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Development and validation of a
nomogram model for assessing
the severity of acute pancreatitis
from the perspective of PICS
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Wenyong Wu?l2*

'Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, China,

2Department of General Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, China, *Graduate
School, Bengbu Medical University, Bengbu, China

Background: Early and convenient prediction of the severity of acute
pancreatitis (AP) is crucial for its treatment and prognosis. This study aimed
to develop and validate a nomogram model for assessing the risk of severe
acute pancreatitis (SAP) based on the theory of Persistent Inflammation,
Immunosuppression, and Catabolism Syndrome (PICS).

Methods: A total of 4,930 AP patients from the MIMIC-IV database were selected
as the derivation cohort, which was divided into the SAP group (n = 975)
and non-severe acute pancreatitis (NSAP) group (n = 3,955) according to the
2012 Atlanta classification criteria. The 9 hematological indicators collected at
the earliest time point within 48-72 h of admission were subjected to logistic
regression analysis, and the statistically significant indicators selected were used
to establish the model. A validation cohort consisting of 233 AP patients (34
in the SAP group and 199 in the NSAP group) admitted to the Department of
General Surgery, Anhui No.2 Provincial People's Hospital from January 2016 to
October 2024 was used to verify the model's performance.

Results: Multivariate Logistic regression showed that neutrophil-lymphocyte
ratio (NLR), systemic immune-inflammation index (Sll), white blood cell count
(WBC), hemoglobin (Hb), and red blood cell distribution width (RDW) were
independent predictors of SAP (P < 0.05). The nomogram model equation was
constructed as follows: logit(P) = In(2.37)- log(NLR) + In(0.45)- log(Sll) + In(2.60)-
log(WBC) + In(0.85)- Hb + In(1.14)- RDW. The area under the receiver operating
characteristic curve (AUC) of the derivation cohort was 0.730 (95% CI: 0.708-
0.743), with a Hosmer-Lemeshow test P-value of 0.333. The AUC of the
validation cohort was 0.795 (95% CI: 0.703-0.886).

Conclusion: The nomogram model based on NLR, SlI, WBC, Hb, and RDW has
good predictive value for SAP and can provide a convenient tool for early clinical
identification of SAP.

KEYWORDS

acute pancreatitis, persistent inflammatory—immunosuppressed—catabolic syndrome,
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Acute Pancreatitis (AP) is a common clinical acute abdomen
with significant differences in severity. Non-severe acute
pancreatitis (NSAP) is mostly self-limiting, while severe acute
pancreatitis (SAP) is associated with a mortality rate of up
to 20% due to the vicious cycle of persistent inflammation,
immunosuppression, and catabolism (1). The 48-72 h after
admission is a critical window for AP progression: during this
period, fluid imbalance in patients is basically corrected, making
hematological indicators more valuable for reference; meanwhile,
the systemic inflammatory response syndrome (SIRS) reaches
its peak and gradually transitions to Persistent Inflammation,
Immunosuppression, and Catabolism Syndrome (PICS) (2,

). PICS is a clinical syndrome characterized by persistent
inflammatory response, immunosuppression, and high protein
catabolism, which is the core pathophysiological feature of SAP
(4, 5). Compared with ordinary AP, SAP not only has persistent
inflammation or infection but also is accompanied by inability to
eat, massive nutritional consumption, and catabolism, resulting
in higher mortality (1). Thus, early identification of PICS is of
great significance for the treatment of SAP patients. However, the
clinical diagnostic criteria for PICS are complex and cumbersome,
and not yet unified, which limits its clinical application to a certain
extent (6). Currently, commonly used scoring systems such as
BISAP, Ranson, MCTSI, and APACHE II cannot well reflect this
process, and are complicated to operate with certain lag (7). Based
on the above, we aim to find a simple evaluation method that
can simultaneously reflect inflammatory response and nutritional
consumption to help clinicians detect patients with PICS as early
as possible to prevent progression to SAP.

