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1 Introduction

Precision nutrition has emerged as a rapidly evolving interdisciplinary field within
sports science, presenting an innovative approach to tailoring nutritional strategies
for optimizing athletic performance (1–3). By harnessing omics technologies such
as nutrigenomics, metabolomics, proteomics, and transcriptomics, precision nutrition
delves into the molecular and metabolic nuances of athletes (4). These advancements
pave the way for individualized nutritional interventions that consider genetic,
biochemical, and environmental variations, moving beyond traditional, generalized dietary
recommendations. In a landscape increasingly shaped by data-driven approaches, the
application of omics-based precision nutrition has the potential to refine strategies for
training adaptation, recovery, injury prevention, and performance enhancement (5).

This review explores the intersection of precision nutrition and sports science,
highlighting the role of omics technologies in crafting personalized dietary solutions
for athletes. By addressing three key research questions, the review synthesizes and
critically evaluates existing literature: how can omics technologies be utilized to optimize
personalized nutrition strategies for athletic populations? What evidence supports the
effectiveness of such interventions in enhancing performance, recovery, and injury
prevention? And what challenges and opportunities are encountered when translating
omics-based findings into practical applications within sports settings? Addressing these
questions provides a foundation for understanding how molecular-level insights can be
applied to achieve measurable benefits for athletes.

The methodology employed in this review includes a comprehensive analysis
of existing peer-reviewed literature, spanning studies on genomics, proteomics,
metabolomics, and transcriptomics, as well as systematic reviews and clinical trials (6).
By integrating findings from diverse studies, the paper adopts a narrative approach to
present a cohesive understanding of omics-based precision nutrition. Key analytical
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methods include critical evaluation, comparative analysis of
technological applications, and reflection on methodological
advancements and limitations. This approach ensures a balanced
discussion that underscores areas of progress while acknowledging
remaining challenges in the field.

Current research demonstrates the promising potential of
omics technologies to enhance sports nutrition. For example,
metabolomics has advanced the understanding of metabolic
pathways such as fatty acid oxidation and glycolysis in exercise
physiology, while nutrigenomics has identified genetic markers
associated with athletic traits such as endurance and injury
susceptibility (7, 8). Proteomics has further enabled insights into
protein expression changes during recovery and adaptation (9).
However, challenges persist in translating these findings into
scalable and actionable interventions, with limitations stemming
from methodological inconsistencies, ethical considerations, and
the complexity of integrating multi-omics data.

The structure of this paper is designed to provide a thorough
exploration of the topic. Following this introduction, Chapter 2
focuses on the specific omics technologies employed in sports
nutrition, outlining their methodologies, applications, and
limitations. Chapter 3 transitions to the practical applications
of these technologies, examining their impact on athletic
performance, recovery, and injury prevention, while also
addressing the challenges of implementation and future research
directions. The paper concludes by synthesizing the findings and
underscoring the transformative potential of precision nutrition
in sports science, while reflecting on the practical, ethical, and
methodological hurdles that must be addressed to advance
this field.

1.1 Literature search strategy

Although this work adopts a narrative review approach,
a structured literature search was conducted to ensure
comprehensive coverage of relevant studies. Databases including
PubMed, Scopus, and Web of Science were searched for peer-
reviewed articles published between 2005 and 2024 using keywords
such as “precision nutrition,” “sports genomics,” “nutrigenomics
in athletes,” “metabolomics exercise,” and “multi-omics sports
science.” Articles were selected based on their relevance to
the application of omics technologies in sports performance,
recovery, or injury prevention. Emphasis was placed on recent
advancements, clinical trials, expert opinions, and systematic
reviews. Duplicates and studies with low methodological quality or
unclear relevance were excluded during the screening process.

2 Omics technologies in sports
nutrition

Omics technologies have revolutionized sports nutrition
by enabling personalized dietary and training strategies based
on individual genetic, molecular, and metabolic profiles. By
integrating various omics domains—genomics, proteomics,
metabolomics, and beyond—researchers can develop precision
nutrition interventions tailored to optimize athlete performance
and recovery (Figure 1).

2.1 Genomics and athletic potential

2.1.1 Genetic markers and performance traits
Advancements in genomics have identified specific genetic

markers that are closely linked to athletic performance traits. Genes
such as PPARGC1A, which regulates mitochondrial biogenesis,
and PPARD, involved in lipid metabolism and muscle fiber
composition, are particularly associated with endurance capabilities
(10–12). These markers underline the genetic basis that governs
traits such as muscle efficiency and energy metabolism. By
leveraging these insights, genomic profiling can inform training
programs and dietary interventions that align with an athlete’s
genetic predispositions (13). However, the practical translation of
this information into actionable recommendations requires further
refinement to increase its accessibility and usability for both sports
practitioners and athletes (14, 15).

