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Background: The human milk microbiota is one of the biologically active 
components of human milk, and factors affecting it and the effect size are not 
well understood. Assessments of human milk microbiota have mainly been done 
in small cohorts and/or in single geographical locations, and most have been 
restricted to the bacteriome. Here we assessed the bacterial, archaeal and fungal 
composition of human milk and the potential inter-kingdom interactions in milk 
collected from women living in a wide spectrum of countries, environments, 
and socio-economical settings.

Materials and methods: About 518 human milk samples were collected in 16 
countries. After DNA extraction, bacterial and fungal metataxonomic analyses 
were performed via amplification and sequencing of the 16S rDNA and the ITS2 
genes, respectively. In parallel, the presence of methanogenic archaea was 
determined by qPCR.

Results: Bacterial analysis revealed significant Country variations in human milk 
microbiota diversity and taxa distribution. Core genera such as Staphylococcus, 
Streptococcus, and Bifidobacterium were universally prevalent, and their 
abundance varied geographically. Methanogenic sequences were found in the 
amplicon sequences, mostly of Methanobrevibacter (11.8% of samples), while 
qPCR only detected 0.7% (2 out of 268) methanogens. Fungi—mostly Candida—
were detected in 7% of samples, with wide country variations. Co-abundance 
network analysis revealed mostly positive bacterial correlations and negative 
inter-kingdom interactions.

Conclusion: This study shows substantial global variation in the human milk 
microbiome with bacterial-fungal interactions, highlighting the importance 
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of global-scale studies to understand the human microbiome and its role in 
maternal and infant health.
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1 Introduction

Human milk is the natural diet in early life, characterized by its 
unique and adaptable diversity of nutrients and bioactive components 
(1–3). In addition to proteins, carbohydrates and fats essential for infant 
nourishment, human milk contains hormones (4–8), immune factors 
(9–11), microbes (12–19) and microbial nourishment components such 
as human milk oligosaccharides (HMOs), which are indigestible for 
infants (20–22). Human milk represents one of nature’s most complex 
biological systems, and the mechanisms by which it influences infant 
development are currently being characterized (23–26).

Most research on human milk microbiomes has concentrated on 
bacteria and examined the impact of various factors including 
genetics, maternal age, diet, maternal BMI, mode of delivery, feeding 
practices, gestational age, and temporal changes (15–17, 27–30). 
Relatively few studies have explored non-bacterial microbes in human 
milk, such as archaea (31), fungi (32, 33), viruses (34–36), or assessed 
multi-kingdom microbial associations and their role in shaping 
microbial communities (37–40).

Limitations of studies so far include a focus primarily on bacterial 
communities, restricted sample sizes, and limited geographical 
diversity. Furthermore, variability in methods for sample collection, 
storage, and processing complicates determining the actual impact of 
any specific factor (41). Large-scale studies encompassing diverse 
geographic locations and socio-economic backgrounds, employing 
standardized methodologies, are necessary to characterize the 
variability of the human milk microbiome accurately. Such studies will 
help define distinct microbial community networks or “lactotypes” 
influenced by maternal, infant, and environmental factors (40, 42–45). 
This study aimed to contribute to a better knowledge of the bacterial, 
archaeal, and fungal composition of human milk and the potential 
inter-kingdom interactions in milk samples collected from women 
living in a wide spectrum of countries, including different 
environments and socio-economical settings.

2 Materials and methods

2.1 Subjects and sampling

Milk samples from 518 healthy mothers (one individual sample 
per mother) were obtained in 16 different countries, including cohorts 
from Equatorial Guinea (n = 33), Kenya (n = 30), Senegal (n = 60), 
South Sudan (n = 53), Tanzania (n = 4), Ecuador (n = 35), El Salvador 
(n = 6), Mexico (n = 18), Peru (n = 8), Puerto Rico (n = 5), mainland 
United  States (n = 85), Austria (n = 38), Germany (n = 32), The 
Netherlands (n = 15), Norway (n = 20), and Spain (n = 76). The 
subject’s age, body weight, sampling time, and birth mode of the baby 
were listed in Table 1.

The study procedures related to the samples obtained from 
Equatorial Guinea, Kenya, Senegal, South Sudan, Ecuador, El Salvador, 

Mexico, Peru, Austria, Germany, The Netherlands, Norway, and Spain 
were approved by the overarching Institutional Review Board of the 
European Commission in the frame of the EU project “Variations in 
biochemical and microbiological milk composition among highly diverse 
human populations and their impact on infant gut ecosystem” (call FP-7-
PEOPLE-2013-IEF) (protocol #624773, approved on 14 February 2014) 
and at each study location, and consent was obtained from each 
participating woman. Human milk samples from Puerto Rico were 
approved by the University of Puerto Rico, Medical Sciences Campus 
(IRB ProB2310120, approved on 24 March 2021). The United States 
samples were approved by the Rutgers University-New Brunswick Health 
Sciences Institutional Review Board (Protocol #Pro2018002781, approved 
on 17 September 2021; Protocol #Pro2020002169, approved on 9 June 
2021), and consent was obtained from each participating woman. The 
samples from Tanzania are from a previous study approved by the IRB 
reference number 164-12-21052012 (46).

