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Introduction: Assessing eating behaviors such as eating rate can shed light on
risk for overconsumption and obesity. Current approaches either use sensors
that disrupt natural eating or rely on labor-intensive video coding, which limits
scalability.

Methods: We developed ByteTrack, a deep learning system for automated bite
count and bite-rate detection from video-recorded child meals. The dataset
comprised 1,440 minutes from 242 videos of 94 children (ages 7-9 years)
consuming four meals, spaced one week apart, with identical foods served
in varying amounts. ByteTrack operates in two stages: (1) face detection via a
hybrid Faster R-CNN and YOLOvV7 pipeline, and (2) bite classification using an
EfficientNet convolutional neural network combined with a long short-term
memory (LSTM) recurrent network. The model was designed to handle blur,
low light, camera shake, and occlusions (hands or utensils blocking the mouth).
Performance was compared with manual observational coding.

Results: On a test set of 51 videos, ByteTrack achieved an average precision of 79.47%,
recall of 67.9%, and F1 score of 70.6%. Agreement with the gold-standard coding,
assessed by intraclass correlation coefficient, averaged 0.66 (range 0.16—0.99), with
lower reliability in videos with extensive movement or occlusions.

Discussion: This pilot study demonstrates the feasibility of a scalable, automated tool
for bite detection in children’s meals. While results were promising, performance
decreased when faces were partially blocked or motion was high. Future work will
focus onimproving robustness across diverse populations and recording conditions.
Clinical trial registration: https://clinicaltrials.gov/study/NCT03341247,
identifier NCT03341247.
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1 Introduction

Behaviors exhibited during a bout of eating (e.g., bites, chews, eating rate, bite-size, etc.)
are collectively known as “meal microstructure” Meal microstructure can be assessed to
understand individual differences in eating patterns (1), the effects of food properties (1-3),
and mechanisms of disordered eating and obesity (4-8). In pediatric populations, these
insights are especially valuable for understanding obesity risk, as behaviors like larger bites
and faster eating have been linked to greater food consumption and obesity (5, 8).
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Characterizing meal microstructure can provide insights into
pediatric obesity risk, which could potentially lead to novel
interventions to reduce this global pandemic (9). Observational
studies have informed interventions targeting eating speed in children,
with promising results. For example, an intervention (10) aimed at
slowing child eating rates through educational materials and timers
resulted in slower parent-reported eating rates and lower BMI gain
over 8 weeks compared to the control group, suggesting interventions
on meal microstructure hold promise for weight gain prevention in
youth (11). Although these results are promising, research on meal
microstructure may be held back by the expense and difficulty of
reliably coding eating episodes. Developing methods like ByteTrack
could help streamline measurement and improve the scalability and
sustainability of this approach.

Several approaches have been developed to measure meal
microstructure in humans. Currently, the gold standard for bite and
microstructure analysis is manual observational coding (12), where
researchers manually review videos and annotate bite timestamps
through observation. Although observational coding is highly
accurate and reliable (13), it is time-consuming, labor-intensive, and
costly, making it less scalable and efficient compared to automatic bite
detection systems. To address those limitations, wearable devices that
use various sensor modalities such as acoustic sensors and
accelerometers have been designed to record meal microstructure in
adults (14). However, wearable sensor-based bite detection relies on
predefined motion thresholds, which can lead to false positives
(misidentifying hand movements like drinking or gesturing as bites),
struggle with utensil variability (difficulty adapting to different eating
methods such as chopsticks, spoons, or eating by hand), and face
challenges in different contextual settings (15, 16).

To address challenges with wearable devices, several groups have
developed automated approaches for bite counting from video, which
are more adaptable. One method uses facial landmarks to define bites
based on criteria like hand proximity or mouth opening (17-19).
While effective in controlled environments, this approach is prone to
false positives from non-eating behaviors such as gestures, talking, or
facial expressions. Optical flow approaches (20, 21), which track
motion between consecutive frames, also face significant limitations
in reliably distinguishing between eating actions (i.e., bites) and other
dynamic movements such as fidgeting, gesturing, or speaking. These
challenges are especially pronounced in children (22, 23), who often
engage in frequent hand-to-face movements or fidgeting, but similar
issues can also occur in adults during social interactions.

Deep learning-based approaches (e.g., Convolutional Neural
Networks or CNNs) have demonstrated stronger performance in bite
detection (18, 20, 24) compared to facial landmark and optical flow-
based models. However, these methods have primarily been tested
under ideal conditions with high-quality video recordings of eating
events, often involving adult participants. Real-world applications
present a broader range of challenges, including varied lighting and
higher variability in movement patterns, which are common across
age groups. Development of deep learning approaches to automate
bite detection would advance the field by making models more
resistant to non-eating movements.

The purpose of this paper is to present ByteTrack, a deep
learning model designed to detect bites and calculate eating speed
in pediatric populations. To ensure its robustness in addressing
challenges specific to pediatric samples, ByteTrack was directly
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trained on video recordings of children eating meals. It integrates
advanced machine learning techniques, including Convolutional
Neural Networks (CNNs) and Long Short-Term Memory-Recurrent
Neural Networks (LSTM-RNNs). The main objectives of this paper
are: (1) to develop a deep-learning-based bite detection system to
automatically identify bites in video data recorded from children’s
laboratory meals; (2) to evaluate ByteTrack’s accuracy and reliability
by testing it on a designated video dataset (test set); and (3) to
compare ByteTrack’s performance with manual (gold standard)
annotations to assess its practical utility for capturing key measures
of children’s eating behavior such as bite count, bite rate, and meal
duration, along with correlations between measured intake with
predicted bite counts.