2.1.2 Heritability and talent identification
The heritability of elite athletic performance, with estimates

attributing up to 70% of variance in athlete status to genetic factors,
emphasizes the crucial role of genomics in understanding athletic
potential (16). This high degree of genetic influence supports
the use of genomic screening for early talent identification and
strategic athlete development. However, heritability studies often
do not account for environmental influences, such as training
and nutrition, which interact with genetic predispositions to shape
performance outcomes. The complexity of these gene-environment
interactions necessitates more integrative research approaches to
contextualize heritability findings (17).

2.1.3 GWAS and methodological challenges
Genome-wide association studies (GWAS) have significantly

contributed to our understanding of the genetic architecture of
athletic traits by identifying hundreds of potential performance-
related single nucleotide polymorphisms (SNPs) (18–20). However,
these studies often face reproducibility issues due to small sample
sizes, ethnic homogeneity, and confounding variables. Initiatives
like the Athlome Project Consortium underscore the importance of
large and diverse sample sizes to address these challenges. Despite
technological advancements, the inability to consistently identify
significant genetic variants highlights a limitation of current GWAS
methodologies (21–23). This shortcoming points to the need for
innovative study designs that go beyond statistical associations to
elucidate causal relationships underlying athletic traits (17, 24).

The transition from candidate gene approaches to hypothesis-
free GWAS methodologies has marked a significant evolution in
sports genomics. By reducing bias and expanding the scope of
inquiry, this shift holds promise for uncovering novel genetic
factors linked to traits like VO2max and injury susceptibility (25,
26). Nonetheless, the field must address challenges such as data
interpretation and the functional validation of identified genetic
variants to ensure meaningful applications in sports contexts (24).

2.1.4 Ethical considerations in sports genomics
The application of genomics raises important ethical

considerations, particularly regarding data misuse, privacy
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FIGURE 1

Omics technologies in sports nutrition. Overview of omics technologies and their contributions to precision nutrition in sports. Genomics informs

endurance potential and injury risk; nutrigenomics guides dietary adjustments based on gene-diet interactions; proteomics reveals molecular

responses and recovery markers; metabolomics identifies real-time metabolic shifts during exercise. The integration of these omics enables the

formulation of personalized nutrition strategies tailored to each athlete’s unique profile.

concerns, and potential genetic discrimination (27). Athletes
may face risks if sensitive information about their genetic
predispositions is improperly disclosed or used to their detriment
(28). Establishing clear ethical guidelines and robust policies is
imperative for ensuring that genomics is applied responsibly and
equitably in sports settings (29).

2.2 Nutrigenomics and dietary
personalization

2.2.1 Gene-diet interactions and nutrient
metabolism

Nutrigenomics, which examines the interaction between
genetic variations and dietary needs, has demonstrated the
potential for optimizing nutritional strategies based on individual
genotypes (30–32). For example, the APOA2 genotype influences
fatty acid metabolism, and specific dietary fat intakes can
modify its effects, thereby affecting athletic performance (33,
34). By identifying genotypes linked to nutrient processing
efficiencies or sensitivities, practitioners can design diets that
align with each athlete’s metabolic profile. These approaches
promise improvements in energy utilization, body composition,

and overall performance, although robust validation through long-
term, controlled studies remains necessary (35).

2.2.2 Lactase non-persistence and gut
microbiota

Another example of the value of nutrigenomics is seen in
individuals with genetic lactase non-persistence, who exhibit
altered gut microbiota and metabolite concentrations when
consuming high amounts of milk (36, 37). Tailoring dietary
recommendations to avoid or limit lactose in such individuals not
only mitigates discomfort but also enhances metabolic health and
nutrient absorption (38). This precision approach exemplifies how
genetic information can be used to refine nutritional guidance
in ways that support both health and athletic performance,
particularly through the modulation of gut microbiome function.
Yet, further investigation is needed to establish standardized
protocols for such applications (35).

2.2.3 SNPs and personalized dietary planning
The identification of over 50,000 single nucleotide

polymorphisms (SNPs) influencing cellular functions provides
a vast dataset for crafting athlete-specific diets. These diets can
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address genetic predispositions impacting recovery, metabolism,
and training adaptations. However, making this information
actionable requires the development of user-friendly tools and
platforms that can translate complex genetic data into practical
recommendations for coaches and nutritionists (29, 30).

2.2.4 Nutrient deficiencies and supplementation
Nutrigenomics has also shown promise in optimizing

macronutrient and micronutrient strategies for athletes. For
instance, by identifying genetic susceptibilities to nutrient
deficiencies, such as specific vitamin or mineral needs,
tailored supplementation can be offered, potentially improving
performance and recovery. Athletes with polymorphisms affecting
vitamin D, iron, or folate metabolism may require personalized
intake strategies to maintain optimal physiological status (38, 39).
This proactive approach can enhance immune function, reduce
fatigue, and expedite recovery, offering competitive advantages.
Nonetheless, the integration of these insights into sports nutrition
programs is currently hindered by high testing costs and the
lack of standardized implementation protocols across athletic
organizations (40).