Collection of human milk was performed by the mothers as 
described by McGuire et al. (47); briefly, the aureola skin was wiped 
with antiseptic wipes containing chlorhexidine digluconate (bactiseptic 
wipes, Vesismin Health, Barcelona, Spain) using gloved hands, and milk 
was manually expressed into disposable sterile containers. Samples were 
shipped on dry ice to the Complutense University of Madrid (Spain), 
where they were stored at −80°C until an aliquot was sent on dry ice to 
Rutgers University (USA) for analyses. Human milk samples from 
Puerto Rico, the U.S. mainland, and Tanzania were collected either by 
hand expression or using the mother’s own sterile pump. Samples were 
frozen at the participants’ homes and transported on ice to the 
laboratory, where they were stored at −80°C until analysis.

2.2 DNA isolation, amplification and 
sequencing

The samples (1 mL) were centrifuged (15,000×g for 10 min at 
4°C), and the fat layer was removed using a sterile swab. This step was 
repeated twice more to remove all fat. Then, the pellets together with 
a 200 μL fraction of the supernatants, were used for total DNA 
extraction employing the Dneasy PowerSoil Pro Kit (QIAGEN, 
Hilden, Germany), following the manufacturer’s instructions.

2.3 16S rRNA gene sequencing

Primers 515 F (5’-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) were used to amplify the V4 
hypervariable region of the bacterial 16S rRNA gene following the 
protocols for the Earth Microbiome Project.1 The concentration of the 

1 https://earthmicrobiome.org/protocols-and-standards/16s/
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pooled, purified and barcoded DNA amplicons was determined using 
the Qubit dsDNA HS assay kit (Thermo Fisher, Waltham, MA, USA). 
Amplicons were sequenced at Genewiz, LLC. (South Plainfield, NJ, 
USA) using the Illumina MiSeq platform (Illumina, CA, USA) with 
the Illumina MiSeq 2 × 150 bp paired-end protocol (Illumina Inc., San 
Diego, CA, USA) using the Illumina MiSeq platform.

2.4 ITS sequencing

For fungi, the Internal Transcribed Spacer 2 (ITS2) region was 
amplified from DNA obtained from extracted milk samples with a 
single ITS3 forward primer (5′-AATGATACGGCGACCACCGAG 
ATCTACACTATGGTAATTGTGCATCGATGAAGAACGCAGC-3′) 
and a barcoded ITS4 reverse primer (5′-CAAGCAGAAGACGGCATA 
CGAGATTCCCTTGTCTCCAGTCAGTCAGCCTCCTCCGCTTAT 
TGATATGC-3′) (38). Primers included Illumina adapters and the 
reverse primer included a unique 12 base Golay barcode (XX) for 
pooled demultiplexing (5′-CAAGCAGAAGACGGCATACGAG 
ATXXXXXXXXXXXXCGGCTGCGTTCTTCATCGATGC-3′). To 
determine PCR cycle counts appropriate for the fraction of fungal 
material, qPCR was performed on 518 extracted human milk samples. 
For samples with a Ct value less than 30, 25 cycles of PCR was 
performed. For samples with a Ct value between 30–31, 33 cycles of 
PCR was performed; the higher cycle number was needed to ensure 
there was enough fungal material for sequencing. Samples with a Ct 
value above 33 were considered to contain no fungal material 
(matching a no-template control). Samples were purified by SPRI, 

pooled, and sequenced on the Illumina MiSeq platform using the 
Illumina MiSeq Reagent v3 600-cycle (2 × 300 bp).

2.5 qPCR detection of methanogen

For the detection of Methanogen from the samples, we performed 
qPCR to detect the copy number of Methanobacteriales with specific 
primers (Fwd: 5’-AGGAATTGGCGGGGGAGCAC-3′, Rev.: 
5′-TGGGTCTCGCTCGTTG-3′) targeting the 16S rRNA gene 
fragment between positions 915 and 1,100 (48, 49). First, we use a 
universal primer (Fwd: 5′-ACTCCTACGGGAGGCAGCAG-3′, Rev.: 
5′-ATTACCGCGGCTGCTGG-3′) targeting the 16S rRNA gene 
between position 314 and 540 (50) to detect the number of total 
bacteria and archaea. Part of the E. coli 16S gene fragment 
(NR_112558) was synthesized and diluted to 107, 106, 105, 104, 103, 
102, and 10 copies as standards. The PCR program for total bacteria 
is initial at 95°C for 5 min, followed by 45 cycles of 10 s at 95°C, 10 s 
at 60°C, and 10 s at 72°C. Only the samples that had total bacterial 
copy numbers > 105 were used to detect Methanogens. The standards 
for Methanogen were synthesized from part of the Methanobacterium 
espanolae 16S rRNA gene (NR_104983.1) and diluted to range from 
107 to 10 copies. The PCR program for Methanogen detection started 
with an initial step at 95°C for 10 min, followed by 40 cycles of 10 s 
at 95°C, 30 s at 57°C, and 20 s at 72°C. Both PCR was performed 
using a Quantstudio 3 system (Thermo Fisher, Waltham, MA, USA) 
with a Quantinova SYBR green PCR kit (Qiagen, Hilden, Germany) 
and 1uL of extracted DNA was used as the template. To avoid 

TABLE 1 The characteristics of the subjects by country.