2 Methods
2.1 Data collection

2.1.1 Study design and participants

ByteTrack was trained on 242 videos (4,770 min) of laboratory
meals in 94 children aged 7-9 years. Children consumed 4 laboratory
meals with approximately 1-week between each meal. Video data came
from the Food and Brain study (ClinicalTrials.gov, NCT03341247), a
prospective investigation examining neural and cognitive risk factors
for the development of obesity in middle childhood. The study
employed a longitudinal family risk design, with children attending six
baseline visits and one follow-up visit conducted 1 year after the first
baseline visit. Data related to neurocognitive and longitudinal
outcomes are reported elsewhere (25-31). Methods used to collect
anthropometric and demographic data can be found in earlier studies
(26, 27, 32). Families were recruited for the study based on maternal
weight status: low (maternal BMI < 25) versus high (maternal
BMI > 30) risk for obesity. All children were below the 90th
BMI-for-age percentile at baseline. The study received approval from
the Pennsylvania State University Institutional Review Board. Parental
consent and child assent were obtained at the first visit, and families
received modest monetary compensation for completing each study
visit. The final sample included 94 subjects who had a total of 345 viable
meal videos (Figure 1 for reference to viability of data). Participant
inclusion and exclusion with relevant CONSORT diagram are detailed
in earlier publications (25). Demographic data for the sample can
be found in Table 1. Supplementary Table 1 provides detailed
information on subject-by-subject meal videos considered for training
and testing, including subject IDs and meal sessions, along with details
on exclusions and inclusions.

2.1.2 Laboratory meals

During visits 2-5, children were served meals of identical foods
that varied by amount served (i.e., portion size), according to the aims
of the parent study. The protocols for these meal sessions along with
foods served have been previously described (25). In brief, meals
consisted of foods that are common to United States children (i.e.,
macaroni and cheese, chicken nuggets, grapes, and broccoli). The
reference portion (smallest) consisted of the usual serving sizes for
this age group, and the subsequent three portions increased the
amount served for each item by ~33%. The order in which children
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FIGURE 1
Flowchart of video dataset consideration for ByteTrack model development.

received the meals was randomly assigned and counter- balanced.
Meal sessions were separated by at least a week.

Children had up to 30 min to eat ad libitum until comfortably full,
while being read a non-food related story. Initially, these stories were
read by a research assistant (n = 62). However, due to COVID-19
safety protocol changes, the remaining 32 children were either read a
book by a parent (1 = 16) or listened to a computerized audiobook
(n = 16; Audible by Amazon, Newark, NJ). Intake was calculated by
subtracting post-weight from pre-weight for each food. Intake was
converted to kilocalories using Nutrition Facts panel Information or
an online database.’

2.1.3 Video recording

Each eating event (meal session) was video recorded at 30 frames
per second using an Axis M3004-V network camera. The camera was
positioned outside the line of sight of children during the meal session.

Frontiers in
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While parents were informed about the recordings, children were not.
If a child noticed the camera or asked about its purpose, the research
assistant explained that the camera was for safety purposes, aiming to
reduce any observer effect. provides a schematic of the eating
environment for the two dining rooms used over the visits, along with

examples of a meal session.

2.2 Model building

The ByteTrack pipeline for detecting bites consists of two major
parts. The first part focuses on detecting and tracking faces in the
video, to ensure that the system concentrates on the target child
and ignored irrelevant objects or other individuals. The purpose of
this is to reduce noise and prepare clean data for the second part of
the pipeline. In the second part, the identified faces from the first
step are analyzed to classify their movements and determine
whether a child was taking a bite or performing other actions, such
as talking or any irrelevant gestures. To enhance accuracy, a filtering
process is applied to refine the results. Together, these steps form a
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TABLE 1 Demographics of the sample.

Total Included (n = 94 children)
n (%)

Characteristic

Categorical

variables

Male 49 (52.1)
Female 45 (47.9)
Race
White 91 (96.8)
Non-white” 3(3.2)

Parental education®

<Bachelor’s degree 18(19.1)
(<16 years)
Bachelor’s degree 42 (44.7)
(16 years)
>Bachelor’s degree 34 (36.2)
(>16 years)
Parental income®
<$51,000 12 (12.8)
$51,000-$100,000 45 (47.9)
>$100,000 34(36.2)
Continuous Mean (SD),
variables [min, max]
Age (years) at 7.9 (0.6), [7.0,
baseline 9.0]
BMI percentile at 47.9 (24.3), [3.9,
baseline 89.5]

“Asian: n = 3; American Indian/Alaskan Native, Black/African American, Hawaiian/Pacific
Islander: all n = 0; All participants reported not being Hispanic/Latino. "Parent income
missing values (n = 3). *Parental Education: < Bachelor’s Degree (<16 years): High School/
GED, Associate’s Degree, Technical or vocational school; > Bachelor’s Degree (>16 years):
Master’s Degree, Ph.D.

2-model pipeline to identify bites in videos. Diagrammatic
representation of overall bite detection is in Figure 3. A more
detailed flowchart for the
Supplementary Figure 1. All model development, deployment, and

system development is in

statistical analyses were conducted using Python version 3.11.7
(33). Inter-rater reliability (ICC) was computed using Pingouin
(v0.5.4) (34), while other statistical analyses, including regression
and correlation, were performed using Statsmodels (v0.14.0) (35).
F1 score calculations and classification metrics were computed
using scikit-learn (v1.2.2) (36). Model development and computer
vision tasks used PyTorch (v2.2.2) (37) and OpenCV (v4.5.3) (38).
All plots and visualizations were generated using Matplotlib
(v3.8.4) (39).

2.2.1 Model 1: face detection

The first part of the model pipeline focuses on detecting and
tracking faces in video footage, an essential step for identifying who is
present and ensuring the system only analyzes relevant areas. To
achieve this, we gathered a dataset of frames extracted from a random
subset of videos to train and test the system. Two different approaches
are used to detect faces: one that prioritizes speed for quick processing
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(You Only Look Once or YOLOV?) and another that is designed to
handle more challenging situations (Faster Regional Convolutional
Neural Network or Faster R-CNN), such as when faces are partially
blocked or hard to see. The system is designed with the goal of
achieving both efficiency and accuracy in face detection before
progressing to Model 2 in the pipeline. Refer back to Figure 3 for an
overview of ByteTrack model development.