2.3 Proteomics and exercise adaptation

2.3.1 Molecular changes during exercise
Proteomics analyzes molecular-level changes in response to

exercise, shedding light on the physiological processes involved in
adaptation and recovery (41, 42). The upregulation of proteins such
as myoglobin and creatine kinase highlights their roles in muscle
repair and immune response following intense activity (43). These
findings provide a foundation for targeted nutritional and recovery
interventions but require further research to elucidate how dietary
factors can specifically modulate these protein responses (44).

2.3.2 Salivary proteomics and recovery
assessment

Salivary proteomic profiling has revealed a substantial increase
in total salivary proteins after prolonged exertion, presenting a non-
invasive method for assessing physical stress and recovery states
(45, 46). While promising, the applicability of salivary biomarkers
in diverse athletic contexts needs further validation to establish
their reliability and utility across different sporting disciplines
(47). Exercise-induced modifications to protein structures, such as
lysine acetylation, play crucial roles in regulating mitochondrial
function and energy production, both essential for endurance
performance (48). Understanding these molecular mechanisms
can inform training programs aimed at enhancing mitochondrial
efficiency; however, translating these insights into actionable
recommendations for athletes is still in the early stages (49).

Proteomic data has demonstrated how environmental factors,
such as altitude, influence protein expression, enabling tailored
strategies for athletes exposed to variable conditions (50, 51). For
instance, specific dietary or training adaptations can be designed
to mitigate performance declines at high altitudes. Integrating such
insights into practice necessitates more comprehensive research

on the interaction between environmental stressors and proteomic
responses (52). Nutrition-centered proteomic studies have linked
specific dietary interventions to enhanced recovery pathways in
endurance athletes. These findings underscore the potential of
proteomics to optimize performance; however, the development of
cost-effective and scalable methods for analyzing proteomic data is
critical for broader application in sports nutrition (7).

2.3.3 Post-translational modifications and
mitochondrial e�ciency

Metabolomics has provided critical insights into metabolic
responses during exercise, identifying key biomarkers like lactate
and pyruvate that signal energy depletion (53, 54). Nutritional
strategies based on these biomarkers can enhance recovery
by replenishing energy reserves more efficiently. However,
standardization of analytical methods is necessary to ensure
consistency across studies and practical applications (55).
Post-exercise metabolomic profiling has identified changes in
tricarboxylic acid (TCA) cycle intermediates, ketone bodies, and
lipid metabolites, which reflect recovery efficiency (56, 57). These
findings can inform targeted dietary interventions, but challenges
like small sample sizes and variability in metabolic responses limit
the generalizability of these results (58).

The discovery of miR-532-5p as a biomarker for training
adaptations demonstrates the potential of metabolomics to predict
and monitor individual responses to exercise. While promising,
the application of such biomarkers requires further validation
to confirm their reliability and reproducibility in diverse athletic
populations (59). Changes in metabolic pathways, such as shifts
toward fatty acid metabolism and reduced glycolysis, are indicative
of long-term adaptations to exercise that improve energy efficiency
(60–63). Precision nutrition strategies can leverage these insights to
design training and dietary programs that maximize these benefits,
though continued research is needed to optimize their integration
(64). Lipidomics, a subset of metabolomics, has highlighted
differential tissue-specific lipid metabolism responses to exercise,
emphasizing the importance of tailoring endurance strategies based
on individual metabolic profiles (56, 65). However, the limited
scalability of lipidomics due to cost and analytical requirements
restricts its broader adoption (66).

2.3.4 Relevance of omics technologies
Multi-omics integration offers a holistic approach by

combining datasets from genomics, proteomics, andmetabolomics,
among other fields, to derive a comprehensive understanding
of athletic physiology (67–71). This approach supports the
identification of precise, personalized interventions aimed at
improving performance and health outcomes. The adoption of
integrative platforms and emerging tools, such as OmicsAnalyst
and artificial intelligence, facilitates the analysis of complex
datasets, enabling improved precision in tailoring nutrition and
training strategies (72, 73). Yet, challenges such as ethical concerns,
logistical hurdles, and data integration complexities persist,
limiting the broader implementation of multi-omics approaches in
real-world settings (74, 75).
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Further highlighting the relevance of multi-omics, its role in
individualized athlete monitoring is amplified by advancements
in wearable technology and biosensors, which allow the real-time
collection of metabolic and physiological data. Such technological
innovations bridge the gap between laboratory-based analyses
and everyday training environments, offering unprecedented
opportunities for personalized interventions. However, the high
costs and need for multidisciplinary cooperation to interpret these
data remain substantial obstacles (76, 77).

