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Introduction: Assessing eating behaviors such as eating rate can shed light on 
risk for overconsumption and obesity. Current approaches either use sensors 
that disrupt natural eating or rely on labor-intensive video coding, which limits 
scalability.
Methods: We developed ByteTrack, a deep learning system for automated bite 
count and bite-rate detection from video-recorded child meals. The dataset 
comprised 1,440 minutes from 242 videos of 94 children (ages 7–9 years) 
consuming four meals, spaced one week apart, with identical foods served 
in varying amounts. ByteTrack operates in two stages: (1) face detection via a 
hybrid Faster R-CNN and YOLOv7 pipeline, and (2) bite classification using an 
EfficientNet convolutional neural network combined with a long short-term 
memory (LSTM) recurrent network. The model was designed to handle blur, 
low light, camera shake, and occlusions (hands or utensils blocking the mouth). 
Performance was compared with manual observational coding.
Results: On a test set of 51 videos, ByteTrack achieved an average precision of 79.4%, 
recall of 67.9%, and F1 score of 70.6%. Agreement with the gold-standard coding, 
assessed by intraclass correlation coefficient, averaged 0.66 (range 0.16–0.99), with 
lower reliability in videos with extensive movement or occlusions.
Discussion: This pilot study demonstrates the feasibility of a scalable, automated tool 
for bite detection in children’s meals. While results were promising, performance 
decreased when faces were partially blocked or motion was high. Future work will 
focus on improving robustness across diverse populations and recording conditions.
Clinical trial registration: https://clinicaltrials.gov/study/NCT03341247, 
identifier NCT03341247.

KEYWORDS

bite detection, neural networks, eating behaviors, childhood obesity, dietary 
assessment, automation

1 Introduction

Behaviors exhibited during a bout of eating (e.g., bites, chews, eating rate, bite-size, etc.) 
are collectively known as “meal microstructure.” Meal microstructure can be assessed to 
understand individual differences in eating patterns (1), the effects of food properties (1–3), 
and mechanisms of disordered eating and obesity (4–8). In pediatric populations, these 
insights are especially valuable for understanding obesity risk, as behaviors like larger bites 
and faster eating have been linked to greater food consumption and obesity (5, 8). 
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Characterizing meal microstructure can provide insights into 
pediatric obesity risk, which could potentially lead to novel 
interventions to reduce this global pandemic (9). Observational 
studies have informed interventions targeting eating speed in children, 
with promising results. For example, an intervention (10) aimed at 
slowing child eating rates through educational materials and timers 
resulted in slower parent-reported eating rates and lower BMI gain 
over 8 weeks compared to the control group, suggesting interventions 
on meal microstructure hold promise for weight gain prevention in 
youth (11). Although these results are promising, research on meal 
microstructure may be held back by the expense and difficulty of 
reliably coding eating episodes. Developing methods like ByteTrack 
could help streamline measurement and improve the scalability and 
sustainability of this approach.

Several approaches have been developed to measure meal 
microstructure in humans. Currently, the gold standard for bite and 
microstructure analysis is manual observational coding (12), where 
researchers manually review videos and annotate bite timestamps 
through observation. Although observational coding is highly 
accurate and reliable (13), it is time-consuming, labor-intensive, and 
costly, making it less scalable and efficient compared to automatic bite 
detection systems. To address those limitations, wearable devices that 
use various sensor modalities such as acoustic sensors and 
accelerometers have been designed to record meal microstructure in 
adults (14). However, wearable sensor-based bite detection relies on 
predefined motion thresholds, which can lead to false positives 
(misidentifying hand movements like drinking or gesturing as bites), 
struggle with utensil variability (difficulty adapting to different eating 
methods such as chopsticks, spoons, or eating by hand), and face 
challenges in different contextual settings (15, 16).

To address challenges with wearable devices, several groups have 
developed automated approaches for bite counting from video, which 
are more adaptable. One method uses facial landmarks to define bites 
based on criteria like hand proximity or mouth opening (17–19). 
While effective in controlled environments, this approach is prone to 
false positives from non-eating behaviors such as gestures, talking, or 
facial expressions. Optical flow approaches (20, 21), which track 
motion between consecutive frames, also face significant limitations 
in reliably distinguishing between eating actions (i.e., bites) and other 
dynamic movements such as fidgeting, gesturing, or speaking. These 
challenges are especially pronounced in children (22, 23), who often 
engage in frequent hand-to-face movements or fidgeting, but similar 
issues can also occur in adults during social interactions.

Deep learning-based approaches (e.g., Convolutional Neural 
Networks or CNNs) have demonstrated stronger performance in bite 
detection (18, 20, 24) compared to facial landmark and optical flow-
based models. However, these methods have primarily been tested 
under ideal conditions with high-quality video recordings of eating 
events, often involving adult participants. Real-world applications 
present a broader range of challenges, including varied lighting and 
higher variability in movement patterns, which are common across 
age groups. Development of deep learning approaches to automate 
bite detection would advance the field by making models more 
resistant to non-eating movements.

The purpose of this paper is to present ByteTrack, a deep 
learning model designed to detect bites and calculate eating speed 
in pediatric populations. To ensure its robustness in addressing 
challenges specific to pediatric samples, ByteTrack was directly 

trained on video recordings of children eating meals. It integrates 
advanced machine learning techniques, including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory-Recurrent 
Neural Networks (LSTM-RNNs). The main objectives of this paper 
are: (1) to develop a deep-learning-based bite detection system to 
automatically identify bites in video data recorded from children’s 
laboratory meals; (2) to evaluate ByteTrack’s accuracy and reliability 
by testing it on a designated video dataset (test set); and (3) to 
compare ByteTrack’s performance with manual (gold standard) 
annotations to assess its practical utility for capturing key measures 
of children’s eating behavior such as bite count, bite rate, and meal 
duration, along with correlations between measured intake with 
predicted bite counts.

