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Objective: This study aims to develop and validate a machine learning model 
that integrates dietary antioxidants to predict cardiovascular disease (CVD) risk in 
diabetic patients. By analyzing the contributions of key antioxidants using SHAP 
values, the study offers evidence-based insights and dietary recommendations 
to improve cardiovascular health in diabetic individuals.

Methods: This study leveraged data from the U.S. National Health and Nutrition 
Examination Survey (NHANES) to develop predictive models incorporating 
antioxidant-related variables—including vitamins, minerals, and polyphenols—
alongside demographic, lifestyle, and health status factors. Data preprocessing 
involved collinearity removal, standardization, and class imbalance correction. 
Multiple machine learning models were developed and evaluated using the 
mlr3 framework, with benchmark testing performed to compare predictive 
performance. Feature importance in the best-performing model was interpreted 
using SHapley Additive exPlanations (SHAP).

Results: This study utilized data from 1,356 individuals with diabetes from 
NHANES, including 332 with comorbid CVD. After removing collinear variables, 
27 dietary antioxidant features and 13 baseline covariates were retained. Among 
all models, XGBoost demonstrated the best predictive performance, with an 
accuracy of 87.4%, an error rate of 12.6%, and both AUC and PRC values of 
0.949. SHAP analysis highlighted Daidzein, magnesium (Mg), epigallocatechin-
3-gallate (EGCG), pelargonidin, vitamin A, and theaflavin 3′-gallate as the most 
influential predictors.

Conclusion: XGBoost exhibited the highest predictive performance for 
cardiovascular disease risk in diabetic patients. SHAP analysis underscored the 
prominent contribution of dietary antioxidants, with Daidzein and Mg emerging 
as the most influential predictors.
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Introduction

Diabetes mellitus (DM) has emerged as one of the most prevalent 
and serious chronic diseases (1, 2), with patients facing a significantly 
elevated risk of cardiovascular disease (CVD), which remains the 
leading cause of mortality in this population (3–5). The mechanisms 
underlying diabetes-associated cardiovascular disease involve 
oxidative stress, inflammatory responses, metabolic disturbances, 
mitochondrial dysfunction, accumulation of advanced glycation end 
products (AGEs), insulin signaling abnormalities, endoplasmic 
reticulum stress, and cardiomyocyte death (6, 7). Epidemiological 
studies indicate that individuals with diabetes have a higher risk of 
CVD compared to non-diabetic individuals (8). The Framingham 
Heart Study demonstrated that the attributable risk of CVD due to 
diabetes increased from 5.4% during 1952–1974 to 8.7% in 1975–1998 
(9). Haffner et  al. further conducted a 7-year follow-up study on 
cardiovascular mortality, reporting a mortality rate of 15.4% among 
diabetic patients without a history of myocardial infarction (MI) and 
42.0% among those with MI, compared to 2.1 and 15.9%, respectively, 
in non-diabetic individuals (10). A 10-year follow-up study by van 
Hateren et al. also showed that the risk of CVD-related mortality in 
diabetic patients increased annually (11). Given the substantial clinical 
burden of CVD complications in diabetic patients, integrated 
management of diabetes and CVD has become a major focus. Central 
to this management is effective blood glucose control. While intensive 
glucose control has proven beneficial in preventing microvascular 
complications and CVD in type 1 diabetes (12, 13), its role in reducing 
cardiovascular risk in type 2 diabetes mellitus remains contentious 
(14–16). Consequently, preventing macrovascular complications 
requires a comprehensive approach, addressing multiple risk factors 
such as blood glucose management, a healthy diet, smoking cessation, 
regular physical activity, blood pressure control, and treatment of 
dyslipidemia (17, 18).

In recent years, dietary factors, particularly the potential 
cardiovascular protective effects of dietary antioxidants, have garnered 
increasing attention (19, 20). Antioxidants in the diet, such as 
flavonoids, vitamins, and polyphenols, may lower the risk of CVD in 
diabetic patients by reducing oxidative stress, exerting anti-
inflammatory effects, improving vascular function, and regulating 
metabolic processes. Due to differences in mechanisms of action, 
metabolism, and bioavailability among antioxidants (21, 22), 
identifying the most protective compounds may inform more targeted 
dietary interventions for individuals with diabetes.

This study utilizes data from the National Health and Nutrition 
Examination Survey (NHANES) and applies machine learning (ML) 
methods to investigate the potential relationship between dietary 
antioxidant intake and cardiovascular disease in diabetic patients. 
Compared to traditional statistical approaches, machine learning 
techniques are better equipped to manage large, complex datasets and 
identify intricate relationships among health features, thus enabling 
more accurate predictions of disease risk (23). To ensure model 
reliability, we  conducted benchmark testing to compare different 
models and employed SHapley Additive exPlanations (SHAP) values 
to enhance model interpretability, highlighting the specific 
contributions of various dietary antioxidants in disease prediction. 
While previous studies have investigated the cardiovascular effects of 
individual antioxidants, total antioxidant intake, or antioxidant scores 

(24–26), they predominantly relied on traditional statistical methods, 
limiting the ability to assess the relative importance of each antioxidant 
in disease risk. This study innovates by integrating machine learning 
with SHAP analysis, enhancing prediction accuracy and precisely 
quantifying the independent contribution of each antioxidant to 
cardiovascular disease risk, offering valuable insights for personalized 
nutrition interventions and risk stratification.