The scalability of omics-based interventions remains a pressing
issue, particularly given the limited accessibility of sophisticated
technologies for amateur or under-resourced athletic groups.
However, the potential for technological advancements, such as
low-cost real-time monitoring systems, may gradually resolve these
limitations, making precision nutrition more widely available.
Continued efforts to improve the usability and affordability of
multi-omics platforms will be vital in democratizing access to
these tools, thereby broadening their impact across diverse athletic
populations (78–80).

Omics technologies offer immense potential for advancing
sports nutrition, but addressing challenges related to cost, data
integration, and ethical considerations is essential for their
widespread application. Further research aimed at overcoming
these limitations will be critical to maximizing the utility of omics-
based precision nutrition in sports science.

3 Applications in athletic performance
and recovery

Metabolomic profiling during aerobic activity has identified
significant changes in metabolite levels, including oxaloacetate
and tyrosine, which are critical for energy production and
mitochondrial function (44, 81–83). These metabolic shifts are
particularly pronounced under hypoxic conditions, such as those
encountered at high altitudes. Oxaloacetate is a crucial intermediate
in the tricarboxylic acid (TCA) cycle, playing a vital role in
energy metabolism, while tyrosine contributes to neurotransmitter
synthesis and overall metabolic regulation during physical exertion
(84, 85). Tailored nutritional strategies that replenish these depleted
intermediates can be employed to optimize recovery and support
sustained performance during high-intensity activities. However,
standardized methodologies for assessing these metabolite changes
in diverse athletic populations remain lacking, limiting the broader
applicability of such interventions. Future studies should prioritize
larger sample sizes and account for individual variability in
response to metabolic stress to refine these approaches (44).

3.1 Nutritional strategies for high-altitude
performance

Hypoxic conditions further exacerbate systemic recovery
challenges, as evidenced by metabolomic profiles that provide
specific insights into altitude-specific nutritional requirements
(Figure 2). These conditions necessitate tailored recovery protocols,
with a particular focus on dietary interventions aimed at mitigating

the physiological stresses imposed by reduced oxygen availability
(86, 87). For instance, high-altitude training could benefit from
increased carbohydrate intake to counteract energy deficits and
reduce reliance on protein catabolism for energy. Despite these
promising applications, the complexities of individual metabolic
responses to hypoxia underscore the need for personalized
approaches and more precise analytical tools to support evidence-
based recommendations (44).

3.2 Biosensors and machine learning for
real-time nutritional feedback

Advancements in wearable technology and mobile sensors
now allow for real-time analysis of biomarkers such as sweat
metabolites, offering immediate feedback on hydration levels and
substrate utilization. These innovations enable athletes and their
support teams to make on-the-spot adjustments to hydration and
dietary intake, improving training and competition outcomes.
The integration of biochemical data with digital platforms also
bridges critical gaps in traditional nutritional monitoring methods
(88–92). However, the implementation of wearable technology
faces challenges, including variability in data accuracy and the
complexity of interpreting results in real-world settings. Future
research should explore ways to enhance the reliability of these
devices while simultaneously simplifying their use for athletes and
coaches (22).

The amalgamation of wearable technologies with machine
learning algorithms further enhances decision-making by
identifying patterns in metabolic responses unique to each
athlete. These data-driven insights facilitate the creation of highly
specific nutrition plans that align with individual physiological
needs (93, 94). While the potential for machine learning to
revolutionize personalized nutrition is substantial, the success
of these tools depends on the availability of robust datasets and
multidisciplinary collaboration to interpret complex interactions
between genetics, environment, and training. Additionally, ethical
considerations regarding data security and athlete privacy must
be addressed before these technologies can be widely adopted in
high-performance settings (22).

3.3 Post-exercise recovery and muscle
repair

Post-exercise nutritional interventions involving
macronutrient combinations, particularly proteins and
carbohydrates, have demonstrated the ability to enhance recovery
by simultaneously reducing muscle protein breakdown and
promoting glycogen resynthesis (95–97). Low-carbohydrate,
protein-rich beverages have been shown to modulate catabolic and
anabolic markers effectively, with reductions in 3-methylhistidine
levels indicating decreased muscle protein degradation and
increases in pseudouridine signaling improved cellular recovery
(98, 99). While promising, these findings reveal the complexity
of optimizing recovery strategies for varying athletic demands
and fitness levels. Athletes with lower fitness levels, for example,
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FIGURE 2

Metabolic changes and nutritional strategies during aerobic activity. Aerobic exercise under hypoxic conditions induces metabolite changes, such as

elevated lactate and shifts in the TCA cycle, which influence energy production and recovery. These alterations highlight the importance of

personalized nutritional strategies, such as increased carbohydrate intake to mitigate energy deficits at high altitudes and macronutrient

combinations to enhance muscle recovery and glycogen resynthesis.

may benefit disproportionately from such tailored macronutrient
interventions, as their recovery states are often more metabolically
compromised. Nonetheless, the practical implementation of these
dietary strategies requires further investigation into individual
variability and long-term efficacy (100).

