.964)
N = 369

T2 (0.964–1.190)
N = 368

T3 (1.190–2.697)
N = 372

LA (C18:2) 4.22± 0.21 4.19± 0.21 4.21± 0.21 0.134

AA (C20:4) 2.17± 0.23 2.16± 0.28 2.15± 0.29 0.788

Omega-3 3.28± 0.22 3.24± 0.22 3.25± 0.23 0.106

ALA (C18:3) 3.24± 0.22 3.20± 0.22 3.21± 0.23 0.126

SDA (C18:4) 0.57± 0.72 0.61± 0.71 0.51± 0.69 0.194

EPA (C20:5) 1.18± 0.53 1.18± 0.57 1.13± 0.55 0.425

DPA (C22:5) 1.35± 0.35 1.34± 0.34 1.31± 0.34 0.157

DHA (C22:6) 1.45± 0.68 1.50± 0.71 1.35± 0.71 0.015

Omega6/Omega3 9.19± 2.34 9.31± 2.69 9.66± 2.63 0.038

Values in this table were represented as mean ± SD or number (%). PUFAs intake and sNfL levels were log-transformed using base 10 logarithm. Bold values indicate statistical significance at

P < 0.05.

applied: quantile G-computation (QGC) and weighted quantile

sum (WQS) regression (31, 32). These advanced models allow

for the assessment of joint effects in exposure mixtures. Stratified

analyses were conducted based on sex and age (<50 vs.≥50 years).

In all analyses, PUFA intake served as the exposure variable, and

sNfL concentration was treated as the outcome.

All statistical analyses were performed using R software

and EmpowerStats.

Results

Baseline characteristics

This study encompassed 1,109 participants (47.52% male and

52.48% female) with an average age of 46.32 ± 15.19 years.

Participants were grouped according to the concentration of sNfL.

There were statistical differences between the three groups in terms

of sex, age, BMI, race, PIR, Scr, eGFR, smoking status, diabetes,

cancer, DHA, and omega-6/omega-3 ratio but not in terms of

education level, TC, HDL-C, energy intake, protein intake, alcohol

drinking, TPFA, omega-6 PUFAs, omega-3 PUFAs, LA, AA, ALA,

SDA, EPA, and DPA (Table 1). The overall correlation between

PUFAs intake was positive (Figure 2).

Association between PUFAs intake and sNfL

The results showed that intake of TPFA (β = −0.131, 95% CI:

−0.228, −0.035), omega-6 PUFAs (β = −0.117, 95% CI: −0.213,

−0.022), LA (β = −0.118, 95% CI: −0.213, −0.023), omega-3

PUFAs (β = −0.172, 95% CI: −0.252, −0.091), ALA (β = −0.134,

95% CI: −0.215, −0.054), EPA (β = −0.046, 95% CI: −0.074,

−0.018), DPA (β = −0.059, 95% CI: −0.110, −0.009), and DHA

(β = −0.051, 95% CI: −0.073, −0.028) were negatively associated

with sNfL after adjusting for all covariates. The omega-6/omega-

3 ratio was positively associated sNfL (β = 0.010, 95% CI: 0.004,

0.016). However, the association between AA and SDA and sNfL

was not statistically significant (Table 2). As a sensitivity analysis,

we reanalyzed the data by including participants with complete

information on PUFA intake, serum sNfL, and core covariates (sex,

age, race, and BMI), resulting in a sample size of 1,246 individuals.

The weighted multivariable regression analyses yielded results

consistent with the main findings, supporting the robustness of the

observed associations (Supplementary Table S1). RCS models were

employed to further investigate potential non-linear associations

between PUFA intake and sNfL levels. The analysis revealed

distinct threshold effects for certain PUFAs, notably SDA and AA

(Figure 3).

Association between mixed PUFAs intake
with blood lipids

The main results of the mixed effect by WQS regression

were consistent with QGC analyses. QGC analyses suggested

that mixed PUFAs intake were negatively associated with sNfL

(β = −0.030, 95% CI: −0.052, −0.008). AA contributed most

on the positive weights, while DHA contributed most on the

negative weights (Figure 4A). Using the lowest quartile of the PUFA

mixture as the reference group, a significant decreasing trend in

sNfL levels was observed with increasing concentrations of the

mixture (Figure 4B). Results from the WQS regression indicated

a negative association between mixed PUFA intake and sNfL

levels after adjustment for all covariates (β = −0.026, 95% CI:

−0.050, −0.002). Furthermore, WQS analysis identified AA as the

predominant contributor to the overall mixture effect, accounting

for 71.5% of the weight (Supplementary Figure S1A). Scatter plot

showed that PUFAs intake were negatively correlated with sNfL

(Supplementary Figure S1B).