Participants and methods

Participants

The National Health and Nutrition Examination Survey 
(NHANES), administered by the U.S. Centers for Disease Control 
and Prevention (CDC), collects nationally representative data on 
health, nutrition, and risk factors through interviews, physical 
examinations, and laboratory assessments. This study analyzed data 
from NHANES 2007–2010 and 2017–2018, including participants 
with complete dietary antioxidant intake data and clearly defined 
diagnoses of diabetes and CVD. Exclusion criteria included missing 
baseline data, a history of cancer, pregnancy, CRP levels >10 mg/L 
(indicative of acute inflammation), and implausible total energy 
intake (men: <800 or >4,200 kcal/day; women: <500 or >3,500 kcal/
day) to reduce confounding. The participant selection flow is 
presented in Figure 1.

Dietary antioxidant intake

This study utilized data on the intake of 44 dietary antioxidants 
(including vitamins, minerals, and polyphenols) from the 
NHANES dataset. Participants completed two 24-h dietary recall 
interviews at the mobile examination center, spaced 3 to 10 days 
apart. The average daily intake of dietary antioxidants was 
calculated based on these interviews. All dietary data were 
processed through the USDA’s Food and Nutrient Database for 
Dietary Studies (FNDDS) and combined with the USDA’s 

FIGURE 1

Flowchart of participant selection process.
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2007–2010 and 2017–2018 Flavonoid Value Database to ensure 
accurate calculation of dietary antioxidant intake.

Diagnosis of CVD and diabetes

CVD diagnosis was based on self-reported physician diagnoses of 
congestive heart failure, coronary heart disease, angina, myocardial 
infarction, or stroke. Diabetes diagnosis was determined by self-reported 
physician diagnosis or meeting at least one of the following criteria: 
glycated hemoglobin (HbA1c) ≥ 6.5%, fasting plasma glucose 
(FPG) ≥ 7.0 mmol/L, 2-h plasma glucose in an oral glucose tolerance test 
(OGTT) ≥ 11.1 mmol/L, or current use of antihyperglycemic medication.

Collection of baseline features

Baseline characteristics comprised demographic factors, lifestyle 
factors, and health status. Demographic factors included age, gender 
(male or female), race/ethnicity (Mexican American, non-Hispanic 
Black, non-Hispanic White, other Hispanic, and other), educational 
level (less than high school, high school graduate, some college or 
associate degree, college or above), marital status (never married, 
widowed or divorced, married or living with partner), and family 
poverty-to-income ratio (0–1, 1–3, >3). Lifestyle factors encompassed 
moderate-to-vigorous physical activity (yes or no), alcohol 
consumption (never, light, moderate, or heavy), and smoking status 
(never, former, or now). Health status included BMI classification 
(normal, overweight, or obesity) and the presence of hypertension or 
hyperlipidemia. Data on age, gender, race/ethnicity, educational level, 
marital status, and family poverty-to-income ratio were obtained from 
the NHANES Demographic Data module, while information on 
alcohol consumption, smoking, and physical activity was sourced 
from the Questionnaire Data module. Alcohol consumption was 
categorized into four levels: heavy drinking (≥3 drinks per day for 
women and ≥4 drinks per day for men within the past 12 months), 
moderate drinking (2–3 drinks per day for women and 3–4 drinks per 
day for men within the past 12 months), light drinking (≤2 drinks per 
day for both men and women within the past 12 months), and never 
drinking (no alcohol consumption). Smoking status was classified as 
never smokers (fewer than 100 cigarettes smoked in their lifetime), 
former smokers (more than 100 cigarettes smoked but not currently 
smoking), and current smokers (more than 100 cigarettes smoked and 
currently smoking either occasionally or daily). BMI data were 
obtained from the Examination Data Module. Hypertension and 
hyperlipidemia were determined based on laboratory measurements 
and self-reported data. Hypertension was defined as systolic blood 
pressure (SBP) ≥ 130 mmHg and/or diastolic blood pressure 
(DBP) ≥ 80 mmHg on at least three occasions, or a self-reported 
history of hypertension diagnosis or antihypertensive medication use. 
Hyperlipidemia was defined as low high-density lipoprotein 
cholesterol (HDL-C) (<1.0 mmol/L for men and <1.3 mmol/L for 
women), triglycerides (TG) ≥ 1.8 mmol/L, or a self-reported history 
of hyperlipidemia diagnosis or lipid-lowering medication use. Chronic 
kidney disease (CKD) was defined according to established criteria as 
either an estimated glomerular filtration rate (eGFR) < 60 mL/
min/1.73 m2 or a urine albumin-to-creatinine ratio (ACR) > 30 mg/g 
(27, 28).