Complete Blood Count (CBC) is an easily accessible,
inexpensive, and rapid test. The increase in WBC is mainly
driven by a sharp increase in neutrophils, which is the most
direct and classic sign of persistent inflammation (8). Neutrophil-
Lymphocyte Ratio (NLR) is a golden indicator reflecting both
inflammation and immune status. The increase in NLR perfectly
captures the core contradiction that the inflammatory storm
continues but the immune system has begun to collapse, making
it a strong predictor of poor prognosis in SAP patients, thus
being widely discussed (9). Systemic Immune-Inflammation Index
(SII) (platelet count x neutrophil count / lymphocyte count) is
a new marker that incorporates platelets on the basis of NLR,
further reflecting the association between coagulation disorders
and immunosuppression (10). Hb and RDW reflect catabolism and
inflammatory nutritional consumption (11, 12).

Therefore, monitoring these indicators during the important
early window of AP patients not only helps judge the severity
of the disease but also, more importantly, alerts clinicians to the
need for early intervention: while actively controlling inflammation
(such as fluid resuscitation and organ support), attention must be
paid to immune regulation and nutritional support (such as early
enteral nutrition and possible immunomodulator research) as early
as possible to try to break the vicious cycle of PICS and prevent the
development of SAP.
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2.1 Study subjects

2.1.1 Derivation cohort

This was a retrospective cohort study. Data for the derivation
cohort were obtained from the clinical records of 4,930 AP
patients (with ICD-10 primary diagnosis of “acute pancreatitis”)
from the MIMIC-IV 3.1 database (2008-2022). Missing values
were handled using the random forest imputation method
(13) (20 iterations were set, generating 5 imputed datasets).
The Rubin’s rules were used to pool the analysis results.
According to the 2012 revised Atlanta classification criteria
(14), patients with persistent organ failure for more than 48 h
were defined as SAP (n = 975), and the rest were NSAP
(n = 3,955). Organ failure was determined based on a SOFA
score >2 points (respiratory failure: PaO,/FiO, < 300; circulatory
failure: systolic blood pressure <90 mmHg requiring vasoactive
drugs; renal failure: creatinine >171 wmol/L or urine output
<0.5 ml/kg/h) (15).

2.1.2 Validation cohort

A total of 233 AP patients admitted to the Department of
General Surgery, the Anhui No.2 Provincial People’s Hospital from
January 2016 to October 2024 were included. AP was diagnosed if
any 2 of the following 3 criteria were met (14): (1) characteristic
abdominal pain of AP; (2) serum amylase and/or lipase >3 times
the upper normal limit; (3) characteristic CT findings of AP.
Patients were divided into the SAP group (n = 34) and NSAP group
(n = 199) according to the same criteria. The same hematological
indicators were collected.

Inclusion criteria: 1. Meets the diagnosis of AP. 2. Hospital stay
>48 h. 3. Relatively complete data.

Exclusion criteria: (1) Patients who underwent surgery during
hospitalization; (2) Patients who received blood transfusion or
albumin transfusion during hospitalization; (3) Patients with
hematological diseases; (4) Patients with active bleeding; (5)
Patients with cancer, tumors, or autoimmune diseases; (6)
Diseases that may interfere with blood indicators, such as chronic
liver disease and end-stage renal disease; (7) Recent history
of chemotherapy.

2.2 Data collection

Hematological indicators collected at the earliest time point
within 48-72 h of admission included white blood cells (WBC),
neutrophils (N), lymphocytes (L), hemoglobin (Hb), red blood
cell distribution width (RDW), platelets (PLT), and albumin (Alb).
CRP and PCT were not collected due to high missing rates.
Neutrophil-lymphocyte ratio (NLR) = N/L and systemic immune-
inflammation index (SIT) = PLT*NLR were calculated.

2.3 Ethics and informed consent

This study obtained the following ethical approvals:
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2.3.1 Derivation cohort

Data were obtained from the MIMIC-IV 3.1 database after
obtaining the necessary access permissions through the official
application process (CITI PROGRAM Record ID: 71643826), in
compliance with database usage regulations (16).

2.3.2 Validation cohort

Approved by the Ethics Committee of the Anhui No.2
Provincial People’s Hospital (Ethics No.: (R) 2025-023). Since
this was a retrospective study with all data anonymized, the
Ethics Committee approved the waiver of informed consent, in
accordance with the Declaration of Helsinki.