Stratified analyses by sex and age

The analysis included a total of 527 males and 582 females.

Multivariable regression models demonstrated that the intake

of omega-3 PUFAs, ALA, and DHA was negatively associated
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FIGURE 2

Spearman correlation coe�cient plot. Correlation coe�cients (range: −1 to 1) are visualized by color intensity, indicating the strength of associations.

TABLE 2 Associations of PUFAs intake with sNfL.

Exposure Model 1 Model 2 Model 3

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

TPFA −0.051 (−0.132, 0.030) 0.219 −0.068 (−0.140, 0.004) 0.063 −0.131 (−0.228,−0.035) 0.008

Omega-6 −0.047 (−0.127, 0.033) 0.249 −0.060 (−0.131, 0.010) 0.095 −0.117 (−0.213,−0.022) 0.016

LA (C18:2) −0.047 (−0.127, 0.032) 0.243 −0.061 (−0.131, 0.010) 0.092 −0.118 (−0.213,−0.023) 0.015

AA (C20:4) −0.012 (−0.075, 0.051) 0.709 −0.003 (−0.059, 0.054) 0.925 −0.006 (−0.074, 0.062) 0.863

Omega-3 −0.077 (−0.151,−0.003) 0.042 −0.112 (−0.177,−0.047) <0.001 −0.172 (−0.252,−0.091) <0.001

ALA (C18:3) −0.067 (−0.141, 0.007) 0.078 −0.084 (−0.149,−0.019) 0.012 −0.134 (−0.215,−0.054) 0.001

SDA (C18:4) −0.003 (−0.027, 0.020) 0.776 −0.012 (−0.032, 0.009) 0.263 −0.013 (−0.034, 0.008) 0.227

EPA (C20:5) −0.025 (−0.056, 0.005) 0.105 −0.046 (−0.073,−0.020) <0.001 −0.046 (−0.074,−0.018) 0.002

DPA (C22:5) −0.052 (−0.101,−0.003) 0.036 −0.057 (−0.100,−0.014) 0.009 −0.059 (−0.110,−0.009) 0.021

DHA (C22:6) −0.022 (−0.046, 0.002) 0.068 −0.047 (−0.067,−0.026) <0.001 −0.051 (−0.073,−0.028) <0.001

Omega6/Omega3 0.007 (0.000, 0.013) 0.040 0.010 (0.004, 0.016) <0.001 0.010 (0.004, 0.016) <0.001

Multivariable regression models assessing the associations between PUFAs intake and sNfL. Bold values indicate statistical significance at P < 0.05.

with sNfL in males, after adjusting for covariates. In contrast,

the intake of TPFA, omega-6 PUFAs, omega-3 PUFAs, and four

single PUFAs was negatively associated with sNfL in females.

The omega-6/omega-3 ratio was positively associated sNfL in

both male and female participants (Supplementary Table S2). The

QGC model showed that mixed PUFAs intake was negatively

associated with sNfL in females (β = −0.041, 95% CI: −0.075,

0.007, P= 0.019). However, no significant association was observed

in males (β = −0.013, 95% CI: −0.046, 0.021, P = 0.454;

Figures 5A, B).
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FIGURE 3

Non-linear relationships between PUFAs intake and sNfL by RCS. All covariates were adjusted in the RCS model.

Following the categorization of participants based on age, the

sample was divided into two groups: 620 individuals younger

than 50 years and 489 individuals older than or equal to 50

years. Multivariable regression models showed that TPFA, omega-

6 PUFAs, omega-3 PUFAs, LA, ALA, EPA, DPA, and DHA

exhibited a negative correlation with sNfL, after adjusting for

covariates, in the younger participants. The omega-6/omega-

3 ratio was positively associated sNfL. In contrast, only DHA

was negatively associated with sNfL in the older participants

(Supplementary Table S3). The QGC model revealed a negative

association between mixed PUFAs intake and sNfL in younger

participants (β = −0.042, 95% CI: −0.074, −0.010, P = 0.010),

while no significant association was observed in older participants

(β =−0.026, 95% CI:−0.064, 0.013, P = 0.195; Figures 5C, D).