2.2.1.1 Step 1: model 1 dataset preparation

To ensure consistent frame rates across all videos for ground truth
matching, meal videos (n = 345) are converted from a variable frame
rate to a constant frame rate with .mp4 format and 30 frames per
second (fps). This conversion is done using FFmpeg software (40)
(version 4.3.2) with CUDA acceleration (h264_nvenc codec). Videos
are then converted into frames at 6 frames per second to balance
temporal resolution and computational efficiency.

A random sample of 52 videos (50 frames per video, 2,600 frames
total) that include a diverse range of skin tones and seating positions
is randomly selected for the face detection dataset. A 70-15-15%
subject split is done (41, 42), yielding training (n = 1,800 frames, 36
subjects), validation (n = 400 frames, 8 subjects), and test (n = 400
frames, 8 subjects) sets. These sampled image frames are considered
the Model 1 Dataset. To ensure an independent validation sample, no
subjects appeared in more than one data set.

To enhance face detection model robustness to real-world
variations in conditions (e.g., lighting changes, motion, camera angles,
etc.,) the following augmentations are applied to the training dataset
(43): Y-reflection (mirror), 2-D Gaussian smoothing (blurring),
brightness adjustment, orientation change to portrait mode, and
rotation (clockwise 10 degrees and anticlockwise 10 degrees). As a
result of these adjustments, the total training set increased to include
10,800 images (i.e., frames of videos).

2.2.1.2 Step 2: ground truth for model 1—manual face
manual labeling

To create a labeled dataset for training, within each image of the
Model 1 Dataset, a single researcher (YRB) used bounding boxes to
identify the children’s faces using the ImageLabeler API [Labellmg
(44)]. Examples of the labeled images with bounding boxes are shown
in Figure 4. The annotated label files are also augmented or
transformed along with corresponding images in the training set. To
maintain the aspect ratio (original size: 1,920 x 1,080) and reduce
computation time, all original and transformed images are resized to
510 x 300 with padding (45) (when needed in augmentations). The
Model 1 Dataset is utilized for both Faster R-CNN and YOLOV7 face
detection models.

2.2.1.3 Step 3A: automatic face detection with YOLO V7

YOLOV7 (46, 47) is used to develop a lightweight face detector to
reduce computational costs. YOLOV7 is a one-stage object detection
model designed for faster inference speeds compared to two-stage
models like Faster R-CNN. In YOLOV7, the entire image is processed
in a single pass through the network, allowing for faster and real-time
object detection with lower computational overhead (47, 48). This
makes YOLOV?7 particularly suited for tasks that require fast detection
in video-based settings.

YOLOV7 provides a general-purpose deep learning network for
object identification, but the parameters must be fine-tuned to
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mounted to record children’s meal intake.

Observation room layouts for meal videos. Children’s meal intake was recorded in one of two observation rooms (A or B). Cameras were wall-

specifically identify children’s faces. To achieve this, the model was
trained with Stochastic Gradient Descent (SGD) (49), a commonly
used optimizer that updates model parameters incrementally on a
subset of the training data, using an initial learning rate of 0.001 and
exponential decay. The learning rate determines the size of the steps
taken by the optimization algorithm (SGD) to adjust the models
parameters during training, where a smaller learning rate makes
smaller, more precise steps and a larger learning rate makes bigger,
faster adjustments but risks overshooting the optimal solution. To
balance early, faster progress with fine-tuning later in training, the
learning rate was reduced gradually using an exponential decay (i.e.,
decreased by a fixed proportion over time), allowing the model to
make smaller and more refined updates as training progressed. A
batch size of four was used, meaning the model processed four
samples at a time before updating its internal parameters. The training
was conducted over 100 epochs, or complete passes through the entire
dataset. To prevent overfitting, early stopping was applied to halt
training if the validation set loss (a measure of model performance on
unseen data during training) does not improve after 10 consecutive
epochs (i.e., patience = 10). No additional hyperparameter tuning or
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cross-validation was performed beyond the standard training
configuration provided by YOLOV?7. Training was run on a Dell XPS
15 laptop with a 4GB GPU, 8 CPU cores, and 16GB of RAM. Training
time was 6 h for YOLOv7 model.

2.2.1.4 Step 3B. Automatic face detection with faster
regional CNN

We used transfer learning on a Faster R-CNN model (50) with a
ResNet-50 backbone (51) and Feature Pyramid Network (FPN) (52)
for child face detection. Faster R-CNN is a two-stage object detection
model that first generates regional proposals and then classifies and
refines these regions, making it well-suited for tasks requiring accurate
localization, such as face detection. The ResNet-50 backbone is a deep
convolutional network with 50 layers, and its integration with FPN
enhances the model’s ability to detect objects at multiple scales, which
improves accuracy in detecting faces of varying sizes and positions.

To assess the model’s generalizability, we initially conducted 3-fold
cross-validation (53), where the training set was split into three
subsets or folds. Each fold used 7,200 training images and 3,600
validation images. Following cross-validation, we conducted a grid
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Overview of the bite detection pipeline. Meal videos were first converted to a constant frame rate of 30 frames per second (fps) before face detection
(Model 1) using YOLOV7, with Faster R-CNN as a fallback. Detected faces were processed through EfficientNet CNN for feature extraction, followed by
bite classification using an LSTM-RNN (Model 2). Post-processing techniques, including optical flow validation (Lucas-Kanade method), duplicate
detection suppression, and temporal smoothing, were applied to refine predictions. The final output included the peak frame of each detected bite,

with timestamps analyzed based on the 30fps conversion.
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FIGURE 4
Examples of bounding boxes using LabellMg used for labeling child faces for face detection.
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search (54) to fine-tune the model’s hyperparameters using the full
training set, guided by feedback from a separate validation set. The
model was trained using a batch size of 8 images with a loss
accumulation over eight batches, which increased the batch size to 64
images. We used an initial learning rate of 0.01 with an SGD optimizer
with a weight decay of 0.0005, a step size of 2 where the scheduler
updated the learning rate every two epochs instead of default. We also
used a momentum of 0.9 for the SGD optimizer to smooth parameter
updates by incorporating a fraction of the previous update into the
current one, where a high momentum (momentum = 1) gains all
information from the previous step. Early stopping with a patience of
three epochs was used based on feedback from the validation set for
minimizing validation loss. Training was carried out on a high-
performance cluster with 800GB RAM and 32 CPU cores. The
training time with selected hyperparameters was 18 h and 22 min.