Continent Country N Maternal age 
(year)

Maternal weight 
(kg)

Sampling time 
post partum 

(day)

Birth mode

N.not. NA, 
(Mean ± SD)

N.not. NA, 
(Mean ± SD)

N.not. NA, 
(Mean ± SD)

N.not. NA, 
(Vaginal, 

Cesarean)

Africa

Equatorial Guinea 33 33, (27.6 ± 5.2) 33, (64.3 ± 11.3) 33, (57 ± 20) 33, (28, 5)

Kenya 30 30, (26.0 ± 5.2) 30, (60.7 ± 10.4) 30, (75 ± 23) 30, (23, 7)

Senegal 60 60, (27.3 ± 6.1) 60, (60.3 ± 10.3) 60, (65 ± 16) 60, (60, 0)

South Sudan 53 53, (23.6 ± 4.6) 53, (53.9 ± 7.1) 53, (60 ± 16) 48, (48, 0)

Tanzania 4 4, (29.3 ± 7.2) 3, (42.7 ± 1.5) 0, (NA) 0, (NA)

America

Ecuador 35 35, (27.7 ± 6.1) 35, (65.9 ± 12.7) 35, (62 ± 17) 35, (20, 15)

El Salvador 6 6, (28.0 ± 8.4) 0, (NA) 0, (NA) 6, (4, 2)

Mexico 18 18, (29.5 ± 5.1) 18, (76.9 ± 11.3) 18, (62 ± 23) 18, (11, 7)

Peru 8 8, (24.6 ± 5.0) 8, (61.8 ± 10.9) 8, (55 ± 16) 8, (2, 6)

Puerto Rico 5 0, (NA) 5, (62.3 ± 13.5) 0, (NA) 5, (4, 1)

United States 85 85, (32.8 ± 4.2) 24, (73.0 ± 14.9) 55, (57 ± 47) 85, (51, 34)

Europe

Austria 38 38, (32.6 ± 5.1) 0, (NA) 0, (NA) 38, (28, 10)

Germany 32 32, (28.9 ± 4.8) 32, (74.9 ± 13.4) 32, (68 ± 17) 32, (25, 7)

Netherlands 15 15, (29.0 ± 3.8) 0, (NA) 0, (NA) 15, (11, 4)

Norway 20 20, (30.9 ± 5.2) 20, (73.0 ± 12.1) 20, (51 ± 18) 20, (16, 4)

Spain 76 76, (34.5 ± 3.7) 40, (65.2 ± 9.5) 40, (70 ± 25) 76, (68, 8)

Total 518 513, (29.6 ± 6.0) 361, (64.4 ± 13.0) 384, (63 ± 26) 509, (399, 110)
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extrapolating beyond the standard curve, we set the detection limit 
at 10 copies for both PCR experiments.

2.6 Data analyses

Raw reads were demultiplexed and quality-filtered using the 
QIIME2 pipeline (v2022.2) (51). The quality-filtered reads were 
denoised and concatenated with DADA2 (52). Taxonomy was 
assigned to Amplicon sequence variants (ASVs) against the SILVA 
database v138.1 (53), using in QIIME 2 (q2-feature-classifier). The 
phylogenetic tree was generated by the FastTree algorithm (54). 
Negative control samples were also sequenced, and ASVs identified as 
contaminated by decontam (55) were removed from further analysis. 
The reads count was rarefied to 2,857 reads per sample (21 samples 
were excluded, Supplementary Table 1). The ASVs determined as 
contamination are listed in Supplementary Table 2.

Faith’s Phylogenetic diversity, observed ASV, and Shannon Index 
were calculated as alpha diversity metrics. The difference in alpha 
diversity between countries or continents was tested using the 
Kruskal-Wallis group test and with FDR p-value adjustment.

Jaccard, Bray Curtis, unweighted and weighted Unifrac distances 
were calculated to obtain pairwise beta-diversity, and dimensionality 
reduction on the distances was performed using Principal Coordinates 
Analysis (PCoA) method (ape v5.8). All alpha and beta diversity 
metrics are calculated on ASV level abundance. Permutational 
multivariate analysis of variance (PERMANOVA) was used to test the 
significance of different groups with 999 permutations (vegan v2.6-8).

Differentiated taxa were detected with ANCOMBC (2.6.0) (56) 
with Holm–Bonferroni correction, with a default prevalence cutoff of 
10%. The shared taxa between countries were shown as an upset plot 
by UpSetR (1.4.0). The co-abundance network was performed on the 
genus level with taxa with abundance > 0.01 and prevalence > 10% 
using the SparCC method (57) (SpiecEasi v1.1.3), and the correlation 
cutoff was set to ± 0.3.