2 Methods

2.1 Data collection

2.1.1 Study design and participants
ByteTrack was trained on 242 videos (4,770 min) of laboratory 

meals in 94 children aged 7–9 years. Children consumed 4 laboratory 
meals with approximately 1-week between each meal. Video data came 
from the Food and Brain study (ClinicalTrials.gov, NCT03341247), a 
prospective investigation examining neural and cognitive risk factors 
for the development of obesity in middle childhood. The study 
employed a longitudinal family risk design, with children attending six 
baseline visits and one follow-up visit conducted 1 year after the first 
baseline visit. Data related to neurocognitive and longitudinal 
outcomes are reported elsewhere (25–31). Methods used to collect 
anthropometric and demographic data can be found in earlier studies 
(26, 27, 32). Families were recruited for the study based on maternal 
weight status: low (maternal BMI < 25) versus high (maternal 
BMI ≥ 30) risk for obesity. All children were below the 90th 
BMI-for-age percentile at baseline. The study received approval from 
the Pennsylvania State University Institutional Review Board. Parental 
consent and child assent were obtained at the first visit, and families 
received modest monetary compensation for completing each study 
visit. The final sample included 94 subjects who had a total of 345 viable 
meal videos (Figure 1 for reference to viability of data). Participant 
inclusion and exclusion with relevant CONSORT diagram are detailed 
in earlier publications (25). Demographic data for the sample can 
be  found in Table  1. Supplementary Table  1 provides detailed 
information on subject-by-subject meal videos considered for training 
and testing, including subject IDs and meal sessions, along with details 
on exclusions and inclusions.

2.1.2 Laboratory meals
During visits 2–5, children were served meals of identical foods 

that varied by amount served (i.e., portion size), according to the aims 
of the parent study. The protocols for these meal sessions along with 
foods served have been previously described (25). In brief, meals 
consisted of foods that are common to United States children (i.e., 
macaroni and cheese, chicken nuggets, grapes, and broccoli). The 
reference portion (smallest) consisted of the usual serving sizes for 
this age group, and the subsequent three portions increased the 
amount served for each item by ~33%. The order in which children 
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received the meals was randomly assigned and counter- balanced. 
Meal sessions were separated by at least a week.

Children had up to 30 min to eat ad libitum until comfortably full, 
while being read a non-food related story. Initially, these stories were 
read by a research assistant (n = 62). However, due to COVID-19 
safety protocol changes, the remaining 32 children were either read a 
book by a parent (n = 16) or listened to a computerized audiobook 
(n = 16; Audible by Amazon, Newark, NJ). Intake was calculated by 
subtracting post-weight from pre-weight for each food. Intake was 
converted to kilocalories using Nutrition Facts panel Information or 
an online database.1

2.1.3 Video recording
Each eating event (meal session) was video recorded at 30 frames 

per second using an Axis M3004-V network camera. The camera was 
positioned outside the line of sight of children during the meal session. 

1  https://fdc.nal.usda.gov/

While parents were informed about the recordings, children were not. 
If a child noticed the camera or asked about its purpose, the research 
assistant explained that the camera was for safety purposes, aiming to 
reduce any observer effect. Figure 2 provides a schematic of the eating 
environment for the two dining rooms used over the visits, along with 
examples of a meal session.

2.2 Model building

The ByteTrack pipeline for detecting bites consists of two major 
parts. The first part focuses on detecting and tracking faces in the 
video, to ensure that the system concentrates on the target child 
and ignored irrelevant objects or other individuals. The purpose of 
this is to reduce noise and prepare clean data for the second part of 
the pipeline. In the second part, the identified faces from the first 
step are analyzed to classify their movements and determine 
whether a child was taking a bite or performing other actions, such 
as talking or any irrelevant gestures. To enhance accuracy, a filtering 
process is applied to refine the results. Together, these steps form a 

FIGURE 1

Flowchart of video dataset consideration for ByteTrack model development.
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2-model pipeline to identify bites in videos. Diagrammatic 
representation of overall bite detection is in Figure  3. A more 
detailed flowchart for the system development is in 
Supplementary Figure 1. All model development, deployment, and 
statistical analyses were conducted using Python version 3.11.7 
(33). Inter-rater reliability (ICC) was computed using Pingouin 
(v0.5.4) (34), while other statistical analyses, including regression 
and correlation, were performed using Statsmodels (v0.14.0) (35). 
F1 score calculations and classification metrics were computed 
using scikit-learn (v1.2.2) (36). Model development and computer 
vision tasks used PyTorch (v2.2.2) (37) and OpenCV (v4.5.3) (38). 
All plots and visualizations were generated using Matplotlib 
(v3.8.4) (39).

2.2.1 Model 1: face detection
The first part of the model pipeline focuses on detecting and 

tracking faces in video footage, an essential step for identifying who is 
present and ensuring the system only analyzes relevant areas. To 
achieve this, we gathered a dataset of frames extracted from a random 
subset of videos to train and test the system. Two different approaches 
are used to detect faces: one that prioritizes speed for quick processing 

(You Only Look Once or YOLOv7) and another that is designed to 
handle more challenging situations (Faster Regional Convolutional 
Neural Network or Faster R-CNN), such as when faces are partially 
blocked or hard to see. The system is designed with the goal of 
achieving both efficiency and accuracy in face detection before 
progressing to Model 2 in the pipeline. Refer back to Figure 3 for an 
overview of ByteTrack model development.

2.2.1.1 Step 1: model 1 dataset preparation
To ensure consistent frame rates across all videos for ground truth 

matching, meal videos (n = 345) are converted from a variable frame 
rate to a constant frame rate with .mp4 format and 30 frames per 
second (fps). This conversion is done using FFmpeg software (40) 
(version 4.3.2) with CUDA acceleration (h264_nvenc codec). Videos 
are then converted into frames at 6 frames per second to balance 
temporal resolution and computational efficiency.

A random sample of 52 videos (50 frames per video, 2,600 frames 
total) that include a diverse range of skin tones and seating positions 
is randomly selected for the face detection dataset. A 70–15-15% 
subject split is done (41, 42), yielding training (n = 1,800 frames, 36 
subjects), validation (n = 400 frames, 8 subjects), and test (n = 400 
frames, 8 subjects) sets. These sampled image frames are considered 
the Model 1 Dataset. To ensure an independent validation sample, no 
subjects appeared in more than one data set.