2.2.1.5 Step 4: face detection using a combination of
YOLOv7 and faster RCNN

We implemented a face detection and tracking system
combining YOLOv7 and Faster R-CNN [similar to method used in
(55)]. Videos were processed at 30 fps, with YOLOv7 handling
initial detection. If YOLOv7’s confidence score exceeded 0.8, its
detected bounding box was used to track the child’s face using a
Kernelized Correlation Filter (KCF) tracker (56), a high-speed
tracker which updated every 20 frames to maintain accurate
localization and prevent drift.

YOLOV7 served as the primary detector, provided it successfully
detected a face with a confidence score of 0.8 or higher. If YOLOv7
failed to detect a face or produced a confidence score below this
threshold, Faster R-CNN was used as a fallback. By default, the
detections were weighted, with YOLOV7 assigned 80% and Faster
R-CNN 20%. However, if YOLOV7’s bounding box was significantly
smaller—less than 30% of the area of the Faster R-CNN detection—
the weights were adjusted to 60% for YOLOv7 and 40% for Faster
R-CNN. This approach leveraged YOLOV7’s speed while incorporating
the robustness of Faster R-CNN for more reliable detection. Detected
face images were resized to 224x224 pixels to prepare images for
Model 2, which aimed to detect and classify bites.

2.2.2 Model 2: bite classification

For Model 2, we aimed to accurately classify bite events by
leveraging deep learning on high-level facial features. This involved
training a sequential model (LSTM) using manually annotated bite
data while addressing class imbalance and optimizing classification
performance. Post-processing techniques were applied to refine
detections and minimize false positives, ensuring better accuracy for
bite event identification from video data. Refer back to Figure 3 for an
overview of ByteTrack model development.

2.2.2.1 Step 1: ground truth for model 2—manual
annotation of bites

Manual annotated timestamps were used as ground truth for
model training of bite instances. Coding was conducted using Noldus
Observer XT v16 (Noldus, 1991). Bites of food, sips of water, and
active eating time were coded using an established protocol developed
by Pearce and colleagues (12, 57, 58). All videos were coded by two
independent research assistants. The inter-rater reliability for each
behavior, calculated using intraclass correlation coeflicients [ICC (1,
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3) i.e., two-way mixed-effects model for a single measure (59)] was
excellent for all eating events, ICCs >0.98 (25).

2.2.2.2 Step 2: pre-processing for bite classification
(model 2)

As described previously, detected face images were resized to
224x224 pixels to prepare images for the next steps, which included
feature extraction through Efficient Net Convolutional Neural
Network (EfficientNet CNN) and bite classification through Long
Short-Term Memory Recurrent Neural Network (LSTM-RNN). Bites
were tagged with a timestamp in seconds to map each detection to the
corresponding video frame.

For bite classification, all videos (345 videos) were split into
training, validation, and test sets (70-15-15%) (41, 42) while
maintaining split consistency with the Model 1 Dataset (from face
detection split). An average bite sequence was assessed to be 50 frames
through visual inspection (i.e., ~1.7 s). Bite sequences were selected as
50 frames with the manually annotated timestamp placed at the center
(i.e., 25th frame). Non-bite sequences were selected with a 10-frame
buffer between bite and non-bite sequences. An example of bite
sequence labeling is shown in Figure 5.

Bite sequences with more than 45 valid frames (<10% missing
data) were retained and padded to retain constant sequence length of
50 frames. Padding involves adding placeholder frames, here all-black
frames, to ensure all sequences have a consistent length to facilitate
uniform processing and analysis. Masking was applied to ensure that
the LSTM ignores padded frames, preventing it from learning patterns
from missing or non-informative data (60). Any sequences with fewer
than 45 frames (>10% missing frames) were discarded. The resulting
training set contained 13,527 bite sequences (minority class) and
77,653 non-bite sequences (majority class).

2.2.2.2.1 Addressing class imbalance and loss function. Class
imbalance is a common challenge in visual classification tasks,
including food-related applications (61). To address the significant
class imbalance between bite (minority class) and non-bite (majority
class) events, we implemented a hybrid sampling approach and a
custom loss function (error minimization function; detailed in
This method
undersampling of the majority class (62) and Synthetic Minority Over-

Supplemental  material). combines random
sampling Technique (SMOTE)-based oversampling of the minority
class (63) to preserve as much information as possible. This
combination approach simultaneously reduces the risk of information
loss from extreme undersampling of the majority class and prevents
redundancy from excessive oversampling of the minority class. The
majority class (non-bites) was undersampled to 3x the size of the
minority class (bites), where the undersampling ratio was chosen
through grid search. After undersampling, we had 13,537 bites and
40,611 non-bite sequences. Next, the bite class was oversampled to
match the non-bite class sample size using SMOTE (63). The final
Model 2 Dataset had 40,611 bite and 40,611

non-bite sequences.

sequences

2.2.2.3 Step 3: bite vs. non-bite classification

We implemented a bite classification model using transfer
learning with EfficientNet-CNN (64), a lightweight convolutional
neural network designed for image recognition. Bite and non-bite
frame sequences were passed through the encoding layers of
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Example of bite labeling; bite center marked in red and whole bite sequence marked in green.