Pre-processing of machine learning 
features

The initial dataset included 57 features, comprising 46 continuous 
and 11 categorical variables. To mitigate multicollinearity among 
dietary antioxidants, we calculated the correlation coefficients and 
excluded features with a correlation coefficient exceeding 0.9. The data 
was then split into training and testing sets, and all features were 
standardized to eliminate scale differences. To address class imbalance, 
the Synthetic Minority Over-sampling Technique (SMOTE) was 
applied to the training set, generating synthetic samples and enhancing 
the model’s ability to learn from the minority class, while ensuring no 
data leakage into the testing set.

Statistical analysis

This study employed a survey-weighted statistical model to 
characterize the comorbidity and non-comorbidity groups. 
Continuous variables were reported as mean ± standard deviation, 
while categorical variables were presented as frequencies and 
percentages. Group comparisons were performed using the weighted 
χ2 test for categorical variables, analysis of variance (ANOVA) for 
normally distributed continuous variables, and the Kruskal-Wallis H 
test for non-normally distributed variables.

This study implemented several machine learning models, 
including Recursive Partitioning and Regression Trees (RPART), 
Random Forest (RF), Kernel K-Nearest Neighbors (K-KNN), Naive 
Bayes (NB), Light Gradient Boosting Machine (LightGBM), Extreme 
Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), and 
Support Vector Machine (SVM) using the mlr3 framework. RPART 
builds decision trees by recursively partitioning the data, effectively 
capturing nonlinear relationships and feature interactions, making it 
ideal for modeling complex variable dependencies (29). RF, as an 
ensemble method, mitigates overfitting by constructing multiple 
decision trees and averaging their predictions, handling intricate 
feature interactions (30). K-KNN classifies based on the similarity 
between samples, making it effective for nonlinear data, particularly 
when sample distribution is uneven or boundaries are unclear (31). 
NB relies on the naive Bayes assumption of feature conditional 
independence, offering high computational efficiency, particularly in 
high-dimensional, large-scale datasets (32). LightGBM, a gradient 
boosting tree algorithm, quickly builds efficient models on large 
datasets using efficient splitting strategies and parallel training while 
avoiding overfitting (33). XGBoost, based on gradient boosting 
optimization, offers robust regularization and excels at capturing 
complex nonlinear relationships, performing exceptionally well across 
diverse datasets (34). MLP uses multi-layer neural networks to capture 
intricate patterns and nonlinear relationships in input data, making it 
well-suited for complex tasks such as image and speech recognition 
(35). SVM identifies the optimal decision boundary by maximizing 
the margin between classes, making it effective for high-dimensional 
data and suitable for both linear and nonlinear problems, particularly 
in small sample, high-dimensional datasets (36). These models have 
been successfully applied in previous NHANES data analyses (37, 38), 
confirming their applicability.

Benchmarking is essential for evaluating and comparing ML 
model performance. This study assessed multiple models on a 
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standardized dataset using consistent metrics to ensure fairness. For 
classification tasks, key evaluation metrics included classification error 
rate, accuracy, F-beta score, area under the ROC curve (AUC-ROC), 
sensitivity, specificity, and area under the PR curve (AUC-PR). 
AUC-ROC was the primary metric for performance assessment, while 
the other indicators provided a comprehensive evaluation of model 
effectiveness. To minimize evaluation bias, 10-fold cross-validation 
was employed for data resampling, and statistical differences across 
models were analyzed using analysis of variance (ANOVA) and the 
Kruskal-Wallis H test.

We utilized SHAP values to assess global feature importance in the 
best-performing ML model. Based on game theory, SHAP interprets 
the overall behavior of the model by aggregating the local 
contributions of each feature. It represents a state-of-the-art approach 
to interpretability for tree-based models. Compared to other global 
approximation methods, SHAP provides a more accurate 
measurement of feature impact on model decisions. In addition to 
offering a quantitative evaluation of overall feature importance, it also 
reveals the specific contribution of each feature to individual 
predictions, thus enhancing the model’s transparency 
and interpretability.

Data analysis was conducted using R statistical software (v4.4.1), 
with the following R packages: survey, DMwR, ggcor, mlr3, 
mlr3benchmark, mlr3extralearner, and shapviz. All statistical tests 
were two-sided, and a p-value of < 0.05 was considered 
statistically significant.

Results

Characteristics of the features

This study included a total of 1,356 participants, of whom 332 
were diagnosed with both CVD and diabetes. Compared to diabetic 
participants without CVD, those with comorbid CVD had significantly 
lower intakes of Mg (281.08 ± 113.70 vs. 260.01 ± 109.17, p = 0.003), 
Se (107.99 ± 48.91 vs. 100.21 ± 41.89, p = 0.009), and Eriodictyol 
(0.15 ± 0.60 vs. 0.07 ± 0.18, p = 0.013). In addition, significant 
differences were observed between the two groups in demographic 
and clinical characteristics, including age, sex, race/ethnicity, 
education level, family income-to-poverty ratio, BMI, physical activity, 
smoking status, alcohol consumption, hypertension, hyperlipidemia 
and CKD (Table 1).