2.4 Statistical analysis

Multivariate Logistic regression analysis was used to identify
factors influencing the progression of AP to SAP. Analyses
were performed using R software (version 4.3.0) and the rms
package. The discriminative ability and calibration plots of the
validation set were used to evaluate the accuracy of the nomogram.
Receiver operating characteristic (ROC) curves were plotted and
the area under the curve (AUC) was calculated to evaluate the
discriminative ability of the nomogram. The Hosmer-Lemeshow
test was used to verify model consistency, and decision curve
analysis (DCA) was plotted to evaluate the model’s discriminative
ability. A P-value < 0.05 was considered statistically significant.

3.1 Data imputation and validation

A derivation cohort was constructed based on clinical data
of 4,930 AP patients from the MIMIC-IV 3.1 database (2008-
2022). Given the high missing rates of multiple key variables,
to avoid sample size reduction and information bias caused by
complete case analysis, and to avoid underestimation of data
variability by single-value imputation, this study used the random
forest algorithm for multiple imputation. Data preprocessing was
performed before imputation: (1) Clarify variable attributes and
clinically reasonable ranges. Among them, L (lymphocyte count)
and N (neutrophil count) were count data (unit: x 10°/L), and Alb
(albumin) and Hb (hemoglobin) were continuous data. Extreme
outliers were removed using the +3 standard deviation method
combined with clinical reference ranges (e.g, WBC count 4-
10 x 10°/L); (2) Sort out variable correlations based on clinical
logic (e.g., the compositional relationship between WBC count
and neutrophil count, and the anemic correlation between Hb and
RDW), and screen predictive variables for the imputation model.
The imputation process was as follows: (1) The number of imputed
datasets was set to 5 (referring to the classic reccommended range of
3-10 for multiple imputation, balancing the reflection of missing
value uncertainty and computational efficiency); (2) Construct a
random forest imputation model: Using 48-h WBC count and
48-h hemoglobin with low missing rates as predictive variables,
a separate model was built for each missing variable (e.g., 72-
h lymphocyte count). 100 decision trees were generated through
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bootstrap sampling, and the missing value imputation results were
output using the strategy of “mode voting for count data and mean
integration for continuous data”; (3) Repeat the above steps until all
missing values are filled, and finally obtain 5 complete datasets with
consistent structure and reasonable differences in imputed values.
The imputation effect was verified through multiple dimensions:
(1) Density plots and histograms showed that the distribution of
variables after imputation was highly consistent with the original
complete data ( ). (2) The convergence curves of variance
and mean after multiple iterations of each variable showed no
obvious divergence trend in the distribution of imputed data.
Variables with obvious skewness were log-transformed to correct
the skewness ( ).

3.2 Multivariate logistic regression
analysis of the derivation cohort

In the multivariate Logistic regression analysis after multiple
imputation, several variables showed statistical significance: the
odds ratio (OR) of log(NLR) was 2.92 (95% confidence interval
2.02-4.22, p < 0.001), indicating it was a significant risk-increasing
factor; the OR of log(SII) was 0.36 (95% confidence interval 0.25-
0.50, p < 0.001), which was a significant risk-reducing factor;
the OR of log(WBC) was 1.83 (95% confidence interval 1.21-
2.75, p = 0.009), suggesting an association with increased risk;
hemoglobin (Hb) had an OR of 0.87 (95% confidence interval
0.82-0.92, p < 0.001), indicating it was a protective factor for
risk reduction; red blood cell distribution width (RDW) had
an OR of 1.13 (95% confidence interval 1.09-1.18, p < 0.001),
suggesting a significant association with increased risk. Albumin
(Alb, p = 0.165), lymphocyte count (L, p = 0.649), platelets (PLT,
p = 0.157), and neutrophils (N, p = 0.136) showed no statistical
significance ( ).