EfficientNet-CNN (but not the classification layer) to transform the
images into a set of high-level nonlinear features. These features, along
with their corresponding labels and masks, were then fed into an
LSTM-RNN (65), a commonly used time sequence model that can
intake a sequence of images for action detection (i.e., bite classification).

2.2.2.3.1 Training parameters for LSTM bite classification. A
bidirectional LSTM, a variation of LSTM that gathers information
from both the beginning and end of a sequence, was used for bite
detection. The grid search (54) identified the optimal hyperparameters
as follows: a batch size of 128, a learning rate of 5 x 10, 40 training
epochs, three hidden layers, and hidden size as 256. To reduce
overfitting, we applied a dropout rate of 0.4 during training. This
reduces dependence on any single feature and helps the model
generalize better to unseen data. The model was trained using the
Adam optimizer (66), selected for its adaptive learning rate capabilities
and computational efficiency. Early stopping was employed based on
validation F1 score improvement with patience = 5.

Dynamic thresholding was used during training to adjust the
model’s confidence level for each bite prediction. The model tested
different thresholds, adjusting the point at which a prediction is
considered correct (i.e., when the model is confident enough to label
an event as bite). After testing multiple thresholds, 0.65 was
determined to be the optimal value, providing the best balance
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between minimizing false positives and false negatives in the bite
detection task. This ensured the model could detect bite events
accurately without over- or under-predicting. Training, validation,
and testing were conducted on a high-performance cluster with
800GB RAM and 32 CPU cores. The training time with selected
hyperparameters was 26 h and 35 min.

2.2.2.4 Step 4: automatic bite detection from video

Post hoc processing was applied to enhance bite detection
precision using three techniques: temporal smoothing (67), duplicate
detection suppression (68), and optical flow validation (69). Temporal
smoothing was achieved by applying a moving average over a
20-frame window to stabilize detection probabilities and reduce noise
from transient movements. The purpose of this smoothing was to
reduce noise and allow for detection of trends in the data. To prevent
overcounting the same bite event, we enforced a 15-frame interval
threshold, filtering out additional detections within this period. This
threshold ensured that each detection was distinct, allowing for
improved accuracy by spacing out events and reducing duplicates.
Optical flow validation was employed to further reduce false
positives. Using the Lucas-Kanade method (69), key points were
tracked over a 2-s window post-bite to confirm chewing motion. A
small motion threshold of 0.02 ensured that detected events exhibited
the typical small, repetitive motion of chewing, filtering out unrelated
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movements. Bite detection was conducted on a Dell XPS 15 laptop
with a 4GB GPU, 8 CPU cores, and 16GB of RAM.

2.3 Model performance

The ByteTrack pipeline was evaluated based on its accuracy and
reliability in detecting bites from video data. Performance was assessed
by testing the model on a designated video dataset (test set) and
analyzing key metrics. ByteTracK’s bite predictions were compared with
manual annotations (n = 51 videos) using both Pearson correlation and
simple linear regression. Correlation was used to assess the strength of
association, and regression was used to evaluate the linear fit and
prediction error for bite count and meal duration. Agreement between
methods was further evaluated using ICC and Bland Altman analysis.

Simple linear-regression coefficients (intake ~ bite count) were
computed to relate predicted bite counts to measured intake (1 = 50
videos; n = 1 excluded for missing intake).

The overall ByteTrack pipeline with face detection (Model 1)
followed by bite classification (Model 2) were utilized for bite
classification and identifying the timestamp at which the bite occurred
in the video. For bite timestamping, we selected the frame with the
peak detection probability over each event, which was then converted
to seconds using a 30 FPS frame rate. To accommodate computational
delay, a 10-s margin around each manual timestamp was applied,
marking detections within this window as true positives (TP). This
margin accounts for annotation variability, temporal smoothing effects
that may shift predictions, and the focus on bite count over exact
timing. Since bite detection prioritizes detecting the correct number of
bites rather than precise frame-level accuracy, this margin ensures a
fairer evaluation aligned with real-world use cases. Missed manual
bites were labeled false negatives (FN), and extra detections by the
model were false positives (FP). Similar to the individual model
performance, the same metrics—precision, recall, and F1 score were
calculated for each video in the test set. The overall precision, recall,
and F1 scores were found by taking the arithmetic mean for all 51
videos. Detailed information on video-to-video on performance
metrics is available in Supplementary Table 2.

2.3.1 Model performance metrics

Model 1 and Model 2 were tested individually on their respective
test sets to calculate common performance metrics, such as precision,
recall, and F1 score.

(1) Precision, which indicates how many detected bites were true
and helps assess false positives, was calculated as the proportion of
detected bites that were actual events.

True Positives (TP)

x100%
True Positives (TP) + False Positives (FP)

Precision(%) =

(2) Recall assessed the ability to identify all actual bite events by
calculating the proportion of true bites correctly detected:

True Positives (TP)

x100%
True Positives (TP) + False Negatives (FN )

Recall (%) =
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(3) F1 score provides a balanced assessment of the model’s ability
to accurately detect bites while minimizing false detections by
calculating the harmonic mean of precision and recall:

Precisionx Recall
o L ELBIOR Z Recar

F1 score(%)=2 x100%

Precision+ Recall

2.3.2 Inter-rater reliability

To assess the reliability of automated bite detection, we used the
Intraclass Correlation Coefficient (ICC) (59), a two-way mixed-effects
model for a single measure. This model, appropriate for a fixed set of
raters (one of the human raters for ground truth and the automated
detection model, ByteTrack), evaluated consistency in bite event
identification. Calculating ICC provided a measure of agreement
between ByteTrack and human annotations, focusing on consistent
detection across repeated measures within each subject. We then
averaged ICC values across subjects to assess the overall reliability of
the model’s performance across the dataset.

