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Background: Oxidative stress and dietary micronutrient imbalances have been

implicated in prostate cancer (PCa) development and progression. Although

flavonoids and antioxidants show promise in experimental models, evidence

from population-based studies remains limited.

Objectives: This research aimed to investigate the relationship between the

consumption of antioxidants and flavonoids in the diet and the risk and survival

of PCa, as well as to assess the potential of machine learning models in

identifying significant dietary factors.

Methods: Data from 2,629 male participants aged ≥40 years from National

Health and Nutrition Examination Survey (NHANES) 2007–2010 were analyzed.

Dietary intake was estimated using two 24-h recalls linked to the USDA Flavonoid

Database. PCa status was self-reported. Survey-weighted logistic regression and

Cox models evaluated associations with PCa prevalence and all-cause mortality,

adjusting for demographic, lifestyle, and clinical covariates. Nine supervised

machine learning models, including random forest (RF), were developed and

validated. Shapley Additive Explanations (SHAP) values identified key predictors

and visualized their effects.

Results: Among 2,629 U.S. male participants from NHANES 2007–2010, 144

reported a history of PCa. Compared with non-cancer individuals, cases had

lower intake of selenium, magnesium, quercetin, kaempferol, epicatechin,

epigallocatechin, total flavones, and total flavonoids (all P < 0.05). Higher intake

of selenium, magnesium, catechin, and myricetin was associated with reduced

PCa risk in weighted regression models, with selenium remaining significant

after multivariable adjustment [odds ratio (OR) = 0.50, 95% confidence interval

(CI): 0.33–0.76]. Lower intake of selenium, magnesium, luteolin, quercetin,

kaempferol, and total flavones was linked to increased mortality risk, and

selenium independently predicted improved survival [hazard ratio (HR) = 0.69,

95% CI: 0.54–0.88]. The RF model showed superior predictive performance

[area under the curve (AUC) = 0.740], identifying selenium, luteolin, total
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flavones, myricetin, catechin, and magnesium as key features. SHAP analysis

revealed U-shaped associations for selenium, catechin, and myricetin, and

dose-dependent protective effects for luteolin and magnesium.

Conclusion: Our results highlight selenium, magnesium, and select flavonoids as

promising dietary factors in reducing PCa risk and improving prognosis. These

insights support the development of evidence-based, individualized nutritional

strategies and call for further mechanistic and clinical investigations.

KEYWORDS

prostate cancer, antioxidants, flavonoids, selenium, magnesium, NHANES, machine
learning

1 Introduction

Prostate cancer (PCa) ranks as one of the most prevalent
cancers in men, with more than 1.4 million new cases globally
in 2020. This corresponds to an age-standardized incidence rate
(ASR) of 31 per 100,000 and an estimated lifetime risk of about
3.9%, positioning it as the second most commonly diagnosed
cancer among men (1). Although factors such as age, ethnicity, and
family history are well-recognized as significant risk factors for PCa,
emerging research suggests that modifiable lifestyle choices and
dietary habits may play a crucial role in improving overall survival,
especially by reducing cardiovascular and all-cause mortality in
individuals with PCa (2).

Oxidative stress contributes significantly to prostate
carcinogenesis by inducing deoxyribonucleic acid (DNA) and
mitochondrial damage, promoting chronic inflammation,
and disrupting key signaling cascades within the tumor
microenvironment (3, 4). Natural antioxidants, have been
shown to exert protective effects against cancer development by
neutralizing reactive oxygen species (ROS), regulating cell signaling
pathways, and promoting apoptosis. Micronutrients like selenium,
vitamin C, vitamin E, and magnesium, have demonstrated
antioxidant and anti-inflammatory properties, contributing to
reduced proliferation and enhanced apoptosis in various cancer
cell types, including PCa (5).

Beyond conventional antioxidants, dietary flavonoids—
a diverse group of polyphenolic compounds abundant in

Abbreviations: PCa, prostate cancer; NHANES, National Health and
Nutrition Examination Survey; RF, random forest; SHAP, Shapley Additive
Explanations; ASR, age-standardized incidence rate; DNA, deoxyribonucleic
acid; ROS, reactive oxygen species; RNAs, ribonucleic acids; lncRNA, long
non-coding RNA; U.S., United States; USDA, United States Department
of Agriculture; FNDDS, Food and Nutrition Database for Dietary Studies;
BMI, body mass index; PIR, poverty income ratio; CVD, cardiovascular
disease; DM, diabetes mellitus; PSUs, sampling strata and primary sampling
units; WTDRD1, day 1 dietary recall weight; OR, odds ratio; CI, confidence
interval; HR, hazard ratio; R, A Language and Environment for Statistical
Computing; RF, random forest; SVM, support vector machine; XGBoost,
eXtreme Gradient Boosting; MLP, multilayer perceptron; KNN, k-nearest
neighbors; LightGBM, light gradient boosting machine; AUC, area under
the curve; F1-score, F1 score (harmonic mean of precision and recall);
ROC, receiver operating characteristic; PSA, prostate-specific antigen; MDS,
magnesium depletion score; EMT, epithelial-mesenchymal transition; AR,
androgen receptor; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B;
MAPK, mitogen-activated protein kinase; SE, standard error.