3.3 Nomogram model construction

The nomogram Logistic regression model further screened and
included 5 statistically significant variables, with an OR of log(NLR)
of 2.37 (95% confidence interval 2.03-2.77, p < 0.001), log(SII)
of 0.45 (95% confidence interval 0.39-0.53, p < 0.001), log(WBC)
of 2.60 (95% confidence interval 2.18-3.10, p < 0.001), Hb of
0.85 (95% confidence interval 0.81-0.89, p < 0.001), and RDW of
1.14 (95% confidence interval 1.10-1.19, p < 0.001). All included
variables showed stable statistical significance, indicating that the
model retained key predictive factors after variable simplification
( ). A prediction model equation was established with
5 influencing factors: logit(P) = In(2.37)- log(NLR) + In(0.45)-
log(SII) + In(2.60)- log(WBC) + In(0.85)- Hb + In(1.14)- RDW, and
a nomogram model was constructed ( ).

3.4 Model evaluation of modeling queue
Overall, the model constructed in this study selected

inflammation and hematological indicators with significant
predictive value by handling missing values reasonably. The
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Kernel Density Distribution of Hematological Indicators in AP Patients from the MIMIC-1V 3.1 Database. White blood cell count (wbc), neutrophil
count (neu), lymphocyte count (alc), hemoglobin (hb), red blood cell distribution width (rdw), platelet count (plt), albumin (alb). This figure visually
shows that after 5 rounds of random forest imputation in the derivation cohort, the density of each indicator is highly consistent with the original
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TABLE 1 Comparison of the clinical baseline data between the NSAP

group and the SAP group.
Characteristic | OR 95% Cl P-value ‘
log(NLR) 292 2.02,4.22 <0.001*
log(SIT) 0.36 0.25,0.50 <0.001*
log(WBC) 1.83 1.21,2.75 0.009*
Hb 0.87 0.82,0.92 <0.001*
RDW 1.13 1.09,1.18 <0.001*
Alb 0.84 0.66, 1.08 0.165
L 1.02 0.92,1.14 0.649
PLT 1.00 1.00, 1.00 0.157
N 1.04 0.98,1.10 0.136

CI, confidence interval; OR, odds ratio. *P < 0.05.

TABLE 2 Nomogram logistic regression.

Characteristic 95% ClI P-value
log(NLR)) 2.37 2.03,2.77 <0.001*
log(SII) 0.45 0.39,0.53 <0.001*
log(WBC)) 2.60 2.18,3.10 <0.001*
Hb 0.85 0.81,0.89 <0.001*
RDW 1.14 1.10,1.19 <0.001*

CI, confidence interval; OR, odds ratio. *P < 0.05.

model performed well in discrimination and calibration, providing
reliable statistical basis for risk prediction of related outcome
events. The detailed description is as follows:

3.4.1 ROC curve of modeling queue

The evaluation results of the model show that the area under the
curve (AUC) of the discrimination index calculated using the Rubin
rule after multiple interpolation modeling is 0.730 (95% confidence
interval 0.710-0.749), indicating that the model has a medium to

10.3389/fnut.2025.1611501

high discriminatory ability and can effectively distinguish the risk
of different outcome events (Figure 4 and Table 3).

3.4.2 Calibration of modeling queue models

The F-value of the Hosmer-Lemeshow test (HL test) for the
calibration index is 1.320, with a p-value of 0.333 (degree of
freedom 1 = 8.000, degree of freedom 2 = 10.176). As the p-value is
greater than 0.05, it indicates that the model’s predicted probability
has good consistency with the actual observation results, and the
calibration effect is ideal. See Figure 5 and Table 4.

3.4.3 Decision analysis curve of modeling queue

The curve corresponding to this research model is located
above the “all intervention” and “no intervention” curves,
indicating that using this model for risk prediction and guiding
clinical decision-making within this interval can achieve net
benefits higher than extreme strategies (i.e., intervention or no
intervention for all individuals). Based on the labeled Cost
Benefit Ratio (such as 1:80-1:1) in the figure, when the risk
threshold matches a specific cost-benefit ratio, the net benefit
advantage of the model is more significant, indicating that in
the corresponding clinical scenarios, the model can effectively
help screen out individuals who truly need intervention, reduce
unnecessary medical resource consumption or missed diagnosis
risks, and has good clinical practicality (Figure 6).