2.3.3 Assessment of model eating behavior
detection

Multiple metrics were used to assess systematic errors and overall
performance of the ByteTrack bite count and meal duration
predictions against manual ground truth. Scatterplots were employed
to visualize the relationship between modeled and manual metrics and
identify trends in overestimation or underestimation and quantitative
measures such as Root Mean Square Error (RMSE), percentage RMSE
(%RMSE), and error percentage (Error %) capture the magnitude and
nature of deviations. Additionally, to understand the relationship of
predicted bite count with actual intake (n = 50, 1 participant excluded
due to unavailability of objective intake measure), correlations
between predicted bite count and measured energy intake (kcal) and
gram intake at meals were calculated. The specific metrics were:

(1) Slope, which reflects proportional errors, with values >1
indicating overestimation and <1 indicating underestimation with a
45° line (y = x) representing perfect agreement.

(2) Intercept, which reflects any consistent bias or offset.

(3) R? which provides an overall measure of how well the modeled
values explain the variance in manual values.

(4) RMSE, which assesses raw error while maintaining units by
calculating the average deviation between predicted and manual metrics
(i.e., RMSE tells how far off the model is on average from the true values):

where y; = manual value, ;= modeled value, N = total number
of observations.

(5) RMSE%, which allows for comparison between metrics by
normalizing RMSE relative to the mean of the manual metrics:

MSE

y

RMSE% = R x100%

N

_ _ 1
where ¥ = mean of the manual values, calculated as y = —Zy,-.
N i=1
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(6) Error %, which assesses localized patterns of bias in the model’s
predictions by calculating the deviation between predicted and
actual bite counts across different videos.

Error% = Mx 100%

Yi

where y; = manual value, y;= modeled value

We conducted a retrospective visual review of the videos to gain
a general understanding of where the model performed well or poorly.
This visual inspection aimed to estimate potential reasons for
mismatches in bite count and meal duration between the model and
manual annotations.

3 Results
3.1 Model performance

3.1.1 Model 1—face detection

Both YOLOv7 and Faster RCNN were evaluated using an
Intersection over Union (IoU) threshold of 0.5, a standard measure in
object detection. An IoU threshold of 0.5 means that a prediction is
considered correct if the predicted bounding box overlaps with at least
50% of the actual object’s (manually labeled) bounding box. This
threshold is widely used because it provides a balanced approach to
precision and recall, ensuring predictions are accurate without being
overly strict. A threshold lower than 0.5 might allow too many false
positives, while a higher threshold could miss valid detections that are
not perfectly aligned.

YOLOV7 achieved a precision of 98.12%, recall of 94.35%, and an
F1 score of 96.98%. These results demonstrate YOLOV7’s ability to
detect faces quickly and accurately. YOLOV7 also shows slightly lower
recall (i.e., misses some faces). Faster RCNN had a precision of
92.94%, recall of 98.75%, and an F1 score of 95.76%, with higher
recall than YOLOv7. We therefore used the faster model YOLOV7 as
the primary model with Faster RCNN as a fallback.

This combination of YOLOvV7 as primary model with Faster
RCNN as fallback, gave us a precision of 99.24%, recall of 98.25%, and
F1 score of 98.74% at an IoU = 0.5.

3.1.2 Model 2—bite classification

The LSTM-RNN model achieved a mean precision of 72.8%,
mean recall of 80.9% and an mean F1 score of 76.2% for bite detection
across the test dataset (n = 51 videos). This performance was evaluated
on a test set comprising 3,776 bite sequences and 22,140 non-bite
sequences in a sequence-to-sequence analysis at a confidence
threshold of 0.65. This is a sequence-to-sequence analysis, i.e.,
measuring performance on chunks of image sequences (images from
Model 1), which allows for a controlled evaluation of the model’s bite
classification ability, independent of continuous video tracking errors,
frame inconsistencies, and temporal noise. By focusing on
pre-segmented sequences derived from object detection, this approach
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isolates the LSTM’s performance, ensuring that the assessment reflects
its ability to recognize temporal patterns without the confounding
effects of tracking stability.

3.1.3 ByteTrack performance—bite detection

ByteTracKs bite detection performance was evaluated on 51
videos from 42 children, achieving an average precision of 79.4%,
recall of 67.9%, and an F1 score of 70.6% with a 10-s margin from
ground truth. We see large variability between subjects, with precision
ranging from 38.2 to 100%, recall from 17.6 to 93.6%, and F1 score
from 26.3 to 91.2%. Post-hoc smoothing likely improved precision by
filtering spurious detections but reduced recall by removing some true
bites. The confusion matrix from the ByteTrack system on the test set
(n =51 videos) is shown in Table 2.

Although we did not log inference time per video, ByteTrack
typically processed a 30-min video in ~25-30 min on a Dell XPS 15
laptop (4GB GPU), depending on activity level. In contrast, manual
double-coded annotation took ~70-80 min per video.

3.2 ByteTrack performance relative to
gold-standard manual annotation

3.2.1 Inter-rater reliability

The reliability of bite events between manually coded data and
ByteTrack or inter-rater reliability, measured using ICC, showed
moderate reliability (59) with a mean value of 0.66 and a range of
0.24-0.99.

3.2.2 Bite count

The scatter plot comparing modeled and manual bite counts
shows consistent overestimation by the model (Figure 6A). Linear
regression fitted across all data points produced a slope of 0.79
and an intercept of 56.48, with an R* of 0.12 and a Pearson
correlation coefficient of r=0.35, indicating a weak linear
association between modeled and manual counts. The mean of the
per-subject RMSE was 61.6 bites and mean per-subject RMSE% of
96.9%. The mean per-subject error% was 72.9%. The model
captures the general bite count trend, with predicted counts
correlated to ground truth. It overestimates on average and shows
high variability across subjects. Children with higher true bite
counts are generally ranked higher, despite errors in exact values.
A Bland-Altman plot depicting the differences in bite counts can
be found in Supplementary Figure 2. The Bland-Altman plot
shows that model-predicted bite counts were on average 47.6 bites
higher than manual counts, with 95% limits of agreement ranging

TABLE 2 Confusion matrix on test set for bite detected in test video data
using ByteTrack (n = 51 videos).