3 Results

3.1 Human milk bacteriome

The 16S rRNA gene (V4 region) sequencing analysis of the 497 
milk samples included in this work (Supplementary Table 3) yielded 
10,767,189 high-quality filtered sequences in total, ranging from 18 to 
76,462 reads per sample [mean = 20,786 reads per sample; median 
(IQR) = 18,069 (9,542–28,173) sequences per sample]. The samples 
were rarefied to 2,857 sequences per sample (Supplementary Figure 1).

First, we applied a linear model to analyze the effect of country as 
well as some potential cofounders like maternal age, maternal body 
weight, birth mode, and the postpartum days of milk collection on the 
alpha diversity. Only the country showed a significant effect on the 
milk alpha diversity, and the effect size is bigger than the other 
variables (Supplementary Table  4). Next, we  only focused on the 
difference between countries. As assessed by using the Faith PD 
diversity index, the milk alpha diversity oscillated between 
Equatorial Guinea and Mexico (Figure 1A); the same range between 
Equatorial Guinea (lowest) and Mexico (highest) in Observed ASVs 
and Shannon index (Supplementary Figure 2). Overall, there was a 

significant difference in alpha diversity between different countries. 
Among all the pairwise comparisons, Ecuador and Mexico had 
significantly higher Faith PD diversity than Germany, Norway, Spain, 
the United  States, and Equatorial  Guinea, Equatorial  Guinea had 
significantly lower alpha diversity than Peru, Senegal, South Sudan, 
Austria, Mexico, and Ecuador. Most other pairwise comparisons were 
not significant after adjustment for multiple comparisons. Similar 
trends are shown in Observed ASVs, but not in Pielou evenness or 
Shannon index (Supplementary Table 5). When aggregated into the 
Continent level, America showed significantly higher alpha diversity 
in Faith PD and richness (observed ASVs), but metrics accounting for 
evenness (Pielou and Shannon index) showed higher evenness in 
Africa (Supplementary Figure 3).

For beta diversity, we also included all potential cofounders in the 
first PERMANOVA analysis and found that only country showed a 
significant effect on beta diversity (Supplementary Table 6). Therefore, 
in the following analysis, we only included the country or continent. 
We detected a significant effect by country with the omega square 
effect size is 0.103 (meaning about 10.3% of the variation is from the 
country effect; p-value = 0.001). Mexico, Equatorial  Guinea, and 
Norway showed the most segregated centroids in PCoA analysis based 
on Bray Curtis distance (Figure 1B). Some European and African 
countries were close to each other in the PCoA plot, including Spain, 
Germany, Austria, Kenya, Senegal, and Tanzania, indicating similar 
bacterial structures. The countries from different continents also differ 
in PC1, the countries from America all had negative PC1 values while 
most of the rest countries had positive PC1 values. Jaccard and Unifrac 
distance showed a similar effect, but the effect size of weighted Unifrac 
(0.120) is bigger than Jaccard (0.068) or unweighted Unifrac (0.064), 
suggesting the difference between countries was due to abundant taxa 
(Supplementary Figure 4). The effect of the continent on beta diversity 
was also significant but had a smaller effect size (omega square range 
from 0.022 to 0.043), and based on Bray Curtis and Jaccard, the 
distance of the center of samples from Europe and Africa was closer 
than the distance to America (Supplementary Figure 5).

In total 14,581 clean ASVs were generated from 16S sequencing, 
belonging to 41 phyla, 1,333 genera and 2,774 species. Most of them 
corresponded to seven major phyla: Bacillota, Pseudomonadota, 
Actinomycetota, Bacteroidota, Spirochaetota, Verrucomicrobiota, and 
Deinococcota, (Figure 1C). Among the 1,333 genera detected in this 
work, only 38 of them were found in samples from all the countries 
(Figure 2), while 18 were shared by all countries except for those from 
Tanzania and 7 were shared by all countries except for those from 
El Salvador. The genera with the top three highest frequency of detection 
were Staphylococcus (99.2% of samples; present in samples from all 
countries), Streptococcus (97.4% of samples; present in all countries), and 
Bifidobacterium (93.2% of samples; present in all countries). Overall, the 
top three most abundant genera were the same as the top three prevalent 
genera, Streptococcus (mean abundance 23%), Staphylococcus (mean 
abundance 16.8%), and Bifidobacterium (mean abundance 5.9%). Other 
highly abundant (> 1%) and universal genera include Pseudomonas, 
Corynebacterium, Acinetobacter, Rothia, Lactobacillus, Prevotella, 
Bacteroides, and unclassified genera from Muribaculaceae, 
Enterobacteriaceae, and Lachnospiraceae (Supplementary Table 7).