Development and validation of the 
comorbidity disease prediction model

Before constructing the ML model, we conducted a visual analysis 
of feature distributions. Correlation analysis of dietary antioxidants 
(Supplementary Figure 1) identified strong correlations among several 
features. Consequently, the following features were excluded: 
Genistein, Glycitein, Epigallocatechin, Epicatechin 3-gallate, 
Theaflavin, Thearubigins, Theaflavin 3,3′-digallate, Theaflavin 
3-gallate and Gallocatechin. Figure 2 presents the dietary antioxidant 
features included in the ML model after addressing collinearity. In 
total, the model incorporated 27 dietary antioxidant features and 12 
baseline features.

Table 2 summarizes the performance of eight machine learning 
models—RPART, RF, K-KNN, NB, LightGBM, XGBoost, MLP, and 
SVM—evaluated using key metrics including AUC (Figure 3), PR 
curve (Figure 4), classification error (Supplementary Figure 2), 
accuracy (Supplementary Figure 3), F-beta score (Supplementary  
Figure  4), sensitivity (Supplementary Figure  5), and specificity 
(Supplementary Figure  6). Among all the evaluated models, 
XGBoost demonstrated the highest overall performance, achieving 
an accuracy of 87.4% and the lowest classification error rate of 
12.6%, indicating robust predictive accuracy and effective error 
control. The model also attained an area under the receiver 
operating characteristic (ROC) curve (AUC) and a precision-recall 
(PR) curve value of 0.949, highlighting its excellent classification 
capability and stable performance across varying precision-recall 
thresholds. LightGBM ranked second, with an accuracy of 86.3%, 
an AUC of 0.944, and a PR value of 0.942. RF followed closely, with 
an accuracy of 86.0%, an AUC of 0.944, and a PR value of 0.950. 
All three models exhibited sensitivity and specificity values 
approaching 90%, underscoring their high reliability and practical 
applicability. In contrast, K-KNN (accuracy: 77.8%), SVM (76.5%), 
RPART (68.6%), and MLP (67.4%) demonstrated moderate 
classification performance. K-KNN showed relatively high 
specificity (81.9%) but lower sensitivity (73.8%), whereas SVM had 
a sensitivity of 77.1% and a specificity of 75.7%. RPART presented 
moderate specificity (71.7%) but lower sensitivity (65.9%). MLP 
underperformed across both sensitivity and specificity, with both 
metrics below 70%. The NB model exhibited the poorest 
performance, with an accuracy of 60.9% and a high classification 
error rate of 39.1%. Despite its relatively high specificity (85.1%), 
it suffered from extremely low sensitivity (36.3%), limiting its 
utility in detecting true positive cases. Notably, the differences in 
key performance metrics across the models were statistically 
significant, indicating meaningful variability in predictive  
capabilities.

Importance of dietary antioxidant features 
interpreted by SHAP value

The SHAP analysis (Figure  5A and Supplementary Figure  7) 
identified the top  20 key dietary antioxidant features influencing 
comorbidity prediction. SHAP values highlighted Daidzein (0.085), 
Mg (0.055), EGCG (0.050), pelargonidin (0.037), vitamin A (0.035), 
and theaflavin 3′-gallate (0.035) as primary contributors. To visualize 
the impact of dietary antioxidants, we used the shapviz package to 
generate a waterfall plot (Figure 5B) and a force plot (Figure 5C). The 
waterfall plot illustrates each antioxidant’s contribution and 
cumulative effect on comorbidity prediction, with a final predicted 
probability of 0.713. Daidzein (−0.0556), Mg (−0.225), pelargonidin 
(−0.0202), vitamin A (−0.0834), and luteolin (−0.113) exhibited 
significant negative effects, suggesting that higher intake may reduce 
risk. The force plot (Figure  5C) highlights protective dietary 
antioxidants in yellow. Additionally, scatter plots in Supplementary  
Figure  8 show negative correlations between SHAP values and 
Vitamin E, Mg, Carotenoids, Daidzein, Malvidin, Pelargonidin, 
Epicatechin, Eriodictyol, Hesperetin, Luteolin, and Myricetin. These 
analyses provide insights into the model’s predictive logic, supporting 
personalized dietary recommendations.
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TABLE 1 Baseline characteristics of the participants.