Predicted classes

Bite Non-bite
‘ Actual class Bite 5,213 (TP) 1,842 (FN) ‘
‘ Non-bite 1,653 (FP) Unknown (TN) ‘

TP, True positives; FP, False positives; TN, True negatives; FN, False negatives.
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regression line. Each point represents one test video. (A) Manual vs. modeled bite count. (B) Manual vs. modeled meal duration. RMSE, Root Mean
Square Error, measures the average magnitude of prediction error; RMSE%, RMSE expressed as a percentage of the mean manual value; Error%,
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from —197.8 to 112.6 bites (manual—model), indicating that
differences between the two methods spanned from the model
predicting more bites to the manual count exceeding the model.
The differences appear to widen with increasing average
bite counts.

3.2.3 Meal duration

The relationship between manual and model-calculated meal
duration is shown in Figure 6B indicating a moderate positive
relationship between modeled and manual durations. A linear
regression fitted across all data points produced a slope of 0.64 and an
intercept of 2.53 with an R* of 0.69, indicating moderate linear
association between modeled and manual computed meal duration.
The mean of the per-subject RMSE was 4.39 min, with a mean
per-subject RMSE% of 28.3%. The mean percentage error, derived
from the percent error per subject, was —16.0%, indicating a
systematic underestimation.

3.2.4 ByteTrack performance with real-world
eating behavior outcomes

Simple linear regression models were used to assess the ability of
ByteTrack to model eating behavior that relates to real-world
outcomes such as meal intake. The relationship between meal energy
intake (kcal) and gram intake (g) and modeled bite counts is shown
in Figures 7A,B respectively. The relationships between meal energy
and gram intake with the manual annotations are in Figures 7C,D. The
relationship between modeled bite count and meal intake shows weak
but clear trends. The R? values (regression coeflicient) are low
(R*=0.05 for kcal, R* = 0.06 for grams), with high variability in how
much modeled bite count predicts intake. Both figures show positive
slopes (i.e., higher bite count associated with higher intake) between
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modeled bite counts and measured intake. Substantial inter-individual
variability is seen in the plots. Positive slopes in both figures show
higher bite counts are generally associated with greater intake. While
the associations are weaker than those observed with manual bite
counts (R*=0.42 for kecal, R* = 0.53 for grams), the trends remain
evident, suggesting that modeled bite count captures meaningful
intake patterns despite variability across individuals.

4 Discussion

ByteTrack demonstrated moderate performance, with an average
F1 score of 71% and an inter-rater reliability (ICC = 0.66) when
compared to manually annotated ground truths. To our knowledge,
this is the first automated system specifically developed to analyze
eating behaviors in children, whose video data presents unique
challenges due to frequent movements and occlusions. ByteTrack
serves as a proof-of-concept for automated bite detection in children
and suggests a promising future for this direction of research.

To support robust bite detection, the first stage (part 1) of the
pipeline focused on accurate face localization despite child movement
and occlusion. A two-stage detection strategy was used, in which a
fast, high-precision YOLOv7 model served as the primary detector,
while a higher-recall Faster R-CNN acted as a fallback in cases of
missed detections. This design allowed the system to maintain high
face detection performance (recall and precision >98%), balancing the
need for speed with tolerance to the visual variability common in child
mealtime videos.

Bite detection (part 2) showed greater variability but moderate
performance across subjects (mean F1 = 71.3%; ICC = 0.66). However,
total overall bite counts were generally inflated, with over-firing
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determination from simple linear regression (intake ~ bite count).

Scatter plots showing the correlation between modeled or predicted bite counts (A,B) and manual or ground truth (C,D) vs. actual meal intake (grams
or kcal; n = 50 videos; n = 1 missing measured meal intake). (A) Scatter plots showing modeled bite counts vs. actual calculated energy (kcal) intake at
meal. (B) Scatter plots showing modeled bite counts vs. actual calculated gram intake at meal. (C) Scatter plots showing manual bite counts vs. actual
calculated energy (kcal) intake at meal. (D) Scatter plots showing manual bite counts vs. actual calculated gram intake at meal. R?, coefficient of
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concentrated in the early portion of meals and under-firing during
later or longer sessions. Retrospective visual inspection of videos
suggests several possible contributors. Rapid, closely spaced bites,
often involving brief spoon nibbling, may blur event boundaries and
lead to extra detections. As meals progress, children tend to shift focus
or play with food, producing more body movement and occlusions
that can suppress detections. Together, these factors appear to let the
model identify the general timing of bites yet trigger too frequently
around true events at the start and too sparingly as eating slows,
leading to shorter estimated meal durations.