To enhance face detection model robustness to real-world 
variations in conditions (e.g., lighting changes, motion, camera angles, 
etc.,) the following augmentations are applied to the training dataset 
(43): Y-reflection (mirror), 2-D Gaussian smoothing (blurring), 
brightness adjustment, orientation change to portrait mode, and 
rotation (clockwise 10 degrees and anticlockwise 10 degrees). As a 
result of these adjustments, the total training set increased to include 
10,800 images (i.e., frames of videos).

2.2.1.2 Step 2: ground truth for model 1—manual face 
manual labeling

To create a labeled dataset for training, within each image of the 
Model 1 Dataset, a single researcher (YRB) used bounding boxes to 
identify the children’s faces using the ImageLabeler API [LabelImg 
(44)]. Examples of the labeled images with bounding boxes are shown 
in Figure  4. The annotated label files are also augmented or 
transformed along with corresponding images in the training set. To 
maintain the aspect ratio (original size: 1,920 × 1,080) and reduce 
computation time, all original and transformed images are resized to 
510 × 300 with padding (45) (when needed in augmentations). The 
Model 1 Dataset is utilized for both Faster R-CNN and YOLOv7 face 
detection models.

2.2.1.3 Step 3A: automatic face detection with YOLO V7
YOLOv7 (46, 47) is used to develop a lightweight face detector to 

reduce computational costs. YOLOv7 is a one-stage object detection 
model designed for faster inference speeds compared to two-stage 
models like Faster R-CNN. In YOLOv7, the entire image is processed 
in a single pass through the network, allowing for faster and real-time 
object detection with lower computational overhead (47, 48). This 
makes YOLOv7 particularly suited for tasks that require fast detection 
in video-based settings.

YOLOv7 provides a general-purpose deep learning network for 
object identification, but the parameters must be  fine-tuned to 

TABLE 1  Demographics of the sample.

Characteristic Total Included (n = 94 children)

Categorical 
variables

n (%)

Sex

Male 49 (52.1)

Female 45 (47.9)

Race

White 91 (96.8)

Non-white# 3 (3.2)

Parental education$

<Bachelor’s degree 

(<16 years)

18(19.1)

Bachelor’s degree 

(16 years)

42 (44.7)

>Bachelor’s degree 

(>16 years)

34 (36.2)

Parental income†

<$51,000 12 (12.8)

$51,000–$100,000 45 (47.9)

>$100,000 34 (36.2)

Continuous 
variables

Mean (SD), 
[min, max]

Age (years) at 

baseline

7.9 (0.6), [7.0, 

9.0]

BMI percentile at 

baseline

47.9 (24.3), [3.9, 

89.5]

#Asian: n = 3; American Indian/Alaskan Native, Black/African American, Hawaiian/Pacific 
Islander: all n = 0; All participants reported not being Hispanic/Latino. †Parent income 
missing values (n = 3). $Parental Education: < Bachelor’s Degree (<16 years): High School/
GED, Associate’s Degree, Technical or vocational school; > Bachelor’s Degree (>16 years): 
Master’s Degree, Ph.D.
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specifically identify children’s faces. To achieve this, the model was 
trained with Stochastic Gradient Descent (SGD) (49), a commonly 
used optimizer that updates model parameters incrementally on a 
subset of the training data, using an initial learning rate of 0.001 and 
exponential decay. The learning rate determines the size of the steps 
taken by the optimization algorithm (SGD) to adjust the model’s 
parameters during training, where a smaller learning rate makes 
smaller, more precise steps and a larger learning rate makes bigger, 
faster adjustments but risks overshooting the optimal solution. To 
balance early, faster progress with fine-tuning later in training, the 
learning rate was reduced gradually using an exponential decay (i.e., 
decreased by a fixed proportion over time), allowing the model to 
make smaller and more refined updates as training progressed. A 
batch size of four was used, meaning the model processed four 
samples at a time before updating its internal parameters. The training 
was conducted over 100 epochs, or complete passes through the entire 
dataset. To prevent overfitting, early stopping was applied to halt 
training if the validation set loss (a measure of model performance on 
unseen data during training) does not improve after 10 consecutive 
epochs (i.e., patience = 10). No additional hyperparameter tuning or 

cross-validation was performed beyond the standard training 
configuration provided by YOLOv7. Training was run on a Dell XPS 
15 laptop with a 4GB GPU, 8 CPU cores, and 16GB of RAM. Training 
time was 6 h for YOLOv7 model.

2.2.1.4 Step 3B. Automatic face detection with faster 
regional CNN

We used transfer learning on a Faster R-CNN model (50) with a 
ResNet-50 backbone (51) and Feature Pyramid Network (FPN) (52) 
for child face detection. Faster R-CNN is a two-stage object detection 
model that first generates regional proposals and then classifies and 
refines these regions, making it well-suited for tasks requiring accurate 
localization, such as face detection. The ResNet-50 backbone is a deep 
convolutional network with 50 layers, and its integration with FPN 
enhances the model’s ability to detect objects at multiple scales, which 
improves accuracy in detecting faces of varying sizes and positions.

To assess the model’s generalizability, we initially conducted 3-fold 
cross-validation (53), where the training set was split into three 
subsets or folds. Each fold used 7,200 training images and 3,600 
validation images. Following cross-validation, we conducted a grid 

FIGURE 2

Observation room layouts for meal videos. Children’s meal intake was recorded in one of two observation rooms (A or B). Cameras were wall-
mounted to record children’s meal intake.
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FIGURE 3

Overview of the bite detection pipeline. Meal videos were first converted to a constant frame rate of 30 frames per second (fps) before face detection 
(Model 1) using YOLOv7, with Faster R-CNN as a fallback. Detected faces were processed through EfficientNet CNN for feature extraction, followed by 
bite classification using an LSTM-RNN (Model 2). Post-processing techniques, including optical flow validation (Lucas-Kanade method), duplicate 
detection suppression, and temporal smoothing, were applied to refine predictions. The final output included the peak frame of each detected bite, 
with timestamps analyzed based on the 30fps conversion.