fruits, vegetables, teas, and legumes—have attracted increasing
attention for their chemo-preventive roles in PCa. Experimental
studies have demonstrated that flavonoids can regulate multiple
cellular processes including oxidative stress, inflammation, cell
proliferation, apoptosis, and epigenetic modulation (6). Specific
subclasses, such as flavones (e.g., apigenin and luteolin), flavonols
(e.g., quercetin and kaempferol), flavanones (e.g., naringenin),
and isoflavones (e.g., genistein and daidzein), have shown the
ability to inhibit tumor growth, modulate androgen receptor (AR)
signaling, and reverse aberrant DNA methylation and histone
modification in PCa models (7–10). These compounds can also
affect non-coding ribonucleic acids (RNAs) such as microRNAs
and lncRNAs, further influencing gene expression and cancer
progression. Despite promising mechanistic evidence, large-scale
epidemiological studies remain limited and findings are often
inconsistent, underscoring the need for further population-based
investigations to clarify the protective role of flavonoids in PCa (6).

Traditional statistical approaches may be limited in detecting
complex, non-linear interactions between dietary components and
disease outcomes. In contrast, machine learning algorithms, such
as random forest (RF), offer enhanced flexibility in modeling high-
dimensional and heterogeneous data, enabling more accurate risk
prediction (11). In this context, the integration of Shapley Additive
Explanation (SHAP) values further improves model interpretability
by quantifying the contribution of each dietary feature to individual
predictions (12). This approach not only strengthens predictive
performance but also provides complementary insights into key
nutritional determinants of PCa risk beyond those identified by
conventional regression analyses.

This research sought to examine the relationship between
the intake of dietary antioxidants and flavonoids and the
prevalence and survival of PCa in United States (U.S.) adult
males using National Health and Nutrition Examination
Survey (NHANES) 2007–2010 data. Additionally, machine
learning approaches were utilized to assess predictive accuracy
and identify the most significant dietary factors. The results
of this study could enhance our understanding of the
dietary components linked to PCa and provide insights
for developing future nutritional approaches for cancer
prevention and treatment.
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2 Materials and methods

2.1 Data source and study population

Data for this study were sourced from the 2007–2008 and
2009–2010 cycles of the NHANES, which utilizes a multistage,
stratified probability sampling method to gather health and
nutrition data representative of the civilian, non-institutionalized
U.S. population. We focused on male participants aged 40 years and
older who had complete information on PCa status, dietary intake
of antioxidants and flavonoids, and relevant covariates. Individuals
with incomplete demographic or dietary data were excluded from
the analysis. Following the application of exclusion criteria, a total
of 2,629 male participants remained for the final analysis.

2.2 Prostate cancer assessment

Prostate cancer status was classified according to self-
reported physician diagnoses obtained from the NHANES medical
conditions questionnaire. Participants who answered “Yes” to the
question, “Has a doctor or other health professional ever informed
you that you had prostate cancer?” were classified as PCa cases,
while those who responded “No” were considered controls.

2.3 Dietary intake of antioxidants and
flavonoids

Dietary intake data were obtained from two 24-h dietary recall
interviews conducted in the NHANES, typically separated by 3–
10 days. The average daily intake was calculated by taking the mean
of the day 1 and day 2 dietary recall data. Antioxidants analyzed
included vitamin A, vitamin C, vitamin E (alpha-tocopherol),
carotene, magnesium, zinc, and selenium. A comprehensive
flavonoid profile was constructed by linking NHANES dietary data
to the United States Department of Agriculture (USDA) Expanded
Flavonoid Database, available through the Food and Nutrient
Database for Dietary Studies (FNDDS) website. 1 Flavonoid
subclasses included anthocyanidins, flavonols, flavones, flavanones,
and flavan-3-ols. Total flavonoid and anthocyanidin intake were
also calculated. All flavonoid intake estimates were derived as the
mean of the two 24-h dietary recalls.

2.4 Covariates

The covariates considered in this study included
sociodemographic, lifestyle, and clinical characteristics.
Sociodemographic factors included age, race/ethnicity (non-
Hispanic White, non-Hispanic Black, Mexican American, other
Hispanic, and other races, including multi-racial), education level
(≥high school vs. <high school), marital status (married/living

1 https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/
beltsville-human-nutrition-research-center/food-surveys-research-
group/docs/fndds-flavonoid-database/

with a partner vs. living alone), and the poverty income ratio (PIR),
which was categorized as <1.3, 1.3–3.5, and ≥3.5. Lifestyle factors
encompassed smoking status (never, former, and current) and
alcohol consumption, which was classified as non-drinker/light
drinker (including never, former, and mild consumption of ≤2
drinks/day) or heavy drinker (>2 drinks/day).

Clinical characteristics included body mass index (BMI;
categorized as <18.5, 18.5–25, and ≥25 kg/m2), and the presence
of conditions such as hypertension, hyperlipidemia, diabetes,
cardiovascular disease (CVD), and serum uric acid levels.
Hypertension was defined as either a prior diagnosis, current
use of antihypertensive medications, or measured systolic blood
pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg.
Hyperlipidemia was determined by self-reported physician
diagnosis or the use of lipid-lowering medications. Diabetes
mellitus (DM) was defined as a self-reported physician diagnosis,
the use of glucose-lowering drugs, or a fasting plasma glucose
level > 126 mg/dl. CVD was identified by any of the following
conditions: angina pectoris, myocardial infarction, congestive
heart failure, coronary artery disease, or stroke. Uric acid levels
were categorized into tertiles: <5.6, 5.6–6.6, and ≥6.6 mg/dl.
All covariates were defined according to standard NHANES
documentation and established validation criteria.