Proteomic analyses have revealed that post-exercise recovery
is associated with the upregulation of specific proteins, including
myoglobin and creatine kinase, which play central roles in muscle
repair and adaptation. Myoglobin facilitates oxygen transport
within muscle cells, while creatine kinase is pivotal in energy
homeostasis and cellular repair mechanisms (101, 102). Monitoring
these proteins provides valuable insights into how athletes
respond to physical stress, offering opportunities to design more
targeted recovery protocols. Expanding proteomic applications to
include the analysis of immune response proteins could further
elucidate how inflammatory processes are managed post-exercise.
While these advances hold significant promise, their widespread
application is hindered by the high costs and technical expertise
required to implement proteomic testing on a larger scale (44,
103).

3.4 Metabolic demands of high-intensity
exercise in heat

High-intensity exercise conducted in hot environmental
conditions induces significant metabolic changes, such as elevated
lactate and glucose levels, reflecting increased reliance on anaerobic

pathways for energy production (104–106). These findings
stress the importance of implementing hydration strategies that
address both fluid loss and the heightened metabolic demands
associated with heat stress. Specific carbohydrate supplementation
regimens that align with environmental factors can mitigate
fatigue and support energy efficiency during prolonged activity
in such conditions. Nevertheless, further research is needed
to establish comprehensive nutritional guidelines that address
the interaction between environmental stressors and individual
metabolic responses, ensuring these strategies are adaptable across
various athletic populations (107).

3.5 Enhanced carbohydrate oxidation
through mixed supplementation

Research indicates that combining glucose with other
carbohydrates, such as fructose, enhances carbohydrate oxidation
rates beyond 1 g/min, significantly improving endurance
performance during extended physical activity (108). This
metabolic enhancement is particularly relevant for athletes
engaged in long-duration or high-intensity events. Genetic and
metabolic variability among individuals further emphasizes
the need for personalized carbohydrate supplementation plans.
Tools such as nutrigenomics can identify single nucleotide
polymorphisms (SNPs) that influence metabolic pathways,
providing a basis for designing individualized macronutrient
strategies. However, the complexity and cost of implementing
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these genomic insights at scale remain substantial barriers to their
widespread adoption (109).

3.6 Multi-omics integration for
comprehensive nutritional insight

Multi-omics approaches, which integrate genomics,
proteomics, and metabolomics, allow for comprehensive tracking
of an athlete’s physiological responses, thereby enhancing the
precision of dietary recommendations (110). This holistic
perspective supports the design of interventions that not only
address immediate performance needs but also facilitate long-term
adaptations to training and competition demands. Tools like
OmicsAnalyst have significantly advanced the field by enabling
the integration of multi-modal datasets, yet their utility is
limited by logistical challenges and the expertise required for
data interpretation. Future efforts should focus on making these
platforms more accessible and user-friendly while addressing
ethical and privacy concerns associated with multi-omics data
usage (40).

3.6.1 Gender-specific precision nutrition in
female athletes

The application of precision nutrition extends to addressing
specific challenges faced by athletes, such as menstrual dysfunction
in female athletes. Tailored macronutrient modulation and
supplementation strategies have been shown to optimize hormonal
health and overall performance in this context (111–115). These
interventions are particularly valuable for reducing the risk of
stress-induced illnesses and supporting recovery from intensive
training loads. However, gender-sensitive research in sports
nutrition remains underrepresented, highlighting the need for
more diverse and inclusive studies to refine these strategies
further (116).

3.6.2 Long-term exercise adaptations and
systemic health benefits

Long-term exercise has been shown to induce metabolic
adaptations, such as improved beta-oxidation of fatty acids and
reduced glycolysis reliance, enhancing energy efficiency. These
shifts not only improve immediate athletic performance but also
contribute to systemic benefits, such as reduced inflammation and
better cardiovascular health. Insights into these adaptations can
guide more effective training and nutritional strategies tailored to
individual metabolic profiles. Moreover, research indicates that the
benefits of exercise extend beyond metabolic efficiency, influencing
neurological health and reducing the risk of neurodegenerative
diseases. For instance, sustained physical activity has been shown to
enhance brain-derived neurotrophic factor expression, which plays
a protective role in conditions such as Alzheimer’s disease. These
findings, derived from multi-omics studies, demonstrate the far-
reaching physiological advantages of long-term exercise and further
emphasize the importance of holistic approaches to athlete training
plans (117, 118).

3.6.3 Urinary metabolomics as non-invasive
recovery biomarkers

Urinary metabolome changes occurring after strenuous
exercise provide valuable indicators of recovery states and potential
pathways for intervention. For example, reduced concentrations of
specific metabolites highlight the physiological stress imposed by
intensive activity, offering markers for targeted recovery strategies
(56). Leveraging these biomarkers can enhance the precision of
post-competition nutritional protocols, allowing for faster and
more effective recovery. However, the transient nature of these
metabolic shifts raises questions about their reliability as long-term
indicators, necessitating further exploration of their clinical
utility (119).