Overall Diabetes without CVD Diabetes with CVD p-value

Participants 1,356 1,024 332

Vitamin A (mcg) 602.79(534.73) 599.05(515.85) 614.34(589.85) 0.651

Vitamin C (mg) 78.18(71.35) 79.37(67.54) 74.52(82.01) 0.282

Vitamin E (mg) 7.24(4.54) 7.30(4.63) 7.08(4.25) 0.462

Mg (mg) 275.92(112.93) 281.08(113.70) 260.01(109.17) 0.003

Zinc (mg) 10.75(6.69) 10.85(7.13) 10.47(5.09) 0.368

Se (mcg) 106.08(47.39) 107.99(48.91) 100.21(41.89) 0.009

Carotenoid (mcg) 8952.88(9224.72) 9147.57(9465.32) 8352.39(8424.69) 0.172

Daidzein (mg) 0.39(1.86) 0.40(1.99) 0.35(1.42) 0.669

Genistein (mg) 0.53(2.67) 0.55(2.87) 0.47(1.91) 0.608

Glycitein (mg) 0.07(0.39) 0.07(0.42) 0.06(0.30) 0.637

Cyanidin (mg) 2.39(7.84) 2.33(7.87) 2.57(7.75) 0.62

Petunidin (mg) 0.87(3.42) 0.92(3.56) 0.73(2.92) 0.372

Delphinidin (mg) 1.23(4.63) 1.32(4.92) 0.97(3.56) 0.233

Malvidin (mg) 3.69(10.86) 3.83(11.35) 3.27(9.22) 0.414

Pelargonidin (mg) 1.12(3.82) 1.09(3.53) 1.22(4.61) 0.563

Peonidin (mg) 1.28(5.27) 1.20(4.98) 1.51(6.10) 0.356

Catechin (mg) 6.85(8.54) 6.86(7.82) 6.84(10.44) 0.968

Epigallocatechin (mg) 14.71(41.45) 14.17(32.77) 16.38(60.90) 0.397

Epicatechin (mg) 8.51(12.88) 8.40(10.70) 8.84(18.03) 0.588

Epicatechin 3-gallate (mg) 9.47(26.90) 9.11(21.84) 10.57(38.55) 0.391

Epigallocatechin 3-gallate (mg) 25.51(85.04) 24.00(59.70) 30.15(136.23) 0.253

Theaflavin (mg) 1.37(3.86) 1.39(3.91) 1.34(3.74) 0.854

Thearubigins (mg) 79.30(206.42) 80.22(209.93) 76.49(195.46) 0.775

Eriodictyol (mg) 0.13(0.53) 0.15(0.60) 0.07(0.18) 0.013

Hesperetin (mg) 8.77(17.29) 9.03(17.54) 7.95(16.52) 0.322

Naringenin (mg) 3.61(8.37) 3.73(8.68) 3.27(7.34) 0.393

Apigenin (mg) 0.18(0.39) 0.17(0.31) 0.19(0.55) 0.61

Luteolin (mg) 0.65(0.87) 0.67(0.89) 0.60(0.77) 0.192

Isorhamnetin (mg) 0.88(1.51) 0.88(1.40) 0.89(1.80) 0.916

Kaempferol (mg) 4.14(5.76) 4.20(5.50) 3.95(6.49) 0.485

Myricetin (mg) 1.37(2.26) 1.39(2.17) 1.31(2.52) 0.598

Quercetin (mg) 10.60(9.86) 10.71(9.74) 10.26(10.23) 0.474

Theaflavin 3,3′-digallate (mg) 1.52(4.27) 1.53(4.32) 1.47(4.12) 0.834

Theaflavin 3′-gallate (mg) 1.28(3.67) 1.29(3.71) 1.26(3.55) 0.897

Theaflavin 3-gallate (mg) 1.09(3.06) 1.10(3.10) 1.06(2.94) 0.799

Gallocatechin (mg) 1.46(3.80) 1.43(3.54) 1.54(4.50) 0.652

Subtotal Catechins (mg) 66.50(173.93) 63.97(131.21) 74.31(265.61) 0.347

Total Isoflavones (mg) 1.00(4.88) 1.03(5.23) 0.88(3.61) 0.631

Total Anthocyanidins (mg) 10.58(24.05) 10.68(24.62) 10.27(22.22) 0.788

Total Flavan-3-ols (mg) 151.07(356.03) 149.49(338.11) 155.93(406.87) 0.775

Total Flavanones (mg) 12.51(23.47) 12.91(23.90) 11.29(22.08) 0.275

Total Flavones (mg) 0.83(1.04) 0.84(1.02) 0.78(1.11) 0.371

Total Flavonols (mg) 16.99(17.13) 17.18(16.55) 16.41(18.83) 0.479

(Continued)

https://doi.org/10.3389/fnut.2025.1612369
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhang et al. 10.3389/fnut.2025.1612369

Frontiers in Nutrition 06 frontiersin.org

TABLE 1 (Continued)

Overall Diabetes without CVD Diabetes with CVD p-value

Total 29 Flavonoid (mg) 192.98(372.48) 192.14(354.47) 195.58(423.81) 0.884

Age 61.31(11.78) 59.90(12.04) 65.69(9.74) <0.001

Gender 0.005

  Female 816(60.18) 594(58.01) 222(66.87)

  Male 540(39.82) 430(41.99) 110(33.13)

Race <0.001

  Mexican American 249(18.36) 210(20.51) 39(11.75)

  Non-Hispanic Black 142(10.47) 116(11.33) 26(7.83)

  Non-Hispanic White 519(38.27) 360(35.16) 159(47.89)

  Other Hispanic 344(25.37) 261(25.49) 83(25.00)

  Other Race-Including Multi-

Racial

102(7.52) 77(7.52) 25(7.53)

Education 0.043

  Less than high school 433(31.93) 321(31.35) 112(33.73)

  High school graduate 331(24.41) 244(23.83) 87(26.20)

  Some college or associates 

degree

373(27.51) 277(27.05) 96(28.92)