2.5 Survey design and weighting

All analyses accounted for the complex survey design of
NHANES, incorporating appropriate sampling strata and primary
sampling units (PSUs). Dietary analyses used the day 2 dietary
recall weight (WTDR2D), ensuring appropriate weighting for
participants with two 24-h dietary recalls. This weight was
recalculated to represent the combined 2007–2010 NHANES
cycles, ensuring nationally representative estimates of dietary
antioxidant and flavonoid intake.

2.6 Statistical analyses

Weighted descriptive statistics were calculated using the
“svy_tableone” function to compare the intake of antioxidants and
flavonoids between PCa and non-cancer groups, while accounting
for the complex design of the NHANES survey. Means and
standard errors were reported for continuous variables, with
comparisons made based on PCa status. All dietary antioxidants
and flavonoids were analyzed both as continuous variables
and as categorical variables (high vs. low intake groups, based
on median values). To assess the relationship between dietary
antioxidants, flavonoids, and PCa risk, survey-weighted univariable
and multivariable logistic regression models were employed,
reporting odds ratios (ORs) and 95% confidence intervals (CIs).

For survival analysis among PCa patients, Kaplan–Meier
survival curves were created using survey-weighted techniques to
assess differences in overall mortality based on nutrient intake
levels, with visual comparisons made accordingly. Survival time
(permth_exm) was defined as the number of months from the
NHANES Mobile Examination Center (MEC) visit to either the
date of death or the end of the follow-up period (31 December
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2019, based on the latest NHANES Linked Mortality Files). Survey-
weighted univariable and multivariable Cox proportional hazards
models were applied to examine the relationship between each
antioxidant or flavonoid and overall mortality in PCa patients.
These models were developed using svycoxph() within the subset
of participants diagnosed with PCa. Each dietary variable was
categorized into high vs. low intake groups based on its median
value. Hazard ratios (HRs), 95% CIs, and P-values were obtained
using the broom and gtsummary packages, with the results
summarized for all nutrients.

2.7 Machine learning models

To further assess the predictive ability of dietary antioxidants
and flavonoids for classifying PCa, a series of supervised machine
learning models were developed using the tidymodels package
in R, A Language and Environment for Statistical Computing
(version 4.4.2). The dataset was randomly split into a training
set (70%) and a test set (30%), ensuring stratification by PCa
status. The models tested included logistic regression, RF, support
vector machine (SVM), eXtreme Gradient Boosting (XGBoost),
multilayer perceptron (MLP), k-nearest neighbors (KNN), and
light gradient boosting machine (LightGBM). Hyperparameter
tuning was conducted for each model using fivefold cross-
validation. Performance was evaluated using metrics such as
the area under the receiver operating characteristic curve
(AUC), accuracy, sensitivity, specificity, precision-recall AUC,
and F1-score.

To understand the internal workings of the best-performing
model, SHAP values were calculated. This method evaluates the
contribution of each predictor to the model’s output, enabling
both global feature ranking and local interpretability. The SHAP
value visualization in this study was primarily implemented using
the shapviz package. Moreover, the model’s discrimination and
clinical relevance were visualized using calibration curves and
ROC curve analysis. All preprocessing tasks, including variable
encoding and normalization, were executed in a reproducible
pipeline utilizing the recipes, parsnip, and workflows components
of the tidymodels framework.

2.8 Software

All data processing and analyses were conducted using
R (version 4.4.2) with packages including survey, nhanesR,
tidymodels, randomForest, iml, fastshap, and shapviz.

3 Results

3.1 Baseline characteristics

To provide an overview of the study design and analytical
workflow, a schematic diagram is presented in Figure 1. A total
of 2,629 male participants were included in the final analysis after
excluding individuals with missing sociodemographic, clinical, or
dietary data from the initial NHANES 2007–2010 cohort of 20,686

participants. Of these, 144 participants (5.5%) reported a physician
diagnosis of PCa (Figure 2).

Table 1 presents the weighted baseline characteristics
and dietary antioxidant comparisons. Participants with PCa
were significantly older and had lower intake of selenium,
magnesium, quercetin, kaempferol, eriodictyol, epicatechin, and
epigallocatechin (all P < 0.05). Additionally, lower levels of total
flavones and total flavonoids were observed in the PCa group
(P < 0.05). In addition, higher prevalence of hypertension, CVD,
heavy drinker, and former smoking status was observed among
PCa cases compared to non-cancer participants (P < 0.05). No
significant differences were observed in BMI categories, marital
status, hyperlipidemia, educational attainment, PIR, diabetes
mellitus, or serum uric acid levels between the two groups.