Samples from mainland USA are enriched in Pseudomonas, and 
depleted in Streptococcus, and Lactobacillus. Mexico and Ecuador are 
enriched in Bifidobacterium, Bacteroides, and Prevotella. Many 
countries from the European cohort are depleted in Bacillus and 
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Alistipes (except Germany), enriched in Staphylococcus. Many 
countries from the African cohort are enriched in Alistipes and 
Bacillus and depleted in Bacteroides and Gemella. Kenya enriched in 
Acinetobacter, Alistipes, Lactobacillus, and Muribaculaceae (Figure 3 
and Supplementary Figure 6).

Co-abundance network analysis of human milk bacteria only 
showed positive associations, particularly Bacteroides, Prevotella, and 
Bifidobacterium formed positive connections between each other. 
Other positive connections are between Staphylococcus and 
Corynebacterium; Streptococcus and Rothia; Pseudomonas and 
Acinetobacter (Figure 4A). That different bacterial genera occupied 
central positions, indicates country-specific structures and ecological 
roles within the microbial communities. For example, in Austria, 

Blautia and Rothia served as central nodes with strong associations to 
multiple genera. In South Sudan, Lactobacillus, Corynebacterium, and 
Kocuria were the most highly connected, while in Ecuador, 
Streptococcus, Veillonella, Staphylococcus, Blautia, Treponema, 
Bifidobacterium, and Prevotella showed the highest connectivity. These 
variations likely reflect underlying differences in genus abundance. 
Indeed, genera such as Bifidobacterium, Staphylococcus, Streptococcus, 
Lactobacillus, Corynebacterium, Rothia, Bacteroides, Prevotella, and 
Pseudomonas were identified as differentially abundant and 
consistently appeared as key hubs in their respective networks. 
Notably, the global network combining all countries’ data was the 
most robust and densely interconnected, highlighting overarching 
co-abundance patterns across diverse populations.

FIGURE 1

The bacterial difference between countries. (A) Alpha diversity in Faith PD, country ordered by median of Faith PD from low to high, Different letters show 
significant differences (Kruskal-Wallis test with FDR adjustment, p < 0.05). (B) PCoA plot based on Bray Curtis distance, the center of each country is in 
large dots, and individual samples are in small dots. PERMANOVA test of country effect is listed below. (C) The top abundant bacterial Phyla by country.
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Despite these differences, we  also observed some recurring 
correlation patterns across countries, similar to those in the global 
network. For instance, connections among Bacteroides, Prevotella, and 
Bifidobacterium were seen in Austria, Ecuador, South Sudan, and the 
United States. However, specific patterns varied: in Austria, Blautia 
and Muribaculaceae were also connected (Figure 4B); in Ecuador, 
Blautia, Succinivibrio, Treponema, and Bacteroides formed key links 
(Figure  4C); in South Sudan, Muribaculaceae showed strong 
associations (Figure  4F); and in the United  States, Streptococcus 
emerged as a connected node (Figure  4H). Networks in Austria, 
Ecuador, Equatorial  Guinea, and South Sudan exhibited greater 
complexity and connectivity compared to others.

3.2 Detection of total bacteria 
methanogenic archaea

Based on 16S sequencing, we were able to detect three genera 
from Methanobacteriales (Methanobrevibacter (0–2.6%), 
Methanosphaera (0–16.7%), and Methanobacterium (0–33.3%) 
Supplementary Table 8).

We also applied a standard curve qPCR method to detect 
Methanobacteriales. Based on our 16S rRNA sequencing results, 

which showed that the methanogen relative abundance ranged from 
0.03 to 1% in samples where methanogen reads were detected. Given 
these proportions, if a sample contained fewer than 10⁵ total bacterial 
cells, the number of methanogen cells could be as low as 30 copies 
-close to the detection limit-. Therefore, we performed methanogen 
qPCR only on samples with a total bacterial cell count exceeding 10⁵. 
When examining a subset of the samples (268 samples from 7 
countries) with qPCR, we found that only 21 (8%) had total bacteria/
archaea 16S gene copy number >105 per 1 μL DNA, evidencing the 
low bacterial density in these human milk samples from healthy 
women. Furthermore, this threshold of detection of 105 gene copies 
found in our study likely overestimates the number of bacterial cells 
in the samples, since bacteria can have multiple 16S gene copies. 
Among the 21 samples, only two, one from South Sudan and the 
other from Equatorial Guinea had detectable methanogenic archaea 
(Supplementary Table 9).

3.3 Human milk mycobiome

The presence of fungi was evaluated in the whole collection of 
518 samples (Supplementary Table  10). Only 6.6% of samples 
(n = 34) were positive based on ITS2 amplification and they 

FIGURE 2

Upset plot of unique or shared genera between countries.
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belonged to the following cohorts: Equatorial  Guinea (n = 12, 
36.4%), Senegal (n = 1, 1.7%), South Sudan (n = 3, 5.7%), Tanzania 
(n = 3, 75%), Mexico (n = 2, 11.1%), mainland US (n = 7, 8.2%), 
Puerto Rico (n = 3, 60%), and Spain (n = 3, 3.9%). Among the fungi-
positive samples, three fungal phyla (Ascomycota, Basidiomycota, 
and Mucoromycota) and 12 major genera were detected, dominated 
by Candida (Figure 4). Some of the fungal genera, such as Candida, 
and Malassezia, are frequent inhabitants of the human skin while 
others, such as Dichostereum or Blakeslea, are typically associated 
other to air, soil, and decaying plant matter, suggesting environmental 
or laboratory contamination of milk samples (Figure  5, 
Supplementary Table 11).