3.6.4 Genetic markers for injury risk and
endurance potential

Genetic markers associated with endurance traits and injury
susceptibility offer critical insights for developing proactive
training and nutrition plans. These markers facilitate the
customization of workloads and recovery schedules to align with
an athlete’s genetic predispositions, thereby reducing the risk
of overtraining and related injuries (120, 121). Such targeted
strategies not only enhance training outcomes but also safeguard
long-term physical health. Despite this potential, challenges in
translating genetic findings into actionable recommendations
persist, underscoring the need for ongoing research to refine their
practical applications (7).

In conclusion, applying omics technologies to athletic
performance and recovery offers significant potential for advancing
personalized nutrition strategies (Figure 3). By addressing existing
challenges, such as cost, scalability, and data integration, future
research can unlock new opportunities to enhance both immediate
and long-term athletic outcomes.

4 Discussion

The integration of omics technologies into sports nutrition
represents a transformative advancement, offering a granular
understanding of individual responses to training, recovery, and
dietary interventions. Advances across genomics, transcriptomics,
proteomics, metabolomics, and microbiomics have enabled
the identification of key molecular markers linked to nutrient
metabolism, inflammation, muscle adaptation, and fatigue. These
technologies have deepened our understanding of how individual
genetic variations influence macronutrient utilization, supplement
efficacy, and injury susceptibility. For instance, genomics can
inform personalized carbohydrate intake strategies, while
metabolomics provides real-time snapshots of energy expenditure
and recovery status (7). Additionally, gut microbiome profiling
offers novel insights into immune modulation and nutrient
absorption (122). When combined, these omics approaches form a
systems biology perspective that allows for highly individualized
nutritional recommendations tailored to the physiological and
metabolic demands of athletes. However, despite these scientific
advances and pilot applications in elite sports settings, practical
translation into routine use remains limited due to issues of
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FIGURE 3

Integration of wearable technology and multi-omics approaches in personalized nutrition. Integration of wearable technologies with machine

learning and multi-omics platforms facilitates real-time biomarker monitoring and the development of individualized nutritional interventions. These

tools enable precise tracking of physiological responses and support targeted dietary plans, especially in addressing specific issues such as hormonal

health and menstrual dysfunction in female athletes.

standardization, cost, and the need for multidisciplinary expertise.
Thus, while the foundational science has made substantial progress
in mapping molecular pathways and identifying performance-
related biomarkers, we argue that the next phase of development
must shift toward pragmatic, scalable, and ethically sound
applications that can be implemented across a broader spectrum of
athletic populations.

Based on our assessment, we believe that the most urgent
future direction is the standardization and validation of multi-
omics protocols tailored for athletic populations. This includes
harmonizing data collection methods across genomics, proteomics,
and metabolomics to allow meaningful comparisons and real-time
interpretations. Despite the growing popularity of multi-omics
approaches, a lack of standardized bioinformatics pipelines and
inconsistencies in sampling procedures limit their reproducibility
and translational impact (123). We propose that developing open-
access databases and AI-enhanced interpretation frameworks—
customized for the athletic context—should become a priority for
the research community.

Real-world implementation will depend heavily on cost-
effective solutions and interdisciplinary collaboration. Although
the current literature demonstrates promising correlations between
molecular profiles and performance metrics, translating these
insights into actionable strategies remains restricted to elite or well-
funded institutions. Wearable biosensors and mobile metabolite-
tracking technologies offer an encouraging route to democratize
access, but require rigorous validation. We recommend future
research prioritize affordability and simplicity of user interfaces,
ensuring that omics-driven interventions become accessible to a

broader range of athletes, including those in amateur and resource-
limited contexts.

We also emphasize that a critical bottleneck lies in the
ethical and legal landscape surrounding omics applications. While
genomics and other omics data hold immense predictive value,
there is an acute risk of misuse, especially in competitive sports
environments where pressure to outperform is high. We propose
that future studies be accompanied by concurrent development
of governance frameworks that address data ownership, informed
consent, genetic discrimination, and psychological impacts of
predictive findings. Without these, the integration of omics
technologies could exacerbate inequities or introduce new forms of
athlete exploitation.

Furthermore, we contend that the field needs a more nuanced
understanding of gene-environment-nutrition interactions. We
believe that focusing exclusively on single molecular domains may
obscure synergistic effects that only become apparent through
longitudinal, integrative designs. For example, identifying how
specific genotypes respond to macronutrient timing under varied
environmental stressors—such as altitude or heat—could redefine
how training programs are individualized. Such findings will
not emerge from siloed research but from multi-center trials
incorporating behavioral, physiological, and omics data.