3.2 Associations between antioxidants
and prostate cancer risk and mortality

Univariable logistic regression analysis demonstrated several
significant associations between dietary intake and PCa risk
(Supplementary Figure 1). Participants with higher intake levels
of magnesium (OR = 0.527, 95% CI: 0.323–0.861, P = 0.010),
kaempferol (OR = 0.443, 95% CI: 0.251–0.781, P = 0.005, based
on high vs. low intake group), myricetin (OR = 0.275, 95%
CI: 0.142–0.533, P < 0.001), and epigallocatechin (OR = 0.443,
95% CI: 0.251–0.781, P = 0.020) had a significantly reduced
likelihood of PCa compared to those with lower intake. For
continuous variables, higher selenium intake (per unit increase)
was inversely associated with PCa risk (OR = 0.991, 95% CI:
0.983–0.999, P = 0.030), and higher intake of kaempferol also
showed a protective association (OR = 0.878, 95% CI: 0.797–
0.966, P = 0.008). Conversely, higher hesperetin intake was
positively associated with PCa risk (OR = 1.010, 95% CI: 1.001–
1.019, P = 0.036). After adjusting for BMI, marital status,
PIR, education, smoking habits, alcohol consumption, diabetes,
hypertension, hyperlipidemia, CVD history, race/ethnicity, and
other covariates, multivariable logistic regression analysis identified
selenium intake (high vs. low, OR = 0.500, 95% CI: 0.329–
0.761, P = 0.003) as the only dietary factor that remained
significantly and independently associated with a lower risk of PCa
(Supplementary Table 1).

Univariate Cox regression analyses (Supplementary Figure 2)
further supported these associations, showing that lower intake
of selenium (HR = 0.993, 95% CI: 0.988–0.998, P = 0.005),
magnesium (HR = 0.998, 95% CI: 0.997–1.000, P = 0.010),
kaempferol (HR = 0.927, 95% CI: 0.871–0.987, P = 0.019), quercetin
(HR = 0.966, 95% CI: 0.938–0.996, P = 0.026), luteolin (HR = 0.822,
95% CI: 0.688–0.982, P = 0.032), and total flavones (HR = 0.831,
95% CI: 0.697–0.991, P = 0.040) was significantly associated with
increased mortality risk.

Multivariable Cox regression analysis indicated that higher
selenium intake was independently associated with improved
overall survival in PCa patients, after adjusting for multiple
covariates including BMI, marital status, PIR, CVD, race/ethnicity,
education, hyperlipidemia, hypertension, alcohol use, smoking,
diabetes, and uric acid levels. Compared to those with lower
selenium intake, patients in the higher intake group exhibited a
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FIGURE 1

Schematic overview of the study workflow. The pipeline includes NHANES data screening, assessment of antioxidant and flavonoid intake, logistic
and Cox regression analyses, machine learning modeling, and identification of key protective dietary factors. Created with BioRender.com.

31.0% lower risk of mortality (HR = 0.690, 95% CI: 0.543–0.877,
P = 0.002; Supplementary Table 2).

3.3 Machine learning performance and
feature importance

Among the nine machine learning models evaluated, the RF
algorithm demonstrated high overall predictive performance. As
illustrated in Figure 3, RF achieved one of the highest and most
stable cross-validated AUC values across all five folds (Figure 3A),
and exhibited favorable discriminative ability in ROC curve
analysis on the test set (Figure 3B). The calibration plot (Figure 3C)
confirmed acceptable calibration of RF predictions. Furthermore,
cross-validated ROC AUC scores with standard errors (Figure 3D)
indicate that RF, along with elastic net and MLP, maintained robust
classification performance. According to Supplementary Table 3,
RF achieved the highest accuracy (0.888), sensitivity (0.925), and
F1 score (0.940), and a robust ROC AUC of 0.740. While elastic
net showed a slightly higher AUC (0.768). Figure 4 provides
detailed visualization of the RF model tuning and cross-validation
performance. As shown in Figure 4A, the hyperparameter tuning
was conducted using a Latin hypercube sampling strategy, which
generated 30 combinations of hyperparameters within predefined
ranges (number of trees: 50–1500; minimal node size: 1–100; and
mtry: 1–20). The optimal configuration identified achieved the best

trade-off among classification accuracy, precision-recall AUC, and
ROC AUC. Figure 4B illustrates the ROC curves from fivefold
cross-validation, indicating stable and consistently high sensitivity
and specificity across all folds. Taken together, these findings
validate the RF model as the most reliable and generalizable
classifier for predicting PCa risk in this study, supported by
its superior discriminative power, calibration performance, and
validation metrics.

In addition, variable importance analyses in the RF model
further emphasized the relevance of specific dietary antioxidants
and flavonoids. As shown in Figure 5A, traditional tree-based
metrics, including Mean Decrease Accuracy and Mean Decrease
Gini, ranked magnesium, selenium, catechin, and total flavonoids
among the top contributors to model performance. Figure 5B
presents the SHAP summary plot, which quantifies the marginal
contribution of each variable to individual predictions. To further
illustrate the prediction mechanism, a force plot (Figure 5C) was
generated. In this visualization, dietary factors such as selenium,
luteolin, and total flavones were highlighted in purple, indicating
their negative contribution to the predicted PCa risk, while age and
Daidzein were shown in yellow, representing positive contributions
to the risk estimate.