3.4 Interkingdom co-abundance networks

The interkingdom co-abundance network showed that Prevotella, 
Corynebacterium and Clavispora were the centers of the network 
(Figure  6A). Besides Clavispora, there were three fungal genera 
involved in the network, including Candida, Pichia, and Yarrowia. 
Most bacterial genera involved were the common genera found in the 
bacteria-only networks, including Bacteroides, Prevotella, 
Bifidobacterium, Staphylococcus, Corynebacterium, Streptococcus, 
Pseudomonas, Lactobacillus, and Rothia. Compared with the bacteria-
only network with all samples (Figure 4A) or the same sample size as 
the interkingdom network (Figure  6B), the bacteria correlations 
remained similar, and the fungal genera acted as “bridges” connecting 
the isolated parts of the bacteria-only network.

4 Discussion

Human milk poses some challenges for microbiome studies since 
the procedures used for milk and milk DNA processing and analysis, 
its low biomass in healthy women (as observed in this work by qPCR), 
and the risk of skin and environmental contamination during 
sampling may also be a cause of artifacts or biases in these studies (40, 
58). In this work, the application of the same methodology, from DNA 
extraction to data analysis, to a large collection of milk samples from 
16 countries confirmed the existence of large inter-individual and 
inter-cohort variations in the composition of the human milk 
bacteriome and mycobiome, as described previously (22, 30, 38, 39, 
59). The lack of clear separation between milk samples from women 
in different geographical regions may be due to the high intraindividual 
variability among milk samples from the same continent or country 
(40). Our findings align with previous studies focused on the 
bacteriome of human milk samples worldwide, particularly with those 
obtained within the framework of the INSPIRE study (30, 40). 
Staphylococcus and Streptococcus were the dominant genera by 
prevalence and abundance, detected in 99.2 and 97.4% of our samples, 
closely matching the 98.7 and 97.7% reported in INSPIRE (30), and 
consistent with other studies (22).

Similarly, the INSPIRE study reported a high abundance of 
Streptococcus in Peruvian and Pseudomonas in U.S. samples (30), 
consistent with our findings. Both studies also observed a higher 
relative abundance of Pseudomonadota (formerly Proteobacteria) in 
African versus European cohorts. However, as in INSPIRE, additional 
core taxa varied across cohorts. In our study, other frequent genera 

FIGURE 3

Supervised heatmap of genera relative abundance significantly different between countries. The differentiated genera were detected by ANCOM global 
comparison with Holm–Bonferroni correction with adjusted p-value < 0.05.
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included Bifidobacterium, Pseudomonas, Corynebacterium, 
Acinetobacter, Rothia, Lactobacillus, Prevotella, and Bacteroides, with no 

clear geographical differences. Unlike INSPIRE, we did not analyze 
infant fecal samples, limiting our ability to assess the role of milk 

FIGURE 4

Co-abundance network of human milk bacteria. (A) Co-abundance network with samples from all countries. Co-abundance network from individual 
country, (B) Austria, (C) Ecuador, (D) Equatorial Guinea, (E) Senegal, (F) South Sudan, (G) Spain, (H) United States. The correlation was calculated based 
on sparCC with abundance of genera > 0.01 and prevalence > 10%. Only correlations > 0.3 or <−0.3 and pseudo-p-value < 0.05 were selected. The red 
line indicated negative correlation, the green line indicated positive correlation, line width indicated correlation value.

FIGURE 5

Relative abundance of ITS2-based major fungi genera in 34 samples.

https://doi.org/10.3389/fnut.2025.1610346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sun et al. 10.3389/fnut.2025.1610346

Frontiers in Nutrition 09 frontiersin.org

microbiota in seeding the infant gut. INSPIRE’s comparison of milk and 
infant feces provided evidence of this relationship (30). Future studies 
are needed to further explore vertical transmission 
through breastfeeding.