  College or above 219(16.15) 182(17.77) 37(11.14)

Marital Status 0.246

  Never married 102(7.52) 82(8.01) 20(6.02)

  Widowed or divorced 428(31.56) 313(30.57) 115(34.64)

  Married or living with partner 826(60.91) 629(61.43) 197(59.34)

FPIR level 0.036

  > = 0, <=1 257(18.95) 195(19.04) 62(18.67)

  >1, <=3 626(46.17) 454(44.34) 172(51.81)

  >3 473(34.88) 375(36.62) 98(29.52)

BMI 32.15(6.95) 31.87(6.62) 33.01(7.82) 0.009

Moderate to vigorous activity 0.001

  No 512(37.76) 360(35.16) 152(45.78)

  Yes 844(62.24) 664(64.84) 180(54.22)

Alcohol <0.001

  Never 491(36.21) 348(33.98) 143(43.07)

  Mild 526(38.79) 392(38.28) 134(40.36)

  Moderate 163(12.02) 140(13.67) 23(6.93)

  Heavy 176(12.98) 144(14.06) 32(9.64)

Smoke <0.001

  Never 586(43.22) 473(46.19) 113(34.04)

  Former 518(38.20) 368(35.94) 150(45.18)

Now 252(18.58) 183(17.87) 69(20.78)

Hypertension <0.001

  No 330(24.34) 277(27.05) 53(15.96)

  Yes 1,026(75.66) 747(72.95) 279(84.04)

Hyperlipidemia 0.002

  No 105(7.74) 93(9.08) 12(3.61)

(Continued)
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Discussion

This study, utilizing data from the 2007–2010 and 2017–2018 US 
NHANES cycles, systematically investigates the relationship between 
dietary antioxidant intake and CVD in diabetic patients through 
explainable machine learning techniques. Among the eight machine 
learning models developed, XGBoost demonstrated superior 
performance, achieving an average AUC of 0.955, highlighting its 

exceptional and consistent classification ability. The SHAP method, 
based on game theory, was employed to elucidate the contribution of 
each feature to the model’s predictions. The findings revealed that 
Daidzein, Mg, Isorhamnetin, Pelargonidin, Epigallocatechin 3-gallate, 
and Se were key influencing factors. To the best of our knowledge, this 
study is the first to integrate various antioxidants with baseline 
characteristics to build and validate a model for predicting CVD risk 
in diabetic patients. While the focus is on dietary antioxidants, the 

TABLE 1 (Continued)

Overall Diabetes without CVD Diabetes with CVD p-value

  Yes 1,251(92.26) 931(90.92) 320(96.39)

CKD <0.001

  No 1,142(84.22) 901(87.99) 241(72.59)

  Yes 214(15.78) 123(12.01) 91(27.41)

FIGURE 2

Correlation matrix of retained dietary antioxidant variables following collinearity exclusion.
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model also incorporates traditional features such as demographic 
factors, lifestyle, and health status, significantly enhancing prediction 
accuracy. Furthermore, systematic benchmarking was conducted to 
ensure a fair comparison and robust results across different models.

ML models have been increasingly utilized to explore dietary 
factors associated with cardiovascular disease. For instance, Ravi 
V. Shah and colleagues, using data from 2,259 young white and black 
adults in the CARDIA cohort, employed multivariate analysis and 
penalized machine learning techniques to identify metabolite features 
linked to dietary intake, encompassing 17 food groups, 2 nutrient 
types, and the Healthy Eating Index (HEI-2015). Their study 
highlighted that metabolic features associated with unhealthy dietary 
patterns, such as high intake of red/processed meat and refined grains, 
were stronger predictors of long-term diabetes and cardiovascular 
disease risks than traditional dietary scores (39). Similarly, Orly 
Ben-Yacov and colleagues applied machine learning algorithms to 

evaluate the effects of personalized postprandial target (PPT) diets 
compared to the Mediterranean diet in adults with prediabetes, 
showing that the PPT diet significantly improved cardiometabolic 
markers by modulating the gut microbiota, emphasizing the value of 
personalized nutrition strategies (40). Yue Wang and colleagues 
analyzed data from 90,167 participants in the UK Biobank using four 
machine learning algorithms, with the XGBoost model revealing that 
potassium, vitamin E, and vitamin C were significant predictors of 
CVD risk (41). Subgroup analyses identified calcium intake as a key 
factor for CVD risk in older adults and those with high BMI, while 
vitamin B6 was closely linked to CVD risk in women (41). Agustin 
Martin-Morales and colleagues compared multiple ML models, 
including logistic regression, support vector machines, RF, XGBoost, 
and LightGBM, selecting RF as the most effective model. SHAP 
analysis was used to identify critical factors such as age, systolic blood 
pressure, fiber, calcium, and vitamin E in predicting cardiovascular 

TABLE 2 Metrics of the eight machine learning models in predicting cardiovascular disease in diabetes.