By integrating the top dietary predictors identified through
SHAP values, force plot contributions, variable importance
rankings, and univariate logistic regression analyses, three sets of
overlapping key features were identified (Figure 6A). Specifically,
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FIGURE 2

Flow diagram of participant selection from NHANES 2007–2010. Inclusion and exclusion criteria are presented stepwise, leading to the final analytic
sample of 2,629 male participants.

selenium, total flavones, and luteolin were selected by all
four methods (Intersection A); myricetin and catechin were
identified by three methods (Intersection B); and magnesium
was highlighted by SHAP, importance, and univariate logistics
analyses (Intersection C). Correlation analyses of SHAP values with
intake levels and age (Figure 6B) demonstrated distinct distribution
patterns for each feature. Selenium, myricetin, and catechin showed
U-shaped distributions, while magnesium and luteolin displayed
monotonic changes. Total flavones exhibited variation with age,
though no clear trend was observed in the overall population.

Survival analysis using Kaplan–Meier curves demonstrated that
lower intake of selenium, magnesium, myricetin, luteolin, and total
flavones was significantly associated with reduced overall survival
among PCa patients (Supplementary Figure 3). No significant
association was observed for catechin intake.

4 Discussion

This study examined the association of dietary antioxidant
and flavonoid intake with PCa risk and survival using NHANES
2007–2010 data. Key dietary components, including selenium,
magnesium, myricetin, catechin, luteolin, and total flavones, were
identified as potential factors influencing PCa risk and survival
outcomes. SHAP-based analyses revealed complex, non-linear
associations, including U-shaped patterns for selenium, myricetin,
and catechin, suggesting that both low and excessive intakes may
elevate PCa risk, while moderate intake offers potential protective

benefits. Magnesium and luteolin demonstrated dose-dependent
relationships, with protective effects observed up to a threshold,
beyond which higher intake was associated with increased risk.
Interestingly, total flavones did not exhibit a clear SHAP pattern but
showed a protective trend in older individuals, indicating potential
age-specific effects. These associations were supported by both
traditional regression analyses and RF model, which demonstrated
strong predictive performance and interpretability.

Selenium and magnesium have long been investigated for
their potential anticancer properties. Evidence from observational
studies and meta-analyses suggests that selenium status is inversely
associated with PCa risk (13, 14). Mechanistically, selenium
exerts its anticancer effects through multiple, dose-dependent
biological pathways. At nutritional levels, selenium is incorporated
into essential selenoproteins, such as glutathione peroxidases
(e.g., GPx4) and thioredoxin reductases, which maintain redox
homeostasis and protect cells against oxidative damage (15). These
antioxidant activities contribute to DNA protection, regulation
of cellular redox balance, and modulation of immune responses.
However, at supranutritional levels, selenium compounds,
particularly in the form of selenite or methylselenol metabolites,
can exert prooxidant effects by promoting the generation of ROS.
This oxidative stress can lead to DNA strand breaks, activation
of p53, and induction of apoptosis via mitochondrial pathways
(16). Selenium has also been shown to modulate critical signaling
cascades, including NF-κB, PI3K/Akt, and MAPK pathways
(16–18), which are involved in cell proliferation, survival, and
inflammation. Moreover, selenium compounds may trigger
various forms of cell death beyond apoptosis, such as ferroptosis,
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TABLE 1 Weighted baseline characteristics and dietary antioxidants and flavonoids intake of participants by prostate cancer status
(NHANES 2007–2010).

Variable (mean ± SE) Total Pca – no Pca – yes P-value

Age 56.664 (0.297) 56.160 (0.296) 70.430 (1.526) <0.001

Magnesium (mg) 336.012 (4.197) 337.036 (4.163) 308.031 (10.267) 0.002

Epicatechin (mg) 11.306 (0.474) 11.387 (0.486) 9.084 (0.882) 0.02

Selenium (mg) 128.074 (1.602) 128.655 (1.626) 112.209 (4.704) 0.001

Epigallocatechin (mg) 19.096 (1.461) 19.392 (1.515) 11.002 (2.635) 0.009

Theaflavin (mg) 1.912 (0.162) 1.943 (0.168) 1.057 (0.287) 0.011

Eriodictyol (mg) 0.181 (0.018) 0.184 (0.018) 0.108 (0.025) 0.012

Luteolin (mg) 0.795 (0.044) 0.801 (0.044) 0.626 (0.057) 0.003

Kaempferol (mg) 5.514 (0.212) 5.581 (0.219) 3.697 (0.476) <0.001

Quercetin (mg) 13.616 (0.472) 13.736 (0.481) 10.330 (0.977) 0.002

Total_flavones (mg) 1.120 (0.119) 1.131 (0.123) 0.817 (0.073) 0.025

Total_flavonoids (mg) 256.526 (15.589) 259.562 (16.144) 173.545 (28.846) 0.013

BMI (kg/m2), n (%)

BMI < 18.5 25 (0.436) 24 (0.436) 1 (0.411) 0.945

18.5 < BMI < 25 547 (19.692) 520 (19.722) 27 (18.874)

BMI ≥ 25 2,057 (79.873) 1,941 (79.842) 116 (80.715)

CVD, n (%)

No 2,104 (84.686) 2,010 (85.355) 94 (66.397) <0.001

Yes 525 (15.314) 475 (14.645) 50 (33.603)

Race, n (%)

Non-Hispanic White and non-Hispanic Black 1,933 (86.232) 1,804 (85.957) 129 (93.753) 0.047

Mexican American 395 (6.237) 389 (6.389) 6 (2.079)

Other Hispanic 225 (3.562) 220 (3.650) 5 (1.143)

Other races – including multi-racial 76 (3.969) 72 (4.003) 4 (3.024)

Marital status, n (%)