3.5 Validation of the column chart model
for the validation queue

The model evaluation results showed that the area under the
curve (AUC) of the discrimination index calculated using the
Rubin rule after multiple interpolation modeling was 0.795 (95%
CI: 0.703-0.886), indicating that the model has a medium to high
discrimination ability and can effectively distinguish the risk of
different outcome events (Figure 7).

The horizontal axis of the calibration curve, labeled as “Ideal”,
may deviate from the actual calibration curve due to the presence
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FIGURE 3
Nomogram model for predicting severe risk of acute pancreatitis. Based on the actual values of each indicator corresponding to the “Points” axis
score, the SAP prediction probability is read through the “Total Points” axis after accumulation.
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TABLE 3 Nomogram logistic regression.
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FIGURE 5
Modeling queue nomogram model calibration curve.

TABLE 4 Nomogram logistic regression.

Rowname

HL test 1.320 0.333 8.000 10.176

of extreme risk value samples (such as a very small number of
extremely high-risk or low-risk individuals) or insufficient sample
size in a certain risk interval, which may result in inaccurate
probability estimation of the model in that interval. The calibration
index Hosmer Lemeshow test (HL test) has a chi square value of
1.320 and a p-value of 0.333 (degrees of freedom = 8). As the
p-value is greater than 0.05, it indicates that the model’s predicted
probability is consistent with the actual observation results, and the
calibration effect is ideal (Figure 8).
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The horizontal axis of the decision curve represents the high-
risk threshold or cost-benefit ratio, and the vertical axis represents
the net benefit (0.00-0.80). The decision curve corresponding to
the model is higher than the “All” and “None” lines in most
threshold ranges. Based on this model, setting a high-risk threshold
for intervention results in better net benefits, which can support
clinical selection of reasonable prediction thresholds to balance
intervention benefits and costs, and has clinical application value
(Figure 9).

4 Discussion

The core challenge in clinical management of acute pancreatitis
(AP) lies in early identification of severe subtypes (SAP), which are
often accompanied by a vicious cycle of persistent inflammation,
immune suppression, and high catabolic metabolism (ie.,
persistent inflammation immune suppression catabolic syndrome,
PICS) (6), with a mortality rate of up to 20%, while non severe
AP (NSAP) is often self-limiting (1). This study focuses on
the critical window period of 48-72 h after the onset of acute
pancreatitis (AP), which is a clinical node for the transformation
of systemic inflammatory response syndrome (SIRS) to PICS
(17). Fluid imbalance is basically corrected, and hematological
indicators have more reference value (18). Based on this, we
constructed and validated a Nomogram model based on blood
routine indicators, aiming to provide a simple and efficient tool
for SAP risk prediction. The following is a comprehensive analysis
based on research results, existing evidence, and clinical needs.

This study conducted large-scale modeling (4930 cases in
MIMIC-IV database) and single center external validation (233
cases), and found that NLR, SII, WBC, Hb, and RDW were
independent predictive factors for SAP. The Nomogram model
constructed based on this showed good predictive performance:
the AUC of the modeling queue reached 0.730 (95% CI: 0.710-
0.749, above average discriminative ability), and the calibration
test Hosmer Lemeshow (HL) p = 0.333 (good consistency between
prediction and actual results); The net benefit analysis shows that
the model outperforms the extreme strategies of “all intervention”
and “no intervention” (with a cost-effectiveness ratio range of
1:80-1:1), indicating that the model can effectively help screen
out individuals who truly need intervention, reduce unnecessary
medical resource consumption or the risk of missed diagnosis,
and has good clinical practicality. The validation queue AUC
was further increased to 0.795 (95% CI: 0.703-0.886), and the
model still maintained good predictive performance, indicating its
potential application value in clinical practice.