Machine 
learner

Classification 
error rate

Accuracy F-beta Area 
under the 

ROC 
curve

Sensitivity Specificity Area 
under the 
PR curve

RPART 0.314 0.686 0.675 0.733 0.659 0.717 0.712

RF 0.140 0.860 0.858 0.944 0.858 0.862 0.950

K-KNN 0.222 0.778 0.767 0.843 0.738 0.819 0.83

NB 0.391 0.609 0.479 0.693 0.363 0.851 0.666

LightGBM 0.137 0.863 0.863 0.944 0.871 0.856 0.942

XGBoost 0.126 0.874 0.873 0.949 0.877 0.873 0.949

MLP 0.326 0.674 0.662 0.726 0.644 0.699 0.744

SVM 0.235 0.765 0.764 0.846 0.771 0.757 0.843

p-value <0.001b <0.001b <0.001a <0.001b <0.001b <0.001a <0.001a

RPART: Recursive partitioning and regression trees; RF: Random Forest; K–KNN: Kernel k-Nearest Neighbors; NB: Naïve Bayes; LightGBM: Light Gradient Boosting Machine; XGBoost: 
Extreme Gradient Boosting; MLP - Multi-Layer Perceptron; SVM: Support Vector Machine. aANOVA test. bKruskal-Wallis.

FIGURE 3

ROC curve analysis of eight machine learning models for predicting cardiovascular disease risk in diabetic patients. (A) ROC curves; (B) Area under the 
curve (AUC) comparison.
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mortality (42). These studies illustrate the application of ML in 
examining the link between dietary factors and disease, offering 
valuable insights for the fields of cardiovascular disease in diabetes. 
However, many of these studies have limitations, such as the lack of 
systematic comparisons of model performance and benchmark 
evaluations, despite utilizing multiple machine learning models.

We selected several models, including RPART, RF, K-KNN, NB, 
LightGBM, XGBoost, MLP, and SVM, to develop a prediction system 

for cardiovascular disease in diabetes, and assessed each model’s 
performance through benchmarking to identify the most suitable 
approach. Compared to traditional statistical methods, such as logistic 
regression, machine learning offers notable advantages. First, machine 
learning is capable of capturing complex nonlinear relationships, 
whereas traditional methods typically assume linearity, limiting their 
effectiveness in addressing complex issues. Second, machine learning 
can automatically identify and select key predictive features, 

FIGURE 4

Precision-recall (PR) curve analysis of eight machine learning models. (A) PR curves; (B) Area under the PR curve (PR-AUC) comparison.

FIGURE 5

SHAP value interpretation of dietary antioxidant features in the XGBoost model. (A) SHAP summary plot; (B) SHAP waterfall plot; (C) SHAP force plot.
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eliminating the subjective and labor-intensive feature selection 
required in traditional methods. Additionally, machine learning 
makes fewer assumptions about data distribution and can handle 
numerical and categorical data, as well as missing values, unlike 
traditional methods, which often rely on strict distribution 
assumptions. Machine learning, particularly with ensemble techniques 
like random forests and XGBoost, demonstrates robust predictive 
power by effectively preventing overfitting and improving model 
generalization. Thus, machine learning is more adaptable and efficient 
for handling complex datasets, offering more accurate decision-
making support for disease prediction and personalized healthcare.

Our results demonstrate that the XGBoost model exhibited 
superior performance among the machine learning algorithms 
evaluated. As an advanced gradient boosting technique, XGBoost 
provides distinct advantages in processing complex, high-dimensional 
datasets. By aggregating multiple weak learners through decision trees 
and incorporating key strategies such as regularization, column 
sampling, and gradient-based optimization, XGBoost achieves both 
high predictive accuracy and strong generalization ability. Its inherent 
resistance to overfitting further ensures reliable performance across 
diverse datasets. Owing to these strengths, XGBoost has been 
extensively applied in the analysis of electronic health records for the 
development of robust disease prediction models (43–45).

In this study, dietary antioxidants are categorized into three 
primary types: vitamins, minerals, and polyphenols, each exerting 
antioxidant effects through distinct mechanisms. Vitamin C directly 
scavenges free radicals, regenerates oxidized vitamin E, and inhibits 
metal ion-induced oxidation reactions, thereby protecting cells from 
oxidative damage (46). Vitamin E, embedded in cell membranes, 
prevents lipid peroxidation by halting free radical chain reactions, thus 
preserving membrane integrity (47). Vitamin A and β-carotene 
effectively neutralize singlet oxygen, safeguarding epithelial cells and 
preventing lipid oxidation (48). Selenium, as a crucial component of 
glutathione peroxidase (GPx), reduces the harmful effects of hydrogen 
peroxide and lipid peroxides, while also synergizing with vitamin E to 
enhance antioxidant defense (49). Zinc scavenges free radicals by 
promoting metallothionein expression and serving as a cofactor for 
superoxide dismutase (Cu/Zn-SOD), thereby maintaining cellular 
redox balance and stabilizing cell membranes to protect against 
oxidative damage (50). Magnesium mitigates oxidative stress-induced 
cellular damage by regulating redox balance, supporting ATP 
synthesis, and maintaining mitochondrial function (51). Dietary 
polyphenols, known for their potent antioxidant properties, neutralize 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) 
such as superoxide anions (O₂•−), hydroxyl radicals (•OH), and 
hydrogen peroxide (H₂O₂) through their phenolic hydroxyl groups 
(52). Additionally, polyphenols activate the Nrf2 pathway to increase 
the expression of endogenous antioxidant enzymes like superoxide 
dismutase (SOD), glutathione peroxidase (GPx), and glutathione 
(GSH) (53–55), while reducing chronic inflammation by modulating 
inflammatory pathways such as NF-κB (56), thereby offering 
combined antioxidant and anti-inflammatory effects.