Married/living with partner 1,935 (76.077) 1,826 (75.859) 109 (82.041) 0.194

Live alone 694 (23.923) 659 (24.141) 35 (17.959)

Poverty income ratio (PIR), n (%)

<1.3 654 (14.918) 626 (14.978) 28 (13.294) 0.611

1.3–3.5 998 (32.641) 931 (32.425) 67 (38.538)

≥3.5 977 (52.441) 928 (52.597) 49 (48.169)

Education level, n (%)

≥High school 1,870 (82.571) 1,772 (82.765) 98 (77.268) 0.212

<High school 759 (17.429) 713 (17.235) 46 (22.732)

Hyperlipidemia, n (%)

Yes 2,105 (81.504) 1,981 (81.353) 124 (85.648) 0.397

No 524 (18.496) 504 (18.647) 20 (14.352)

Hypertension, n (%)

Yes 1,411 (47.894) 1,308 (47.311) 103 (63.821) 0.049

No 1,218 (52.106) 1,177 (52.689) 41 (36.179)

Smoking status, n (%)

Former 1,046 (37.764) 970 (37.148) 76 (54.594) <0.001

Never 1,057 (43.979) 997 (44.098) 60 (40.728)

Now 526 (18.257) 518 (18.754) 8 (4.678)

Continued
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TABLE 1 Continued

Variable (mean ± SE) Total Pca – no Pca – yes P-value

Diabetes, n (%)

Yes 510 (15.628) 35 (16.339) 510 (15.628) 0.797

No 1,975 (84.372) 109 (83.661) 1,975 (84.372)

Uric_acid (mg/dl), n (%)

<5.6 896 (31.293) 848 (31.080) 48 (37.129) 0.500

≥6.6 914 (35.534) 863 (35.547) 51 (35.179)

5.5–6.6 819 (33.173) 774 (33.373) 45 (27.692)

Alcohol consumption, n (%)

Non-drinker or light drinker 1,909 (71.428) 1,786 (70.938) 123 (84.810) 0.037

Heavy drinker 720 (28.572) 699 (29.062) 21 (15.190)

Continuous variables are presented as weighted means ± SE, and categorical variables as weighted counts and percentages. Comparisons were conducted using survey-weighted linear regression
for continuous variables and Rao–Scott Chi-square tests for categorical variables. Weights were applied to account for the complex sampling design of NHANES.

necroptosis, and autophagy, expanding their potential in targeting
resistant tumor phenotypes (16). Interestingly, selenium may
exert synergistic effects when combined with other bioactive
compounds, such as silybin, leading to a reduction in prostate-
specific antigen (PSA) levels and modulation of growth-related
pathways in PCa cells (19, 20). Magnesium, an essential mineral for
numerous enzymatic reactions, plays a pivotal role in maintaining
genomic stability, regulating apoptosis, and modulating immune
responses processes critically involved in carcinogenesis (21, 22).
Recent analyses of NHANES 2005–2018 data demonstrated a
significant association between higher magnesium depletion scores
(MDS) and increased PCa risk, with individuals exhibiting an
MDS ≥ 3 having over a threefold increased risk compared to
those with MDS = 0 (22). Mechanistically, magnesium deficiency
promotes tumorigenesis by exacerbating oxidative stress, chronic
inflammation, and DNA damage, thereby fostering genetic
instability (23). Magnesium also regulates intracellular calcium
homeostasis; its deficiency may lead to calcium dysregulation, a
hallmark of several cancers (22). Furthermore, low magnesium
levels have been shown to enhance epithelial-mesenchymal
transition (EMT), facilitating cellular plasticity, migration,
and metastasis. Beyond these effects, magnesium supports the
function of cytotoxic T cells, suggesting a potential role in
modulating the tumor immune microenvironment (24). These
findings underscore the complex and context-dependent roles
of magnesium in cancer biology and highlight its potential as
both a biomarker and a therapeutic target for prostate and
other malignancies.

Flavonoids, particularly luteolin, myricetin, catechin, and total
flavones, were inversely associated with PCa risk in this study.
Mechanistically, flavonoids exert multifaceted anticancer effects
by modulating several biological pathways relevant to prostate
carcinogenesis. These polyphenolic compounds act as potent
antioxidants, mitigating oxidative DNA damage, and suppress
chronic inflammation, which is a key driver of tumor initiation and
progression (25–27). In PCa cells, flavonoids such as luteolin and
myricetin have been shown to inhibit cell proliferation and induce
apoptosis by modulating the expression of pro- and anti-apoptotic
proteins, as well as by disrupting mitochondrial membrane
potential (28, 29). Furthermore, they suppress AR signaling, a

critical pathway in PCa development, and downregulate oncogenic
signaling cascades including PI3K/Akt, MAPK, and NF-κB (25).
These actions collectively contribute to cell cycle arrest, reduced
metastasis, and inhibition of EMT (30). Notably, emerging evidence
also suggests flavonoids may enhance immune surveillance
and modulate the tumor microenvironment, reinforcing their
potential as dietary components in cancer prevention (26).
These findings highlight the multifaceted mechanisms through
which flavonoids may exert protective effects against PCa,
including antioxidative, anti-inflammatory, pro-apoptotic, and
anti-androgenic activities.