Lastly, we assert that the educational and professional
development of practitioners must evolve alongside technological
advancements. Nutritionists, trainers, and coaches require
upskilling to interpret and implement omics findings responsibly.
We propose that curricula in sports science and nutrition
incorporate modules on omics literacy, data ethics, and applied
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FIGURE 4

Proposed precision nutrition development roadmap.

systems biology. Only by equipping practitioners with adequate
tools can we ensure that precision nutrition transitions from
concept to routine practice.

In conclusion, omics-based precision nutrition holds enormous
promise but is still in a formative stage of development.We propose
that future research prioritize integration, accessibility, ethical
rigor, and practitioner training to ensure the field progresses in a
sustainable and equitable manner. This vision necessitates not only
scientific innovation but also coordinated efforts across disciplines,
institutions, and stakeholder communities. Only through such
a comprehensive approach can we unlock the full potential of
precision nutrition to enhance both performance and well being in
diverse athletic populations.

5 Key summary

The overarching aim of this work was to investigate how omics
technologies—including genomics, nutrigenomics, proteomics,
and metabolomics—can enhance precision nutrition to optimize
athletic performance, recovery, and injury prevention. Through
a synthesis of current research, the study demonstrates how
the integration of these molecular approaches facilitates

personalized dietary and training interventions tailored to
each athlete’s unique biological profile. Omics technologies are
shown to transform traditional sports nutrition by shifting
from generalized recommendations to highly individualized
strategies, thereby improving both short-term performance and
long-term health outcomes. Genomic analyses have revealed key
markers such as PPARGC1A and PPARD linked to endurance,
though challenges such as limited reproducibility in elite
populations persist. Nutrigenomics has underscored the influence
of genetic predispositions—e.g., APOA2 variants and lactase
non-persistence—on dietary responses, while proteomics and
metabolomics have respectively illuminated the roles of exercise-
responsive proteins (e.g., creatine kinase, myoglobin) and
metabolic biomarkers (e.g., lactate, pyruvate) in recovery and
energy balance. Integrating these domains through a multi-omics
framework offers a holistic understanding of athletic physiology
by capturing the dynamic interplay between genes, proteins,
metabolites, and environmental factors. Moreover, this research
situates omics within broader efforts in precision medicine, with
initiatives like the Athlome Consortium highlighting the value
of collaborative biomarker validation. Nonetheless, significant
barriers remain, including high implementation costs, complex
technological requirements, the need for multidisciplinary data
interpretation, and ethical concerns around genetic testing and
data privacy. The review also notes that limitations in current
literature—such as methodological variability and small sample
sizes—hinder generalizability, while the inaccessibility of omics
tools to non-elite athletes and the absence of standardized
protocols for multi-omics integration constrain practical adoption.
Addressing these challenges will be critical to democratizing omics-
driven sports nutrition and ensuring its equitable, responsible, and
impactful implementation.

Future research must prioritize the refinement of omics
technologies to overcome these barriers and expand their
applicability (Figure 4). Key areas for exploration include
standardizing methodologies for multi-omics integration,
developing real-time monitoring systems enabled by wearable
biosensors, and enhancing the affordability and usability of
omics platforms (Figure 4). Interdisciplinary collaboration among
sports scientists, nutritionists, molecular biologists, and data
specialists will be critical in transforming omics research into
practical solutions. Additionally, greater emphasis on inclusivity
and diversity in research is essential to ensure that omics-based
strategies are applicable across all athletic populations, including
underrepresented groups such as female athletes and those from
diverse genetic backgrounds.

Through this work, the immense potential of omics
technologies to revolutionize sports nutrition has been highlighted.
These approaches not only address immediate performance and
recovery needs but also contribute to a more comprehensive
understanding of human biology, offering systemic benefits
that extend beyond the athletic domain. Writing this review
has reinforced the importance of integrating cutting-edge
molecular research with practical sports applications, inspiring
a commitment to pursue advancements that enhance human
potential and well being. By addressing current challenges and
fostering interdisciplinary collaboration, omics-based precision
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nutrition stands poised to set new standards in sports science
and personalized health care. This work contributes to that vision
by bridging theoretical knowledge with practical implications,
establishing a foundation for future research aimed at unlocking
the full potential of these transformative technologies.
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and relative energy deficiency in sport (REDs): nutritional management. Nutrients.
(2024) 16:359. doi: 10.3390/nu16030359

112. Helm MM, McGinnis GR, Basu A. Impact of nutrition-based interventions on
athletic performance during menstrual cycle phases: a review. Int J Environ Res Public
Health. (2021) 18:6294. doi: 10.3390/ijerph18126294

113. Manore MM. Dietary recommendations and athletic menstrual dysfunction.
Sports Med. (2002) 32:887–901. doi: 10.2165/00007256-200232140-00002

114. Holtzman B, Ackerman KE. Recommendations and nutritional
considerations for female athletes: health and performance. Sports Med. (2021)
51:43–57. doi: 10.1007/s40279-021-01508-8