FIGURE 4

Examples of bounding boxes using LabelIMg used for labeling child faces for face detection.
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search (54) to fine-tune the model’s hyperparameters using the full 
training set, guided by feedback from a separate validation set. The 
model was trained using a batch size of 8 images with a loss 
accumulation over eight batches, which increased the batch size to 64 
images. We used an initial learning rate of 0.01 with an SGD optimizer 
with a weight decay of 0.0005, a step size of 2 where the scheduler 
updated the learning rate every two epochs instead of default. We also 
used a momentum of 0.9 for the SGD optimizer to smooth parameter 
updates by incorporating a fraction of the previous update into the 
current one, where a high momentum (momentum = 1) gains all 
information from the previous step. Early stopping with a patience of 
three epochs was used based on feedback from the validation set for 
minimizing validation loss. Training was carried out on a high-
performance cluster with 800GB RAM and 32 CPU cores. The 
training time with selected hyperparameters was 18 h and 22 min.

2.2.1.5 Step 4: face detection using a combination of 
YOLOv7 and faster RCNN

We implemented a face detection and tracking system 
combining YOLOv7 and Faster R-CNN [similar to method used in 
(55)]. Videos were processed at 30 fps, with YOLOv7 handling 
initial detection. If YOLOv7’s confidence score exceeded 0.8, its 
detected bounding box was used to track the child’s face using a 
Kernelized Correlation Filter (KCF) tracker (56), a high-speed 
tracker which updated every 20 frames to maintain accurate 
localization and prevent drift.

YOLOv7 served as the primary detector, provided it successfully 
detected a face with a confidence score of 0.8 or higher. If YOLOv7 
failed to detect a face or produced a confidence score below this 
threshold, Faster R-CNN was used as a fallback. By default, the 
detections were weighted, with YOLOv7 assigned 80% and Faster 
R-CNN 20%. However, if YOLOv7’s bounding box was significantly 
smaller—less than 30% of the area of the Faster R-CNN detection—
the weights were adjusted to 60% for YOLOv7 and 40% for Faster 
R-CNN. This approach leveraged YOLOv7’s speed while incorporating 
the robustness of Faster R-CNN for more reliable detection. Detected 
face images were resized to 224×224 pixels to prepare images for 
Model 2, which aimed to detect and classify bites.

2.2.2 Model 2: bite classification
For Model 2, we  aimed to accurately classify bite events by 

leveraging deep learning on high-level facial features. This involved 
training a sequential model (LSTM) using manually annotated bite 
data while addressing class imbalance and optimizing classification 
performance. Post-processing techniques were applied to refine 
detections and minimize false positives, ensuring better accuracy for 
bite event identification from video data. Refer back to Figure 3 for an 
overview of ByteTrack model development.

2.2.2.1 Step 1: ground truth for model 2—manual 
annotation of bites

Manual annotated timestamps were used as ground truth for 
model training of bite instances. Coding was conducted using Noldus 
Observer XT v16 (Noldus, 1991). Bites of food, sips of water, and 
active eating time were coded using an established protocol developed 
by Pearce and colleagues (12, 57, 58). All videos were coded by two 
independent research assistants. The inter-rater reliability for each 
behavior, calculated using intraclass correlation coefficients [ICC (1, 

3) i.e., two-way mixed-effects model for a single measure (59)] was 
excellent for all eating events, ICCs >0.98 (25).

2.2.2.2 Step 2: pre-processing for bite classification 
(model 2)

As described previously, detected face images were resized to 
224×224 pixels to prepare images for the next steps, which included 
feature extraction through Efficient Net Convolutional Neural 
Network (EfficientNet CNN) and bite classification through Long 
Short-Term Memory Recurrent Neural Network (LSTM-RNN). Bites 
were tagged with a timestamp in seconds to map each detection to the 
corresponding video frame.

For bite classification, all videos (345 videos) were split into 
training, validation, and test sets (70–15-15%) (41, 42) while 
maintaining split consistency with the Model 1 Dataset (from face 
detection split). An average bite sequence was assessed to be 50 frames 
through visual inspection (i.e., ~1.7 s). Bite sequences were selected as 
50 frames with the manually annotated timestamp placed at the center 
(i.e., 25th frame). Non-bite sequences were selected with a 10-frame 
buffer between bite and non-bite sequences. An example of bite 
sequence labeling is shown in Figure 5.

Bite sequences with more than 45 valid frames (≤10% missing 
data) were retained and padded to retain constant sequence length of 
50 frames. Padding involves adding placeholder frames, here all-black 
frames, to ensure all sequences have a consistent length to facilitate 
uniform processing and analysis. Masking was applied to ensure that 
the LSTM ignores padded frames, preventing it from learning patterns 
from missing or non-informative data (60). Any sequences with fewer 
than 45 frames (>10% missing frames) were discarded. The resulting 
training set contained 13,527 bite sequences (minority class) and 
77,653 non-bite sequences (majority class).

2.2.2.2.1 Addressing class imbalance and loss function.  Class 
imbalance is a common challenge in visual classification tasks, 
including food-related applications (61). To address the significant 
class imbalance between bite (minority class) and non-bite (majority 
class) events, we  implemented a hybrid sampling approach and a 
custom loss function (error minimization function; detailed in 
Supplemental material). This method combines random 
undersampling of the majority class (62) and Synthetic Minority Over-
sampling Technique (SMOTE)-based oversampling of the minority 
class (63) to preserve as much information as possible. This 
combination approach simultaneously reduces the risk of information 
loss from extreme undersampling of the majority class and prevents 
redundancy from excessive oversampling of the minority class. The 
majority class (non-bites) was undersampled to 3x the size of the 
minority class (bites), where the undersampling ratio was chosen 
through grid search. After undersampling, we had 13,537 bites and 
40,611 non-bite sequences. Next, the bite class was oversampled to 
match the non-bite class sample size using SMOTE (63). The final 
Model 2 Dataset had 40,611 bite sequences and 40,611 
non-bite sequences.