In this study, potential intrakingdom and interkingdom 
relationships were investigated through the establishment of 
co-abundance networks of bacteria and bacteria-fungi, respectively. In 
relation to intrakingdom associations, there was a positive correlation 
between the presence of Staphylococcus and Corynebacterium. The same 
observation has been performed repeatedly when studying other 
human niches and, particularly, the skin (60–62). It is noteworthy that 
mammary glands are highly specialized organs, likely evolving from 
ancestral cutaneous apocrine-like glands (63). The populations of 
Staphylococcus and Corynebacterium appear to respond synchronously, 
both in health and disease, to shared host or environmental factors 
within the mammary ecosystem (64). This synchrony is also observed 
in various skin regions, including the nasal sinuses and ocular surfaces 
and glands (62, 65–68). Additionally, skin secretions and milk share 
common components such as exfoliated epithelial cells and nutrients, 
including urea, amino acids, peptides, glycoproteins, glycerol, 
phospholipids, and others. Coagulase-negative staphylococci utilize 
amino acids mainly provided by their own proteolytic activities and, in 
turn, corynebacteria need these same amino acids and are cross-fed by 
their skin partners (69). The proteolytic properties of resident 
staphylococci also have a protective role for corynebacteria since they 
are able to inactivate antibacterial proteins and peptides (69, 70). In 
addition, lipophilic corynebacteria lack fatty acid synthase and, 
consequently, are fatty acid auxotrophs (71). Interestingly, it seems that 
Staphylococcus epidermidis and Corynebacterium spp. use different 
glycans as molecular decoys for binding to human skin and sweat (72). 
More specifically, sialic acid and fucose, which are also key components 
of human milk oligosaccharides, are binding epitopes for staphylococci 

while N-glycans did not provide binding epitopes for Corynebacterium, 
consistent with a lack of competition between them for these substrates.

A positive correlation was also observed among Bacteroides, 
Prevotella, and Bifidobacterium. DNA from these three genera has 
already been detected in human milk (15, 30, 73–75), and they are 
common inhabitants of the human gut (76). Their abundance is higher 
in children than in adults (77) and is reduced in caesarean-delivered 
infants in comparison with vaginally-delivered infants (78). These three 
genera have been proposed as biomarkers of diet and lifestyle (79). They 
may form metabolic networks in the infant gut, playing synergistic and 
complementary roles. For example, certain Bifidobacterium species are 
well adapted to the human milk and infant gut environment due to 
their ability to metabolize human milk oligosaccharides (HMOs) (80). 
In the process, they produce lactic and acetic acids, which promote the 
growth of short-chain fatty acid (SCFA) producers like Prevotella and 
Bacteroides. These species further enhance glucose metabolism and 
generate SCFAs and vitamins that support health (81). During lactation, 
Prevotella and Bacteroides also metabolize milk-derived amino acids 
(82), and later become key to breaking down complex polysaccharides 
once solid foods are introduced. Thus, human milk may seed the infant 
gut with bacteria that support gut health both early and later in life.

Supporting this idea, a fecal microbiota transplant (FMT) study 
in patients with autism spectrum disorder (ASD) found that 2 years 
post-treatment, the gut microbiome was dominated by Bacteroides, 
Prevotella, and Bifidobacterium, alongside a reduction in 
ASD-associated taxa (82), Similarly, these genera are often depleted in 
individuals colonized by Clostridioides difficile (83), further 
highlighting their potential health benefits.

In this study, Bifidobacterium was negatively associated with 
Pseudomonas, consistent with previous results showing the 
antagonistic activity of bifidobacteria against some species of 
Pseudomonas and, particularly, against Pseudomonas aeruginosa 

FIGURE 6

Co-abundance network of human milk microbes. (A) Co-abundance network with both bacteria and fungi. (B) Co-abundance network with only 
bacteria using the same sample as the interkingdom network. The correlation was calculated based on sparCC with abundance of genera > 0.01, and 
prevalence > 10%. Only correlations > 0.3 or <−0.3 and pseudo-p-value < 0.05 were selected. The red line indicated negative correlation, the green 
line indicated positive correlation, line width indicated correlation value.
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(84–86). In the same direction, pretreatment of human corneal 
epithelial cells with a strain of Bifidobacterium longum subsp. infantis 
protected them from infection by a P. aeruginosa strain (87). Evidence 
suggests that the protection against P. aeruginosa cellular infection is 
through modulation of the expression of IL-8 and beta-defensin-2 
(88). Indeed, this protection has been harnessed to slow the decay of 
the microbiological quality caused by P. aeruginosa by B. longum 
subsp. infantis biofilms in the inner surface of cheese packages (89). 
Therefore, it seems that bifidobacteria displays, to some extent, 
mechanisms of competitive exclusion against pseudomonas.

In a study including 80 mothers from four countries [Finland, 
Spain, South Africa, and China; (28)], in another of 65 mothers from 
Spain (32), detection of the fungi ranged from 35 to 86%. In a Canadian 
cohort with 271 mothers, it was lower, 21% of the human milk samples 
(38), but still higher than the 7% in the current study (ranging from 2 
to 36%), for reasons that are not clear. This could be  due to 
methodological issues, or to higher density of bacteria that inhibit 
fungi. Interactions between bacteria and fungi are poorly known 
although they may be relevant for health (90, 91). Two major negative 
correlations were detected in our study, one between Bifidobacterium 
and Clavispora, and the second between Corynebacterium and 
Candida. These results are consistent with those in a recent study 
reporting negative correlation between Bifidobacterium and C. albicans 
in the milk of mothers who delivered vaginally (39). A body of evidence 
suggests that in the gut, bifidobacteria provide resistance against 
colonization by yeasts, particularly by Candida albicans (92–96). More 
recently, another study in children and adolescents reported negative 
correlation between Bifidobacterium and Candida, with higher 
Candida low Bifidobacterium associated with depression (97). Other 
studies have not found fungal-bacterial interactions in the feces of 
healthy subjects (98). As for Corynebacterium and Candida, it is long 
known their negative association and the protective effect of the former 
against infections (99–101). Interestingly, high oral C. albicans and low 
Corynebacterium appears to be a signature of oral carcinoma and head 
and neck cancer (102).