NLR (neutrophil/lymphocyte ratio) and SII (platelet x NLR)
are the core inflammatory immune markers of the model.
The elevation of NLR is essentially an imbalance between
“lymphocyte
immune exhaustion” (19). In the progression of acute pancreatitis,

“neutrophil pro-inflammatory activation” and

inflammatory factors such as IL-6 and TNF-a drive neutrophil
aggregation and release extracellular traps (NETs), exacerbating
tissue damage, while inducing lymphocyte apoptosis (especially
CD4% T cells), leading to immune suppression (20). SII is
incorporated into platelets on the basis of NLR, further reflecting
the coagulation disorder in PICS. During SAP, pancreatic necrosis
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activates the coagulation system, and a large number of platelets
are consumed for microthrombus formation. Therefore, changes
in SII values are positively correlated with the degree of immune
suppression (19, 21). In this study, the OR of log (NLR) was 2.37
(p < 0.001) and the OR of log (SII) was 0.45 (p < 0.001), indicating
that both capture the inflammation immune imbalance of PICS
through different dimensions and jointly improve the prediction
accuracy of the model.

The PICS characteristics of SAP not only include inflammation
immune abnormalities, but also continuous catabolism. Hb and
RDW in blood routine are good indicators reflecting this state
(22). Hormonal disorders under stress (such as elevated cortisol)
promote protein breakdown and gluconeogenesis, leading to
reduced hemoglobin synthesis and insufficient raw materials for
red blood cell production, manifested as decreased Hb; At the
same time, inflammation interferes with iron metabolism, leading
to premature release of immature red blood cells and causing
uneven red blood cell size, i.e., an increase in RDW (23). Although
traditional indicators such as Alb are the most commonly used
nutritional evaluation markers, they also have important value in
evaluating AP (24). However, Ocskay et al.’s large sample study
showed that only 19% of AP patients had hypoalbuminemia upon
admission, and 25% of patients only experienced Alb decline in
the middle and later stages of hospitalization, with a significant lag
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(25). This is consistent with the results of our study. We found that
in the early stages of admission, Alb decline in AP patients was
not significant (p = 0.165), so it did not enter the final model. Hb
and RDW, as indicators that can be obtained within 48-72 h of
admission, can reflect the nutritional consumption characteristics
of PICS earlier, which also explains why the model performs better
in early prediction. Elevated WBC is a direct sign of persistent
inflammation in AP, and its numerical changes are mainly driven
by neutrophils, which are positively correlated with the extent of
pancreatic necrosis and the risk of organ failure. In this study,
the OR of log (WBC) was 2.60 (p < 0.001), further confirming
the clinical consensus that “basal inflammatory intensity is a
prerequisite for the occurrence of SAP.”

The current SAP prediction tools mainly have the following
limitations: traditional scoring systems have disadvantages such
), such as APACHE II
requiring more than 20 indicators, MCTSI relying on enhanced

as complex operation and strong lag (7,

CT 48 h after onset, and early pancreatic necrosis not fully
manifested. Various single center studies often have poor credibility
due to small sample sizes and selection biases, and are often
based solely on inflammation indicators or a combination of
nutritional indicators.

The characteristic of this study lies in integrating the three
dimensions of “inflammation (WBC, NLR) - immunity (SII)
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Validate the decision analysis curve of the queue.

- nutrition (Hb, RDW)” based on the PICS theory, breaking
through the limitations of “predicting solely based on inflammation
indicators”, and better fitting the pathophysiological essence of
SAP (27). The modeling queue uses the MIMIC-IV database with
4930 large samples (covering the population from 2008 to 2022)
to avoid overfitting caused by small samples; The independent
validation queue included 233 patients in our hospital from 2016
to 2024, achieving external validation across databases and time
periods, in compliance with international standards for predictive
model construction (28). In addition, the indicators included
in this study have higher practicality: all predictive indicators
are derived from routine blood routine tests (without the need
for special equipment or delayed examinations), which can be
quickly obtained in emergency or primary hospitals, solving the
pain points of “complex operation and equipment dependence”
in traditional scoring. Compared with similar studies, this model
only relies on blood routine indicators and has more clinical value
in balancing convenience and efficacy. Therefore, we hope that
through this study, we can provide a “practical risk stratification
tool” for clinical doctors to intervene early in SAP. Within 48-