Discussion

This study investigated the association between PUFAs intake

and sNfL levels in American adults using NHANES data. The

results demonstrated that higher intake of TPFA, omega-6

PUFAs, LA, omega-3 PUFAs, ALA, EPA, DPA, and DHA was
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FIGURE 4

Association between mixed PUFAs intake with sNfL by QGC

analyses. All covariates were adjusted in the QGC model. (A) E�ects

of individual PUFA intake on sNfL by QGC analyses. (B) Overall e�ect

of mixed PUFAs intake on sNfL by QGC analyses.

significantly associated with lower sNfL levels after adjusting for

all covariates. Conversely, a higher omega-6/omega-3 ratio was

positively associated with sNfL. Both the WQS and QGC models

further supported an inverse association between mixed PUFAs

intake and sNfL. Stratified analyses revealed that the strength of this

association varied across subgroups. These findings suggest that

PUFAs intake may contribute to lower sNfL levels, highlighting a

potential association with reduced neuroaxonal injury.

Previous studies have investigated the effects of PUFAs

supplementation on sNfL levels, particularly in neurodegenerative

diseases and inflammatory conditions, yieldingmixed results. Some

findings contrast with those of the present study. A randomized

controlled trial in AD patients (n = 33, treatment: n = 18,

placebo: n = 15) reported that 6 months of daily supplementation

with 2.3 g of omega-3 PUFAs led to a significant increase in

CSF NfL levels (P < 0.05), potentially indicating heightened

inflammatory activity and axonal damage, with no observed

correlation to cognitive function (33). Similarly, in amyotrophic

lateral sclerosis (ALS) patients, treatment with a deuterated linoleic

acid derivative showed no significant effect on plasma NfL levels

(34). Another study in American football athletes found that

DHA+EPA supplementation, despite increasing plasma fatty acid

levels, did not mitigate the rise in sNfL associated with repetitive

head impacts (35).

Conversely, several studies align with our findings. A

randomized, placebo-controlled trial in collegiate football players

(n = 81) evaluating DHA supplementation at doses of 2,

4, and 6 g/day over a competitive season found that DHA

intake increased plasma DHA in a dose-dependent manner and

likely attenuated NfL elevations, suggesting a neuroprotective

effect (36). Additionally, omega-3 supplementation in another

cohort of football athletes was associated with lower sNfL

levels compared to controls, reinforcing its potential role in

neuroprotection (37). These findings suggest that PUFAs intake

may contribute to lower sNfL levels, reinforcing its potential role

in neuroprotection.

The observed inverse association between PUFAs intake and

sNfL levels may be attributed to several biological mechanisms.

First, PUFAs, particularly omega-3 fatty acids (DHA and EPA),

are integral components of neuronal cell membranes and play a

crucial role in maintaining axonal integrity and synaptic plasticity.

DHA has been shown to enhance membrane fluidity, modulate

ion channel function, and support neurotrophic signaling, which

may help protect axons from degeneration (38, 39). Second, PUFAs

exert strong anti-inflammatory effects by reducing the production

of pro-inflammatory cytokines such as tumor necrosis factor-alpha

and interleukin-6 while promoting the synthesis of specialized pro-

resolving lipid mediators (40–42). These molecules have effects

in resolving neuroinflammation and mitigating secondary damage

to axons. In addition, PUFAs have antioxidant effects that may

counteract oxidative stress-induced neurotoxicity, which is a key

driver of axonal injury and neurofilament release (43, 44). Further

studies are required to explore the precise mechanism.

Stratified analysis revealed that the inverse association between

PUFAs intake and sNfL levels was significant in females, but

not in males. Several potential biological mechanisms may

underlie this sex-specific difference. Estrogen has been shown

to enhance neuroprotection by increasing DPA and DHA

uptake, promoting anti-inflammatory lipid mediator synthesis and

modulating neurotrophic signaling (45, 46). These effects may

amplify the beneficial impact of PUFAs intake on neuroaxonal

integrity in females. Sex differences in PUFAs metabolism could

also explain the observed results. Females generally exhibit higher

DPA and EPA to DHA conversion rates compared to males

(47). In addition, stratified analysis also revealed that the inverse

association between PUFAs intake and sNfL levels was significant in

individuals under 50 years old but not in those aged 50 and above.