The qPCR analysis detected the presence of detectable 
methanogenic archaea (Methanobacteriales) in two African samples, 
one from South Sudan and one from Equatorial Guinea. Consistent 
with the qPCR results, the methanogenic archaea detection rate was 
higher in African and American countries based on 16S sequencing. 
However, the detection rate of 16S sequencing is much higher than that 
of qPCR, possibly because the DNA concentration in the milk sample 
is low, and the 1 μL of input DNA used for qPCR may not be sufficient 
to detect the methanogenic archaea. Archaea are among the neglected 
microbes in human microbiome studies because of technical challenges 
in detection (103), although their presence has been previously reported 
in human colostrum and milk (31, 104), and in the gut of babies (105–
107). Archaeal DNA has been detected in human milk, albeit at low 
frequency and abundance. Togo et al. (31) identified Methanobrevibacter 
smithii in approximately 25% of colostrum and milk samples using 
species-specific qPCR, whereas Methanobrevibacter oralis was not 
detected. Another study reported the presence of DNA from 
Methanoculleus, Methanosarcina, and Methanobrevibacter in Mexican 
mother-infant dyads, suggesting that colostrum may serve as a source 
of neonatal archaea (103). Similarly, Grine et  al. (105) proposed 
maternal transmission of M. smithii. Methanogenic archaea—including 
Methanobrevibacter spp., Methanosphaera stadtmanae, and members 
of the Methanomassiliicoccales—are recognized as consistent but 

low-abundance constituents of the infant gut microbiome (103, 106, 
108). However, detection remains limited by methodological biases 
favoring bacterial over archaeal targets, such as inefficiencies in DNA 
extraction, primer design, and reference databases. Notably, a recent gut 
microbiome survey in Africa—where our archaeal-positive samples 
were most prevalent -did not assess archaeal DNA (109). To advance 
characterization of archaeal diversity and function, we recommend: (a) 
the use of archaeal-specific or dual-target primers and nested PCR; (b) 
shotgun metagenomics for unbiased genomic and functional profiling; 
(c) optimized DNA extraction protocols tailored to the resilient 
archaeal cell wall; (d) expansion of archaeal reference databases; (e) 
integration of multi-omics approaches to detect archaeal metabolites 
such as methane; and (f) improved cultivation methods using anaerobic 
conditions and archaeal-specific substrates.

This study has several limitations. There was a big variation in 
sample size between countries (from 4 to 85), which weakens the 
statistical power. Also, sample collection was not absolutely 
standardized, which may introduce a systematic bias between cohorts. 
Despite the limitations, this work highlights differences in the human 
milk bacterial and fungal microbiome across geographies, 
emphasizing the need for global studies that provide a better 
understanding of the human microbiome and the interkingdom 
relationships that may explain microbiota structures, with implications 
for maternal and infant health.
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SUPPLEMENTARY FIGURE 1

Bacterial 16S rarefaction curve (A) and goods coverage of samples (B). Rarefy 
depth set to 2857.

SUPPLEMENTARY FIGURE 2

Alpha diversity between countries. (A) Observed ASVs, (B) Pielou evenness, 
(C) Shannon index. Countries ordered by median of diversity from low to 
high, different letters show significant differences (Kruskal-Wallis test with 
FDR adjustment, p < 0.05).

SUPPLEMENTARY FIGURE 3

Alpha diversity by continent. (A) Faith PD, (B) observed ASVs, (C) Pielou 
evenness, (D) Shannon Index. Difference between continents tested by 
Kruskal-Wallis and with FDR adjustment. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001.

SUPPLEMENTARY FIGURE 4

PCoA plots based on beta diversity in different countries. (A) Jaccard 
distance, (B) unweighted Unifrac distance, (C) weighted Unifrac distance. The 
center of each country is in large dots, and individual samples are in small 
dots. PERMANOVA test of country effect is listed below.

SUPPLEMENTARY FIGURE 5

PCoA plots based on beta diversity in different continents. (A) Bray Curtis 
distance, (B) Jaccard distance, (C) unweighted Unifrac distance, (D) weighted 
Unifrac distance. The center of each country is in large dots, and individual 
samples are in small dots. PERMANOVA test of country effect is listed below.

SUPPLEMENTARY FIGURE 6

Difference of relative abundance between countries of selected genera. 
Boxplot of the log-transformed relative abundance of differentiated genera 
selected by ANCOM. In each panel, the countries are ordered by the median 
abundance of the genus. Different letters show significant differences 
(Kruskal-Wallis test, adjusted with FDR, p < 0.05).
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