72 h of admission for AP patients, doctors can quickly calculate
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Nomogram scores based on blood routine indicators. For high-
risk patients (such as those with a predicted probability >45%),
priority should be given to initiating enhanced monitoring (such
as continuous SOFA scores, dynamic follow-up of blood routine
and biochemical indicators) and intervention measures (such as
early enteral nutrition and use of immunomodulators) to break
the vicious cycle of “inflammation — immunosuppression —
nutritional depletion” in PICS; For low-risk patients, excessive
medical treatment (such as unnecessary enhanced CT or ICU
transfers) should be avoided to reduce waste of medical resources.
The advantage of Nomogram is that it presents risks in a visual
chart (Figure 3), without the need for complex calculations. Doctors
only need to correspond scores based on the actual values of patient
indicators such as NLR and SII, and accumulate them to read
SAP risk probability. It is particularly suitable for emergency busy
scenes or primary hospitals. The uniqueness of this study lies in
strengthening awareness of nutritional intervention: the inclusion
of Hb and RDW in the model suggests that “nutritional assessment
should be integrated into early management of AP”. In clinical
practice, these two indicators can be used to identify high-risk

patients for nutritional depletion in advance, so as to initiate enteral
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nutrition support earlier and avoid severe hypoalbuminemia or
infection complications in the middle and later stages (24).

Although this study strives for rigor in design and analysis,
there are still the following shortcomings that need to be objectively
addressed:

The modeling queue is sourced from the MIMIC-IV database
(mainly for European and American populations), while the
validation queue is only single center data from the Anhui No.2
Provincial People’s Hospital, which may not fully represent AP
patients in other regions of Asia or different medical systems
[such as differences in etiology composition: alcohol induced AP
is more common in European and American populations, and
biliary AP is more common in Asian populations (29)]. The
extrapolation of the model requires further validation through
multi center and cross ethnic studies. In addition, the study did
not include potential confounding factors such as the etiology of
AP (such as biliary, alcoholic, hyperlipidemic), treatment regimen
(such as fluid resuscitation volume, antibiotic use), etc. There are
differences in the incidence of SAP among different etiologies (such
as hyperlipidemia induced AP being more likely to progress to
severe cases (30, 31), which may affect the accuracy of model
prediction). In addition, inflammatory markers such as CRP and
PCT actually have great value in the assessment of the condition
of AP patients (32). However, this study did not include them due
to the high missing rate of the MIMIC-IV database. In the future,
their optimization value for the model can be supplemented and
evaluated in a complete data queue. Limitations of retrospective
design: This study is a retrospective analysis, and although missing
values were processed using random forest interpolation (20
iterations, generating 5 datasets), data recording bias could not
be completely avoided; Moreover, retrospective design cannot
verify whether model-based interventions improve prognosis, and
prospective intervention studies are needed to further confirm the
clinical benefits of the model.

Based on the above limitations, future multicenter prospective
cohort studies need to be conducted, incorporating variables such
as the etiology of AP, imaging features (such as pancreatic necrosis
range), and treatment measures, to construct a multidimensional
model of “hematology + clinical + imaging”; Simultaneously
developing stratified models for different subgroups of etiology
(such as biliary and alcoholic) to enhance predictive specificity. If
conditions permit, randomized controlled trials can be conducted
to compare the prognostic differences (such as SAP incidence,
length of hospital stay, mortality) between “Nomogram based
risk stratification intervention” and “conventional diagnosis and
treatment”, and to clarify the application value of the model in
practical clinical scenarios.

5 Conclusion

This study is based on the PICS theory and constructs and
validates an SAP prediction Nomogram model with NLR, SII,
WBC, Hb, and RDW as the core. The model has the advantages
of easy access to indicators, reliable predictive performance, and
high clinical usability, and can provide a practical tool for early
identification of SAP during the critical window period of 48-72 h
after the onset of AP. Despite the limitations of population bias
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and retrospective design, it lays the foundation for precise risk
stratification and early intervention of AP. In the future, through
multi center optimization and prospective validation, it is expected
to become a routine auxiliary tool for clinical management of AP.
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