Several factors may explain this age-related difference. Younger

individuals generally exhibit greater neuroplasticity and axonal

repair capacity, allowing PUFAs to exert stronger neuroprotective

effects by reducing inflammation, stabilizing axonal integrity, and

mitigating oxidative stress. In contrast, older individuals may have

accumulated chronic neurodegenerative changes, making dietary

interventions less effective in modulating sNfL levels (48–50).

Previous studies have shown that sNfL levels gradually increase

with the process of aging (10, 51). The higher sNfL level in the

elderly may make the decrease in sNfL level caused by PUFAs

intake insignificant.

The overall impact of PUFA intake on sNfL levels was assessed

using two complementary analytical approaches: WQS regression

and QGC analysis. Both methods consistently demonstrated an
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FIGURE 5

Association between mixed PUFAs intake with sNfL by QGC analyses in di�erent groups. All covariates were adjusted in the QGC model. (A) Overall

e�ect of mixed PUFAs intake on sNfL in males. (B) Overall e�ect of mixed PUFAs intake on sNfL in females. (C) Overall e�ect of mixed PUFAs intake

on sNfL in younger participants. (D) Overall e�ect of mixed PUFAs intake on sNfL in older participants.

inverse association between mixed PUFA intake and sNfL levels.

However, the contribution of individual PUFA subtypes to the

overall effect varied between the two techniques due to differences

in their underlying statistical frameworks (31, 32).

The QGC analysis accommodates both interaction effects

and non-linear relationships among exposures, thereby enhancing

the ability to detect the influence of specific PUFAs when such

complexities exist. In contrast, WQS regression utilizes a linear

weighting scheme to summarize the effects of multiple exposures,

which may limit its sensitivity to intricate patterns such as

non-linearity or inter-exposure interactions. As a result, certain

PUFA subtypes may exhibit greater apparent influence in QGC

analysis due to its superior capacity to identify these complex

associations that WQS regression might overlook. Furthermore,

WQS assumes a unidirectional effect of all exposures on the

outcome, favoring those whose impacts are consistent with the

overall trend. When some PUFAs exert effects in opposing

directions, WQS may downweight or omit them, potentially

obscuring their individual contributions. In contrast, QGC permits

each exposure to independently influence the outcome, offering

a more detailed assessment of the distinct effects associated with

each PUFA.

This study presents several notable strengths. First, it is the

first large-scale cross-sectional analysis to systematically examine

the association between PUFA intake and sNfL levels. Additionally,

advanced analytical approaches—specifically, the WQS and QGC

models—were employed to assess the combined effects of multiple

PUFAs. Moreover, sensitivity analyses using an alternative sample

with less stringent exclusion criteria yielded consistent results,

further supporting the robustness of the findings.

This study also has some limitations. Due to the cross-

sectional study design, it is only possible to demonstrate an

association between PUFAs intake and sNfL, rather than a

causal relationship. Another limitation is the potential for reverse

causation, as higher sNfL levels may reflect underlying neurological

conditions rather than dietary exposures. We were unable to fully

exclude individuals with undiagnosed or subclinical neurological

conditions. Furthermore, dietary PUFAs intake was assessed using

two non-consecutive 24-h dietary recalls, which may be subject

to within-person day-to-day variability within individuals and

may not fully capture participants’ habitual long-term intake.

While using the average of two recalls reduces random error

compared to a single-day recall, residual measurement error is

still likely to occur, which could weaken the observed associations.

A substantial proportion of participants were excluded due to

missing data on variables, resulting in a final analytic sample

representing ∼11% of the initial eligible population. This may

introduce selection bias, and the generalizability of our findings

may be limited to individuals with complete data. Additionally,

the data on sNfL is only available in the cycle of NHANES

2013–2014, which limits the completion of the analysis with the

latest data.
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Conclusion

This study demonstrates that PUFAs intake is associated

with decreased level of sNfL, suggesting a potential association

with reduced neuroaxonal injury. These findings underscore the

potential public health implications of PUFA intake and highlight

the importance of further research to elucidate the underlying

biological mechanisms and inform effective preventive strategies.
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