2.2.2.3 Step 3: bite vs. non-bite classification
We implemented a bite classification model using transfer 

learning with EfficientNet-CNN (64), a lightweight convolutional 
neural network designed for image recognition. Bite and non-bite 
frame sequences were passed through the encoding layers of 
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EfficientNet-CNN (but not the classification layer) to transform the 
images into a set of high-level nonlinear features. These features, along 
with their corresponding labels and masks, were then fed into an 
LSTM-RNN (65), a commonly used time sequence model that can 
intake a sequence of images for action detection (i.e., bite classification).

2.2.2.3.1 Training parameters for LSTM bite classification.  A 
bidirectional LSTM, a variation of LSTM that gathers information 
from both the beginning and end of a sequence, was used for bite 
detection. The grid search (54) identified the optimal hyperparameters 
as follows: a batch size of 128, a learning rate of 5 × 10−5, 40 training 
epochs, three hidden layers, and hidden size as 256. To reduce 
overfitting, we applied a dropout rate of 0.4 during training. This 
reduces dependence on any single feature and helps the model 
generalize better to unseen data. The model was trained using the 
Adam optimizer (66), selected for its adaptive learning rate capabilities 
and computational efficiency. Early stopping was employed based on 
validation F1 score improvement with patience = 5.

Dynamic thresholding was used during training to adjust the 
model’s confidence level for each bite prediction. The model tested 
different thresholds, adjusting the point at which a prediction is 
considered correct (i.e., when the model is confident enough to label 
an event as bite). After testing multiple thresholds, 0.65 was 
determined to be  the optimal value, providing the best balance 

between minimizing false positives and false negatives in the bite 
detection task. This ensured the model could detect bite events 
accurately without over- or under-predicting. Training, validation, 
and testing were conducted on a high-performance cluster with 
800GB RAM and 32 CPU cores. The training time with selected 
hyperparameters was 26 h and 35 min.

2.2.2.4 Step 4: automatic bite detection from video
Post hoc processing was applied to enhance bite detection 

precision using three techniques: temporal smoothing (67), duplicate 
detection suppression (68), and optical flow validation (69). Temporal 
smoothing was achieved by applying a moving average over a 
20-frame window to stabilize detection probabilities and reduce noise 
from transient movements. The purpose of this smoothing was to 
reduce noise and allow for detection of trends in the data. To prevent 
overcounting the same bite event, we enforced a 15-frame interval 
threshold, filtering out additional detections within this period. This 
threshold ensured that each detection was distinct, allowing for 
improved accuracy by spacing out events and reducing duplicates. 
Optical flow validation was employed to further reduce false 
positives. Using the Lucas-Kanade method (69), key points were 
tracked over a 2-s window post-bite to confirm chewing motion. A 
small motion threshold of 0.02 ensured that detected events exhibited 
the typical small, repetitive motion of chewing, filtering out unrelated 

FIGURE 5

Example of bite labeling; bite center marked in red and whole bite sequence marked in green.
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movements. Bite detection was conducted on a Dell XPS 15 laptop 
with a 4GB GPU, 8 CPU cores, and 16GB of RAM.

2.3 Model performance

The ByteTrack pipeline was evaluated based on its accuracy and 
reliability in detecting bites from video data. Performance was assessed 
by testing the model on a designated video dataset (test set) and 
analyzing key metrics. ByteTrack’s bite predictions were compared with 
manual annotations (n = 51 videos) using both Pearson correlation and 
simple linear regression. Correlation was used to assess the strength of 
association, and regression was used to evaluate the linear fit and 
prediction error for bite count and meal duration. Agreement between 
methods was further evaluated using ICC and Bland Altman analysis.

Simple linear-regression coefficients (intake ~ bite count) were 
computed to relate predicted bite counts to measured intake (n = 50 
videos; n = 1 excluded for missing intake).

The overall ByteTrack pipeline with face detection (Model 1) 
followed by bite classification (Model 2) were utilized for bite 
classification and identifying the timestamp at which the bite occurred 
in the video. For bite timestamping, we selected the frame with the 
peak detection probability over each event, which was then converted 
to seconds using a 30 FPS frame rate. To accommodate computational 
delay, a 10-s margin around each manual timestamp was applied, 
marking detections within this window as true positives (TP). This 
margin accounts for annotation variability, temporal smoothing effects 
that may shift predictions, and the focus on bite count over exact 
timing. Since bite detection prioritizes detecting the correct number of 
bites rather than precise frame-level accuracy, this margin ensures a 
fairer evaluation aligned with real-world use cases. Missed manual 
bites were labeled false negatives (FN), and extra detections by the 
model were false positives (FP). Similar to the individual model 
performance, the same metrics—precision, recall, and F1 score were 
calculated for each video in the test set. The overall precision, recall, 
and F1 scores were found by taking the arithmetic mean for all 51 
videos. Detailed information on video-to-video on performance 
metrics is available in Supplementary Table 2.

2.3.1 Model performance metrics
Model 1 and Model 2 were tested individually on their respective 

test sets to calculate common performance metrics, such as precision, 
recall, and F1 score.

(1) Precision, which indicates how many detected bites were true 
and helps assess false positives, was calculated as the proportion of 
detected bites that were actual events.
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(2) Recall assessed the ability to identify all actual bite events by 
calculating the proportion of true bites correctly detected:
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(3) F1 score provides a balanced assessment of the model’s ability 
to accurately detect bites while minimizing false detections by 
calculating the harmonic mean of precision and recall:
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2.3.2 Inter-rater reliability
To assess the reliability of automated bite detection, we used the 

Intraclass Correlation Coefficient (ICC) (59), a two-way mixed-effects 
model for a single measure. This model, appropriate for a fixed set of 
raters (one of the human raters for ground truth and the automated 
detection model, ByteTrack), evaluated consistency in bite event 
identification. Calculating ICC provided a measure of agreement 
between ByteTrack and human annotations, focusing on consistent 
detection across repeated measures within each subject. We  then 
averaged ICC values across subjects to assess the overall reliability of 
the model’s performance across the dataset.