In the machine learning analysis, particularly the RF model,
provided strong validation of the associations identified through
traditional weighted regression. Unlike traditional regression
methods that assume linearity and limited interactions,
machine learning algorithms can flexibly capture complex,
non-linear relationships among high-dimensional dietary
features. In this study, nine supervised classification models
were evaluated, including logistic regression, elastic net, decision
tree, RF, SVM, KNN, MLP, XGBoost, and LightGBM. Each
model offers unique advantages in terms of performance,
interpretability, or computational efficiency. Among these, the
RF model demonstrated the best overall predictive accuracy
and robustness. RF is particularly well-suited for clinical
datasets characterized by a large number of variables and
potential non-linear interactions. It builds an ensemble of
decision trees through bootstrap aggregation and random
feature selection, enabling the model to automatically identify
complex patterns without assuming predefined relationships.
This architecture reduces the risk of overfitting compared to
single-tree models and yields an unbiased estimation of model
performance via out-of-bag (OOB) error, thus reducing reliance
on external validation datasets. Additionally, RF allows for
intuitive variable importance ranking and integration with SHAP
values to quantify feature contributions (11). To enhance the
interpretability of the machine learning models, we employed
multiple complementary approaches for feature importance
assessment. First, traditional tree-based metrics (e.g., Mean
Decrease Accuracy and Mean Decrease Gini) ranked variables
based on their contribution to model accuracy but may bias
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FIGURE 3

Comparative performance of machine learning models for prostate cancer prediction. (A) Fivefold cross-validation ROC AUC scores across nine
models: decision tree (dt), elastic net (enet), k-nearest neighbors (knn), LightGBM, logistic regression, multilayer perceptron (mlp), random forest (rf),
radial SVM (rsvm), and XGBoost. (B) Test-set ROC curves showing model discrimination. (C) Calibration curves comparing predicted vs. observed
probabilities. (D) Cross-validated mean ROC AUC scores with standard errors. RF, XGBoost, and MLP showed relatively higher performance.

toward features with higher variability. Second, SHAP summary
plots provided a global view of how each feature influenced
the model’s predictions across the entire dataset, allowing for
visualization of both directionality and effect size. Third, SHAP
force plots highlighting the contribution of individual features to
the predicted risk for each participant. While traditional metrics
offer a straightforward ranking, SHAP values provide nuanced,
interpretable insights into complex, non-linear relationships
but are computationally intensive and sensitive to collinearity.
Importantly, by integrating findings from machine learning
models with results from univariable logistic regression analyses,
we were able to identify consistent and robust dietary predictors,
such as selenium, magnesium, catechin, myricetin, luteolin,

and total flavone across multiple analytical frameworks. This
triangulation of evidence strengthens the reliability of the
identified associations.

In comparison with previous studies (31, 32), our findings
offer new insights by integrating survey-weighted regression with
interpretable machine learning. Our findings revealed complex,
non-linear, and age-specific interactions between these factors and
PCa outcomes. Through SHAP analyses, we observed U-shaped
associations for selenium, myricetin, and catechin, suggesting that
both insufficient and excessive intakes may increase PCa risk,
while moderate intake confers protection. Selenium’s protective
range was particularly evident at intermediate intake levels,
with stronger protective effects observed in older participants.
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FIGURE 4

Tuning and cross-validation performance of the random forest (RF) model. (A) Grid search results showing the impact of hyperparameters (number
of trees, mtry, and node size) on accuracy, pr_auc, and ROC AUC. (B) ROC curves from fivefold cross-validation, indicating high and consistent
discriminative performance across folds.

FIGURE 5

Variable importance in the random forest (RF) model. (A) Top dietary and clinical predictors ranked by Mean Decrease Accuracy (MDA) and Mean
Decrease Gini (MDG), highlighting the contributions of magnesium, selenium, quercetin, catechin, myricetin, luteolin, and total flavones to model
performance. (B) SHAP summary plot showing each variable’s marginal contribution and direction of impact on prostate cancer prediction, with
color indicating feature value (purple for low and yellow for high). (C) SHAP force plot for prediction, illustrating how specific dietary factors such as
selenium, catechin, and luteolin decrease prostate cancer risk (shown in purple), while age and Daidzein increase the risk (shown in yellow).
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FIGURE 6

Key dietary predictors identified by random forest and SHAP analyses. (A) Venn diagram showing the overlap of top predictors identified by SHAP
values, Mean Decrease Accuracy (MDA), univariate logistic regression, and force plot analyses. Selenium, total flavones, luteolin (Intersection A);
myricetin, catechin (Intersection B); and magnesium (Intersection C) were identified. (B) SHAP scatter plots illustrating the non-linear associations
between dietary antioxidants and prostate cancer risk, stratified by age.