115. Bailey RL, Dog TL, Smith-Ryan AE, Das SK, Baker FC, Madak-Erdogan
Z, et al. Sex differences across the life course: a focus on unique nutritional and
health considerations among women. J Nutr. (2022) 152:1597–610. doi: 10.1093/jn/
nxac059

116. Ceylan H. Nutritional strategies for peak performance: guidelines
for athletes’ optimal fueling and recovery. Health Nexus. (2023) 1:90–
8. doi: 10.61838/kman.hn.1.4.11

117. Guo Y, Wang S, Chao X, Li D, Wang Y, Guo Q, et al. Multi-omics studies reveal
ameliorating effects of physical exercise on neurodegenerative diseases. Front Aging
Neurosci. (2022) 14:1026688. doi: 10.3389/fnagi.2022.1026688

118. Jaguri A, Al Thani AA, Elrayess MA. Exercise metabolome: insights for health
and performance.Metabolites. (2023) 13:694. doi: 10.3390/metabo13060694

119. Glass KA, Germain A, Huang YV, Hanson MR. Urine metabolomics exposes
anomalous recovery after maximal exertion in female ME/CFS patients. Int J Mol Sci.
(2023) 24:3685. doi: 10.3390/ijms24043685

120. Appel M, Zentgraf K, Krüger K, Alack K. Effects of genetic variation on
endurance performance, muscle strength, and injury susceptibility in sports: a
systematic review. Front Physiol. (2021) 12:694411. doi: 10.3389/fphys.2021.694411

121. Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz
A, Maestro A, et al. Genetics and sports performance: the present and future in the
identification of talent for sports based on DNA testing. Eur J Appl Physiol. (2022)
122:1811–30. doi: 10.1007/s00421-022-04945-z

122. Shang Z, Pai L, Patil S. Unveiling the dynamics of gut microbial interactions: a
review of dietary impact and precision nutrition in gastrointestinal health. Front Nutr.
(2024) 11:1395664. doi: 10.3389/fnut.2024.1395664

123. Hayes CN, Nakahara H, Ono A, Tsuge M, Oka S. From omics
to multi-omics: a review of advantages and tradeoffs. Genes. (2024)
15:1551. doi: 10.20944/preprints202411.0882.v1

Frontiers inNutrition 13 frontiersin.org

https://doi.org/10.3389/fnut.2025.1611440
https://doi.org/10.3390/biomedicines12102389
https://doi.org/10.3390/nu16030359
https://doi.org/10.3390/ijerph18126294
https://doi.org/10.2165/00007256-200232140-00002
https://doi.org/10.1007/s40279-021-01508-8
https://doi.org/10.1093/jn/nxac059
https://doi.org/10.61838/kman.hn.1.4.11
https://doi.org/10.3389/fnagi.2022.1026688
https://doi.org/10.3390/metabo13060694
https://doi.org/10.3390/ijms24043685
https://doi.org/10.3389/fphys.2021.694411
https://doi.org/10.1007/s00421-022-04945-z
https://doi.org/10.3389/fnut.2024.1395664
https://doi.org/10.20944/preprints202411.0882.v1
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

	Precision nutrition in sports science: an opinion on omics-based personalization and athletic outcomes
	1 Introduction
	1.1 Literature search strategy

	2 Omics technologies in sports nutrition
	2.1 Genomics and athletic potential
	2.1.1 Genetic markers and performance traits
	2.1.2 Heritability and talent identification
	2.1.3 GWAS and methodological challenges
	2.1.4 Ethical considerations in sports genomics

	2.2 Nutrigenomics and dietary personalization
	2.2.1 Gene-diet interactions and nutrient metabolism
	2.2.2 Lactase non-persistence and gut microbiota
	2.2.3 SNPs and personalized dietary planning
	2.2.4 Nutrient deficiencies and supplementation

	2.3 Proteomics and exercise adaptation
	2.3.1 Molecular changes during exercise
	2.3.2 Salivary proteomics and recovery assessment
	2.3.3 Post-translational modifications and mitochondrial efficiency
	2.3.4 Relevance of omics technologies


	3 Applications in athletic performance and recovery
	3.1 Nutritional strategies for high-altitude performance
	3.2 Biosensors and machine learning for real-time nutritional feedback
	3.3 Post-exercise recovery and muscle repair
	3.4 Metabolic demands of high-intensity exercise in heat
	3.5 Enhanced carbohydrate oxidation through mixed supplementation
	3.6 Multi-omics integration for comprehensive nutritional insight
	3.6.1 Gender-specific precision nutrition in female athletes
	3.6.2 Long-term exercise adaptations and systemic health benefits
	3.6.3 Urinary metabolomics as non-invasive recovery biomarkers
	3.6.4 Genetic markers for injury risk and endurance potential


	4 Discussion
	5 Key summary
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