2.3.3 Assessment of model eating behavior 
detection

Multiple metrics were used to assess systematic errors and overall 
performance of the ByteTrack bite count and meal duration 
predictions against manual ground truth. Scatterplots were employed 
to visualize the relationship between modeled and manual metrics and 
identify trends in overestimation or underestimation and quantitative 
measures such as Root Mean Square Error (RMSE), percentage RMSE 
(%RMSE), and error percentage (Error %) capture the magnitude and 
nature of deviations. Additionally, to understand the relationship of 
predicted bite count with actual intake (n = 50, 1 participant excluded 
due to unavailability of objective intake measure), correlations 
between predicted bite count and measured energy intake (kcal) and 
gram intake at meals were calculated. The specific metrics were:

(1) Slope, which reflects proportional errors, with values >1 
indicating overestimation and <1 indicating underestimation with a 
45° line (y = x) representing perfect agreement.

(2) Intercept, which reflects any consistent bias or offset.
(3) R2, which provides an overall measure of how well the modeled 

values explain the variance in manual values.
(4) RMSE, which assesses raw error while maintaining units by 

calculating the average deviation between predicted and manual metrics 
(i.e., RMSE tells how far off the model is on average from the true values):
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=
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where iy  = manual value, ˆiy = modeled value, N = total number 
of observations.

(5) RMSE%, which allows for comparison between metrics by 
normalizing RMSE relative to the mean of the manual metrics:
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(6) Error %, which assesses localized patterns of bias in the model’s 
predictions by calculating the deviation between predicted and 
actual bite counts across different videos.

	

( )−
= ×Error% 1

ˆ
00%

y
i i

i

y y

where iy  = manual value, ˆiy = modeled value
We conducted a retrospective visual review of the videos to gain 

a general understanding of where the model performed well or poorly. 
This visual inspection aimed to estimate potential reasons for 
mismatches in bite count and meal duration between the model and 
manual annotations.

3 Results

3.1 Model performance

3.1.1 Model 1—face detection
Both YOLOv7 and Faster RCNN were evaluated using an 

Intersection over Union (IoU) threshold of 0.5, a standard measure in 
object detection. An IoU threshold of 0.5 means that a prediction is 
considered correct if the predicted bounding box overlaps with at least 
50% of the actual object’s (manually labeled) bounding box. This 
threshold is widely used because it provides a balanced approach to 
precision and recall, ensuring predictions are accurate without being 
overly strict. A threshold lower than 0.5 might allow too many false 
positives, while a higher threshold could miss valid detections that are 
not perfectly aligned.

YOLOv7 achieved a precision of 98.12%, recall of 94.35%, and an 
F1 score of 96.98%. These results demonstrate YOLOv7’s ability to 
detect faces quickly and accurately. YOLOv7 also shows slightly lower 
recall (i.e., misses some faces). Faster RCNN had a precision of 
92.94%, recall of 98.75%, and an F1 score of 95.76%, with higher 
recall than YOLOv7. We therefore used the faster model YOLOv7 as 
the primary model with Faster RCNN as a fallback.

This combination of YOLOv7 as primary model with Faster 
RCNN as fallback, gave us a precision of 99.24%, recall of 98.25%, and 
F1 score of 98.74% at an IoU = 0.5.

3.1.2 Model 2—bite classification
The LSTM-RNN model achieved a mean precision of 72.8%, 

mean recall of 80.9% and an mean F1 score of 76.2% for bite detection 
across the test dataset (n = 51 videos). This performance was evaluated 
on a test set comprising 3,776 bite sequences and 22,140 non-bite 
sequences in a sequence-to-sequence analysis at a confidence 
threshold of 0.65. This is a sequence-to-sequence analysis, i.e., 
measuring performance on chunks of image sequences (images from 
Model 1), which allows for a controlled evaluation of the model’s bite 
classification ability, independent of continuous video tracking errors, 
frame inconsistencies, and temporal noise. By focusing on 
pre-segmented sequences derived from object detection, this approach 

isolates the LSTM’s performance, ensuring that the assessment reflects 
its ability to recognize temporal patterns without the confounding 
effects of tracking stability.

3.1.3 ByteTrack performance—bite detection
ByteTrack’s bite detection performance was evaluated on 51 

videos from 42 children, achieving an average precision of 79.4%, 
recall of 67.9%, and an F1 score of 70.6% with a 10-s margin from 
ground truth. We see large variability between subjects, with precision 
ranging from 38.2 to 100%, recall from 17.6 to 93.6%, and F1 score 
from 26.3 to 91.2%. Post-hoc smoothing likely improved precision by 
filtering spurious detections but reduced recall by removing some true 
bites. The confusion matrix from the ByteTrack system on the test set 
(n = 51 videos) is shown in Table 2.

Although we  did not log inference time per video, ByteTrack 
typically processed a 30-min video in ~25–30 min on a Dell XPS 15 
laptop (4GB GPU), depending on activity level. In contrast, manual 
double-coded annotation took ~70–80 min per video.

3.2 ByteTrack performance relative to 
gold-standard manual annotation

3.2.1 Inter-rater reliability
The reliability of bite events between manually coded data and 

ByteTrack or inter-rater reliability, measured using ICC, showed 
moderate reliability (59) with a mean value of 0.66 and a range of 
0.24–0.99.

3.2.2 Bite count
The scatter plot comparing modeled and manual bite counts 

shows consistent overestimation by the model (Figure 6A). Linear 
regression fitted across all data points produced a slope of 0.79 
and an intercept of 56.48, with an R2 of 0.12 and a Pearson 
correlation coefficient of r = 0.35, indicating a weak linear 
association between modeled and manual counts. The mean of the 
per-subject RMSE was 61.6 bites and mean per-subject RMSE% of 
96.9%. The mean per-subject error% was 72.9%. The model 
captures the general bite count trend, with predicted counts 
correlated to ground truth. It overestimates on average and shows 
high variability across subjects. Children with higher true bite 
counts are generally ranked higher, despite errors in exact values. 
A Bland–Altman plot depicting the differences in bite counts can 
be  found in Supplementary Figure  2. The Bland–Altman plot 
shows that model-predicted bite counts were on average 47.6 bites 
higher than manual counts, with 95% limits of agreement ranging 

TABLE 2  Confusion matrix on test set for bite detected in test video data 
using ByteTrack (n = 51 videos).