While the video data used for ByteTrack was collected in
controlled laboratory settings, the conditions of recording simulated
a more natural mealtime environment in that additional people were
present to engage with children (~80% videos in training data and
~82% videos in test set with additional person). This approach
contrasts with previous systems developed for adults in tightly
controlled settings (18, 20) by accommodating the unique behavioral
patterns and interactions typical in a child’s meal. However, the
majority of a child’s food intake at this age takes place at home and
school (70-72), therefore future studies are needed to improve the
flexibility of ByteTrack to evaluate eating behaviors in these
diverse settings.
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Traditional assessment methods for eating rate rely on self-
reporting, which is often inaccurate due to memory lapses and
social desirability bias (73, 74). More objective measurements come
from wearable devices and video-based monitoring. Wearable
devices, such as bite counter watches (75) and sensor-based
eyeglasses (76), can track bites. But there are limitations with these
devices as they require researchers or users to start and stop data
collection which can be intrusive to the natural eating process.
Video-based monitoring methods like ByteTrack, while also
requiring similar manual start/stop, offer a less intrusive approach
for measuring meal eating behaviors that aligns with current gold
standards of manual observational coding. Accurate, automated,
real-world video-based approaches may enable the use of
smartphone cameras for passive dietary monitoring in naturalistic
settings, such as at home, creating new opportunities for scalable
dietary data collection and intervention. Applying home recording
methods with ByteTrack for automated bite detection provides a
practical solution for capturing meal and snack intake, enabling the
estimation of food intake and eating rates in natural settings.
However, as these technologies advance, ensuring data privacy and
encryption will be critical for secure handling of sensitive
information (77).
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The goal for future iterations of ByteTrack will be to replace or
supplement manual observational coding, as it is a highly time and
resource-intensive process. In the current study, double-coded manual
annotation took approximately 80 min per 30-min video (>40 h total
for the dataset), posing challenges for scaling to larger datasets. In
contrast, ByteTrack completed the same task in typically 25-30 min
per 30-min video, with minimal human input beyond initiating the
script. However, this version of ByteTrack is not yet optimized for
real-time bite detection. Human annotators may also introduce
variability due to differences in interpretation, fatigue, or experience,
which is why double coding is used to ensure reliability by resolving
discrepancies between two independent annotations. In contrast,
automated coding can apply consistent criteria across all videos,
eliminating the need for double coding and improving research
efficiency. Once refined, automated approaches like ByteTrack could
enhance the ability to study human eating behavior outside
the laboratory.

While the ByteTrack model had moderate F1 scores, which
demonstrated good alignment with manual annotation, performance
variability of the model highlights areas for improvement in future
iterations. The ByteTrack system was less accurate when children are
rapidly and had pronounced head and hand movements, potentially
leading to a higher number of false positives (i.e., mistaking these
movements for bites). False negatives occurred when bite motions
were occluded, such as when a child’s hand, utensils, or other objects
blocked the view of their mouth, which led to missed bite events and
lower recall in detection accuracy. Additionally, it appears that the
model overestimates the bite count during the initial rapid eating
phase, when the child is more focused on eating. As the meal
progresses and becomes longer, the child may slow down, move
around, or lose attention to the food, leading to increased occlusions
and missed bite events. This shift could result in the overestimation of
bite counts early in the meal and the underestimation of meal duration
later on, as fewer bites are detected when eating slows and occlusions
become more frequent. This pattern of overestimating bite counts at
the start of longer meals and underestimating meal duration in the
later stages seems to contribute to overall inaccuracies in both bite
count and meal duration estimation. Another limitation of ByteTrack
is that there was no explicit modeling to differentiate bites from sips,
which could have led to a misclassification of sips as bites. These
challenges underscore the need to further refine the ByteTrack model
to enhance its robustness in naturalistic eating scenarios.

Despite its limitations, there are several strengths to the current
iteration of ByteTrack. As a non-intrusive, video-based system, it
provides an alternative to wearable sensors and sets the stage for large-
scale, automated detection by reducing reliance on manual annotation.
The deep learning architecture used to construct ByteTrack combined
state of the art methods (e.g., YOLOV7, Faster R-CNN, and LSTM) to
achieve accurate face detection while accounting for the unique
movement patterns of children. Furthermore, extending ByteTrack’s
application beyond the lab to home and school environments, a
direction in our ongoing studies, will further validate ByteTrack’s
performance and enhance its real-world applicability.

Future iterations of ByteTrack will enhance robustness by
incorporating diverse training data, including varied lighting
conditions, movement patterns, and occlusions (78). Action detection
in real-world video remains challenging due to the variability in
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human movement and environmental conditions (e.g., lighting,
cluttered backgrounds). Data augmentation techniques, such as
occlusion augmentation (e.g., adding synthetic hands, utensils, or
objects partially covering the mouth), motion blur to reflect natural
head movements, and temporal adjustments like varying frame rates
or inserting brief distractions, can help simulate real-world eating
scenarios (45). Additionally, integrating inter-subject variability by
using subject identity as a model feature can improve the system’s
ability to distinguish bites from non-bites (79). Explicitly modeling
bite and sip classification separately may improve accuracy and
reduce bite overestimation in the current model. Incorporating more
data from real-world smartphone videos may further enhance
performance and practical utility. Moreover, ByteTracK’s bite-count
output could also be paired with complementary tools for portion-
size estimation and food identification (80, 81) to yield more precise,
holistic measures of meal microstructure and dietary intake in
future work.

ByteTrack is a proof-of-concept, automatic bite detection
framework for easing the time and resources required for manual
video annotation. This represents a first step toward scalable,
automated bite detection for the measurement of meal-related
eating behaviors in children. With additional testing and model
improvements, ByteTrack may expand the ability to capture real-
time changes in human eating behaviors measured outside
the laboratory.
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Glossary

Al - Artificial Intelligence

API - Application Programming Interface
CNN - Convolutional Neural Network
CPU - Central Processing Unit
COVID-19 - Coronavirus Disease 2019
F1 - F1 Score (harmonic mean of precision and recall)
FN - False Negative

FP - False Positive

FPS - Frames Per Second

FPN - Feature Pyramid Network

GPU - Graphics Processing Unit

ICC - Intraclass Correlation Coeflicient
IoU

Intersection of Union
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KCEF - Kernelized Correlation Filter

LSTM - Long Short-Term Memory

MP4 - MPEG-4 Video Format

R-CNN - Regional-Convolutional Neural Network
RAM - Random Access Memory

ResNet - Residual Network

RMSE - Root Mean Square Error

RMSE% - Percentage Root Mean Square Error
RNN - Recurrent Neural Network

SGD - Stochastic Gradient Descent

SMOTE - Synthetic Minority Over-sampling Technique
TN - True Negative

TP - True Positive

YOLOV?7 - You Only Look Once, version 7
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