This may explain why the SELECT trial, which focused on
selenium supplementation, did not demonstrate a clear protective
effect (33). In light of our findings, dietary strategies for PCa
prevention may benefit from emphasizing foods rich in selenium,
magnesium, catechin, myricetin, luteolin, and total flavones, which
is consistent with the majority of previous studies (3, 5, 13, 29,
34). Some studies have also reported that excessive intake of

certain flavonoids may be positively associated with PCa risk,
indicating potential dose-dependent effects (35, 36). For example,
Wang et al. (35) observed a positive association between total
flavonoid intake and PCa risk at the highest intake quintile
in a prospective U.S. cohort study. Similarly, Reale et al. (36)
reported that high flavanone intake was linked to increased PCa
risk, although flavonols and catechins were associated with a
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lower risk. These findings suggest that while moderate flavonoid
consumption may be protective, excessive intake could potentially
be detrimental. However, due to the limited number of high-
intake individuals and the lack of robust clinical trials, these
dose-response relationships remain uncertain and warrant further
investigation. From a nutritional standpoint, many of these
compounds are abundant in commonly consumed plant-based
foods. Magnesium is prevalent in leafy green vegetables, whole
grains, legumes, and nuts; selenium in Brazil nuts, seafood,
and organ meats; catechins in green and black tea, cocoa, and
certain fruits such as apples and berries; myricetin in onions,
grapes, berries, and red wine; luteolin in celery, parsley, thyme,
green peppers, and chamomile tea; and total flavones in a wide
variety of fruits and vegetables. These dietary sources align
with evidence-based guidelines from the World Cancer Research
Fund and the American Institute for Cancer Research, which
recommend a plant-forward diet low in red meat, dairy products,
and saturated fats for cancer prevention (37, 38). Overall, these
findings underscore the need for personalized dietary strategies that
account for individual risk profiles, age, and intake levels when
considering flavonoid supplementation or dietary modifications for
PCa prevention and management.

Despite the strengths of this study, several limitations must
be considered. First, the cross-sectional design of NHANES limits
the ability to infer causality; for example, individuals diagnosed
with PCa may have modified their dietary habits as a result of
the disease. Second, dietary intake was measured using two 24-h
recall, which may not accurately capture long-term dietary patterns.
Third, PCa diagnosis relied on self-reporting, which introduces
the potential for recall bias. Moreover, despite controlling for
various covariates, residual confounding remains a possibility.
Furthermore, while the application of NHANES survey weights
helps mitigate some biases, the relatively small number of PCa cases
and the exclusion of a substantial number of participants may have
introduced selection bias, potentially impacting the generalizability
of the findings. Additionally, the relatively low ROC AUC value
of the RF model (0.740) may be partly attributed to the absence
of key variables, such as genetic risk factors, family history of
PCa, medication use (e.g., statins and NSAIDs), and hormonal
status, which were not available in the NHANES database.
Future research should aim to incorporate a broader range of
factors, such as genetic background, to improve risk prediction
and ensure more comprehensive insights into PCa prevention
and management. However, the study benefits from the use of
nine supervised machine learning models, enabling a thorough
comparison and validation of predictive accuracy. The use of
SHAP-based interpretation further enhances the transparency of
the models and aids in identifying significant dietary factors
associated with PCa (12).

5 Conclusion

In this nationally representative U.S. cohort, higher intake
of selenium, magnesium, catechin, myricetin, luteolin, and total
flavones was associated with a lower risk of PCa, and lower intake of
several flavonoids predicted poorer survival. Machine learning and
regression analyses consistently supported these findings, revealing

complex dose-response and age-related patterns. These results
suggest that antioxidant- and flavonoid-rich diets may contribute to
PCa prevention and improved outcomes. Future longitudinal and
interventional studies are essential to confirm causality and refine
dietary recommendations.
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SUPPLEMENTARY FIGURE 1

Survey-weighted Forest plot of univariate logistic regression results
assessing the association between dietary antioxidant and flavonoid intake
and prostate cancer risk. Odds ratios (ORs) and 95% confidence intervals
(CIs) are shown for each nutrient.

SUPPLEMENTARY FIGURE 2

Survey-weighted Forest plot of univariate Cox regression analyses showing
adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for dietary
antioxidants and flavonoids in relation to prostate cancer risk. Models adjust
for demographic, clinical, and lifestyle covariates.

SUPPLEMENTARY FIGURE 3

Kaplan–Meier survival curves for prostate cancer patients stratified by
dietary intake levels (high vs. low) of selenium, total flavones, myricetin,
magnesium, luteolin, and catechin. Survival probabilities were compared
using log-rank tests; P values are shown in each panel.

SUPPLEMENTARY TABLE 1

Survey-weighted multivariable logistic regression analysis of selenium and
covariates in relation to prostate cancer risk. Survey-weighted multivariable
logistic regression analysis evaluating the association between selenium
intake (categorized as high vs. low based on median intake) and prostate
cancer risk, adjusted for key demographic, lifestyle, and clinical covariates.
Odds ratios (ORs), 95% confidence intervals (CIs), and corresponding P-
values are reported.

SUPPLEMENTARY TABLE 2

Survey-weighted multivariable cox regression analysis of selenium and
covariates in relation to prostate cancer mortality risk. Survey-weighted
multivariable Cox regression analysis examining the association between
selenium intake and prostate cancer mortality, adjusted for BMI, marital
status, poverty income ratio (PIR), cardiovascular disease (CVD),
race/ethnicity, education level, hyperlipidemia, hypertension, alcohol
consumption, smoking status, diabetes, and uric acid levels. Hazard ratios
(HRs), 95% confidence intervals (CIs), and P values are presented.

SUPPLEMENTARY TABLE 3

Performance metrics of nine machine learning models for prostate cancer
classification. Performance metrics of nine machine learning models for
prostate cancer classification. Indicators include accuracy, sensitivity,
specificity, precision, F1-score, ROC AUC, and others, highlighting the
predictive strength and diagnostic consistency across models.
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