Predicted classes

Bite Non-bite

Actual class Bite 5,213 (TP) 1,842 (FN)

Non-bite 1,653 (FP) Unknown (TN)

TP, True positives; FP, False positives; TN, True negatives; FN, False negatives.
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from −197.8 to 112.6 bites (manual—model), indicating that 
differences between the two methods spanned from the model 
predicting more bites to the manual count exceeding the model. 
The differences appear to widen with increasing average 
bite counts.

3.2.3 Meal duration
The relationship between manual and model-calculated meal 

duration is shown in Figure  6B indicating a moderate positive 
relationship between modeled and manual durations. A linear 
regression fitted across all data points produced a slope of 0.64 and an 
intercept of 2.53 with an R2 of 0.69, indicating moderate linear 
association between modeled and manual computed meal duration. 
The mean of the per-subject RMSE was 4.39 min, with a mean 
per-subject RMSE% of 28.3%. The mean percentage error, derived 
from the percent error per subject, was −16.0%, indicating a 
systematic underestimation.

3.2.4 ByteTrack performance with real-world 
eating behavior outcomes

Simple linear regression models were used to assess the ability of 
ByteTrack to model eating behavior that relates to real-world 
outcomes such as meal intake. The relationship between meal energy 
intake (kcal) and gram intake (g) and modeled bite counts is shown 
in Figures 7A,B respectively. The relationships between meal energy 
and gram intake with the manual annotations are in Figures 7C,D. The 
relationship between modeled bite count and meal intake shows weak 
but clear trends. The R2 values (regression coefficient) are low 
(R2 = 0.05 for kcal, R2 = 0.06 for grams), with high variability in how 
much modeled bite count predicts intake. Both figures show positive 
slopes (i.e., higher bite count associated with higher intake) between 

modeled bite counts and measured intake. Substantial inter-individual 
variability is seen in the plots. Positive slopes in both figures show 
higher bite counts are generally associated with greater intake. While 
the associations are weaker than those observed with manual bite 
counts (R2 = 0.42 for kcal, R2 = 0.53 for grams), the trends remain 
evident, suggesting that modeled bite count captures meaningful 
intake patterns despite variability across individuals.

4 Discussion

ByteTrack demonstrated moderate performance, with an average 
F1 score of 71% and an inter-rater reliability (ICC = 0.66) when 
compared to manually annotated ground truths. To our knowledge, 
this is the first automated system specifically developed to analyze 
eating behaviors in children, whose video data presents unique 
challenges due to frequent movements and occlusions. ByteTrack 
serves as a proof-of-concept for automated bite detection in children 
and suggests a promising future for this direction of research.

To support robust bite detection, the first stage (part 1) of the 
pipeline focused on accurate face localization despite child movement 
and occlusion. A two-stage detection strategy was used, in which a 
fast, high-precision YOLOv7 model served as the primary detector, 
while a higher-recall Faster R-CNN acted as a fallback in cases of 
missed detections. This design allowed the system to maintain high 
face detection performance (recall and precision >98%), balancing the 
need for speed with tolerance to the visual variability common in child 
mealtime videos.

Bite detection (part 2) showed greater variability but moderate 
performance across subjects (mean F1 = 71.3%; ICC = 0.66). However, 
total overall bite counts were generally inflated, with over-firing 

FIGURE 6

Scatter plots showing the relationship between manual (ground truth) and modeled (predicted by ByteTrack) eating behavior metrics (n = 51 videos), 
assessed using both Pearson correlation and simple linear regression. The red line represents ideal agreement (y = x), and the blue line shows the fitted 
regression line. Each point represents one test video. (A) Manual vs. modeled bite count. (B) Manual vs. modeled meal duration. RMSE, Root Mean 
Square Error, measures the average magnitude of prediction error; RMSE%, RMSE expressed as a percentage of the mean manual value; Error%, 
Average absolute percentage difference between manual and modeled metrics; R2, Coefficient of determination from the regression model; r, Pearson 
correlation coefficient.
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concentrated in the early portion of meals and under-firing during 
later or longer sessions. Retrospective visual inspection of videos 
suggests several possible contributors. Rapid, closely spaced bites, 
often involving brief spoon nibbling, may blur event boundaries and 
lead to extra detections. As meals progress, children tend to shift focus 
or play with food, producing more body movement and occlusions 
that can suppress detections. Together, these factors appear to let the 
model identify the general timing of bites yet trigger too frequently 
around true events at the start and too sparingly as eating slows, 
leading to shorter estimated meal durations.

While the video data used for ByteTrack was collected in 
controlled laboratory settings, the conditions of recording simulated 
a more natural mealtime environment in that additional people were 
present to engage with children (~80% videos in training data and 
~82% videos in test set with additional person). This approach 
contrasts with previous systems developed for adults in tightly 
controlled settings (18, 20) by accommodating the unique behavioral 
patterns and interactions typical in a child’s meal. However, the 
majority of a child’s food intake at this age takes place at home and 
school (70–72), therefore future studies are needed to improve the 
flexibility of ByteTrack to evaluate eating behaviors in these 
diverse settings.

Traditional assessment methods for eating rate rely on self-
reporting, which is often inaccurate due to memory lapses and 
social desirability bias (73, 74). More objective measurements come 
from wearable devices and video-based monitoring. Wearable 
devices, such as bite counter watches (75) and sensor-based 
eyeglasses (76), can track bites. But there are limitations with these 
devices as they require researchers or users to start and stop data 
collection which can be  intrusive to the natural eating process. 
Video-based monitoring methods like ByteTrack, while also 
requiring similar manual start/stop, offer a less intrusive approach 
for measuring meal eating behaviors that aligns with current gold 
standards of manual observational coding. Accurate, automated, 
real-world video-based approaches may enable the use of 
smartphone cameras for passive dietary monitoring in naturalistic 
settings, such as at home, creating new opportunities for scalable 
dietary data collection and intervention. Applying home recording 
methods with ByteTrack for automated bite detection provides a 
practical solution for capturing meal and snack intake, enabling the 
estimation of food intake and eating rates in natural settings. 
However, as these technologies advance, ensuring data privacy and 
encryption will be  critical for secure handling of sensitive 
information (77).

FIGURE 7

Scatter plots showing the correlation between modeled or predicted bite counts (A,B) and manual or ground truth (C,D) vs. actual meal intake (grams 
or kcal; n = 50 videos; n = 1 missing measured meal intake). (A) Scatter plots showing modeled bite counts vs. actual calculated energy (kcal) intake at 
meal. (B) Scatter plots showing modeled bite counts vs. actual calculated gram intake at meal. (C) Scatter plots showing manual bite counts vs. actual 
calculated energy (kcal) intake at meal. (D) Scatter plots showing manual bite counts vs. actual calculated gram intake at meal. R2, coefficient of 
determination from simple linear regression (intake ~ bite count).
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The goal for future iterations of ByteTrack will be to replace or 
supplement manual observational coding, as it is a highly time and 
resource-intensive process. In the current study, double-coded manual 
annotation took approximately 80 min per 30-min video (>40 h total 
for the dataset), posing challenges for scaling to larger datasets. In 
contrast, ByteTrack completed the same task in typically 25–30 min 
per 30-min video, with minimal human input beyond initiating the 
script. However, this version of ByteTrack is not yet optimized for 
real-time bite detection. Human annotators may also introduce 
variability due to differences in interpretation, fatigue, or experience, 
which is why double coding is used to ensure reliability by resolving 
discrepancies between two independent annotations. In contrast, 
automated coding can apply consistent criteria across all videos, 
eliminating the need for double coding and improving research 
efficiency. Once refined, automated approaches like ByteTrack could 
enhance the ability to study human eating behavior outside 
the laboratory.

While the ByteTrack model had moderate F1 scores, which 
demonstrated good alignment with manual annotation, performance 
variability of the model highlights areas for improvement in future 
iterations. The ByteTrack system was less accurate when children are 
rapidly and had pronounced head and hand movements, potentially 
leading to a higher number of false positives (i.e., mistaking these 
movements for bites). False negatives occurred when bite motions 
were occluded, such as when a child’s hand, utensils, or other objects 
blocked the view of their mouth, which led to missed bite events and 
lower recall in detection accuracy. Additionally, it appears that the 
model overestimates the bite count during the initial rapid eating 
phase, when the child is more focused on eating. As the meal 
progresses and becomes longer, the child may slow down, move 
around, or lose attention to the food, leading to increased occlusions 
and missed bite events. This shift could result in the overestimation of 
bite counts early in the meal and the underestimation of meal duration 
later on, as fewer bites are detected when eating slows and occlusions 
become more frequent. This pattern of overestimating bite counts at 
the start of longer meals and underestimating meal duration in the 
later stages seems to contribute to overall inaccuracies in both bite 
count and meal duration estimation. Another limitation of ByteTrack 
is that there was no explicit modeling to differentiate bites from sips, 
which could have led to a misclassification of sips as bites. These 
challenges underscore the need to further refine the ByteTrack model 
to enhance its robustness in naturalistic eating scenarios.

Despite its limitations, there are several strengths to the current 
iteration of ByteTrack. As a non-intrusive, video-based system, it 
provides an alternative to wearable sensors and sets the stage for large-
scale, automated detection by reducing reliance on manual annotation. 
The deep learning architecture used to construct ByteTrack combined 
state of the art methods (e.g., YOLOv7, Faster R-CNN, and LSTM) to 
achieve accurate face detection while accounting for the unique 
movement patterns of children. Furthermore, extending ByteTrack’s 
application beyond the lab to home and school environments, a 
direction in our ongoing studies, will further validate ByteTrack’s 
performance and enhance its real-world applicability.

Future iterations of ByteTrack will enhance robustness by 
incorporating diverse training data, including varied lighting 
conditions, movement patterns, and occlusions (78). Action detection 
in real-world video remains challenging due to the variability in 

human movement and environmental conditions (e.g., lighting, 
cluttered backgrounds). Data augmentation techniques, such as 
occlusion augmentation (e.g., adding synthetic hands, utensils, or 
objects partially covering the mouth), motion blur to reflect natural 
head movements, and temporal adjustments like varying frame rates 
or inserting brief distractions, can help simulate real-world eating 
scenarios (45). Additionally, integrating inter-subject variability by 
using subject identity as a model feature can improve the system’s 
ability to distinguish bites from non-bites (79). Explicitly modeling 
bite and sip classification separately may improve accuracy and 
reduce bite overestimation in the current model. Incorporating more 
data from real-world smartphone videos may further enhance 
performance and practical utility. Moreover, ByteTrack’s bite-count 
output could also be paired with complementary tools for portion-
size estimation and food identification (80, 81) to yield more precise, 
holistic measures of meal microstructure and dietary intake in 
future work.

ByteTrack is a proof-of-concept, automatic bite detection 
framework for easing the time and resources required for manual 
video annotation. This represents a first step toward scalable, 
automated bite detection for the measurement of meal-related 
eating behaviors in children. With additional testing and model 
improvements, ByteTrack may expand the ability to capture real-
time changes in human eating behaviors measured outside 
the laboratory.
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Glossary

AI - Artificial Intelligence

API - Application Programming Interface

CNN - Convolutional Neural Network

CPU - Central Processing Unit

COVID-19 - Coronavirus Disease 2019

F1 - F1 Score (harmonic mean of precision and recall)

FN - False Negative

FP - False Positive

FPS - Frames Per Second

FPN - Feature Pyramid Network

GPU - Graphics Processing Unit

ICC - Intraclass Correlation Coefficient

IoU

Intersection of Union

KCF - Kernelized Correlation Filter

LSTM - Long Short-Term Memory

MP4 - MPEG-4 Video Format

R-CNN - Regional-Convolutional Neural Network

RAM - Random Access Memory

ResNet - Residual Network

RMSE - Root Mean Square Error

RMSE% - Percentage Root Mean Square Error

RNN - Recurrent Neural Network

SGD - Stochastic Gradient Descent

SMOTE - Synthetic Minority Over-sampling Technique

TN - True Negative

TP - True Positive

YOLOv7 - You Only Look Once, version 7
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