Daidzein and Mg are two of the most critical antioxidants 
examined in this study. Daidzein, an isoflavone primarily found in soy 
and its derivatives, including tofu, soy milk, soybeans, and bean 
sprouts, has been clinically confirmed for its potential role in the 
prevention and treatment of cardiovascular diseases. For example, a 
cross-sectional study by D. Goodman-Gruen et al. demonstrated that 

postmenopausal women who consumed high amounts of soy 
isoflavones, such as Genistein, had significantly lower body mass 
index (BMI), waist circumference, and fasting insulin levels compared 
to those who did not consume isoflavones (57). Additionally, 
isoflavone intake was positively correlated with high-density 
lipoprotein cholesterol (HDL-C) levels and negatively correlated with 
postprandial insulin levels, suggesting that dietary soy may have 
protective effects on cardiovascular health in postmenopausal women 
(57). In a 16-week randomized controlled trial, Lea Tischmann et al. 
observed that soy nuts reduced low-density lipoprotein cholesterol 
(LDL-C) and mean arterial pressure (MAP), while significantly 
improving endothelial function in healthy elderly individuals (58). In 
a randomized crossover trial, K.E. Wangen et al. found that a high soy 
isoflavone diet significantly lowered LDL cholesterol and the LDL/
HDL cholesterol ratio in postmenopausal women, indicating potential 
benefits in improving lipid profiles and reducing the risk of coronary 
heart disease (59). Moreover, a meta-analysis revealed that isoflavone 
intake significantly reduced triglyceride (TG) levels and moderately 
increased HDL-C levels in postmenopausal women, with more 
pronounced effects observed in women under the age of 65 (60). 
Another meta-analysis involving 2,305 postmenopausal women 
showed that soy protein containing isoflavones and soy isoflavone 
extracts significantly reduced total cholesterol and triglyceride levels 
while moderately increasing HDL-C, further supporting the potential 
benefits of soy-based products in improving lipid metabolism and 
reducing cardiovascular risk (61). Similarly, Daidzein has 
demonstrated potential cardiovascular benefits in several preclinical 
studies. Its mechanisms of action include antioxidant properties that 
reduce free radical generation and alleviate oxidative stress, thereby 
mitigating endothelial cell damage and lowering the risk of 
atherosclerosis (62, 63). Moreover, Daidzein plays a role in regulating 
lipid metabolism by decreasing total cholesterol, LDL-C, and 
triglyceride levels, while simultaneously increasing HDL-C levels, 
leading to improved lipid profiles (64). Additionally, Daidzein has 
anti-inflammatory effects, inhibiting the expression of 
pro-inflammatory factors, which contributes to enhanced vascular 
health (65). It also promotes the synthesis of nitric oxide (NO), which 
enhances endothelial function, improves vasodilation, and supports 
vascular elasticity, ultimately aiding in blood pressure regulation and 
improving blood flow (66). Furthermore, Daidzein exhibits 
antithrombotic properties by reducing platelet aggregation and 
enhancing fibrinolytic activity, thus lowering the risk of thrombosis 
(62). Mg ranks second in importance according to SHAP values. As 
the most abundant divalent cation in cells, Mg is essential for 
maintaining cellular physiological functions and metabolism. It acts 
as a cofactor for numerous enzymes, regulates ion channels, and 
supports energy production (67). In the cardiovascular system, Mg 
plays a critical role in neuronal excitability, cardiac conduction, and 
myocardial contraction by modulating ion transport proteins, such as 
potassium and calcium channels (67, 68). Research has shown that 
low serum magnesium levels or inadequate dietary intake are closely 
linked to an increased risk of hypertension (69), atherosclerosis (70), 
coronary artery disease (71), arrhythmias (72), and heart failure (73).

Our findings also suggest that dietary antioxidants, including 
EGCG, pelargonidin, vitamin A, and theaflavin 3′-gallate, play crucial 
roles in CVD prevention through distinct mechanisms. EGCG 
demonstrates potent ROS scavenging, metal ion chelation, inhibition 
of lipid peroxidation and oxidative enzymes, and activation of the 
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Nrf2-ARE pathway, thereby enhancing cellular antioxidant defenses 
(74). It also reduces atherosclerosis risk by improving endothelial 
function, lowering inflammatory cytokines, and regulating blood 
pressure and lipid levels (74, 75). Pelargonidin, through its phenolic 
hydroxyl groups, scavenges free radicals, alleviates oxidative stress, 
reduces lipid accumulation, and enhances lipid profiles and 
endothelial function, thus decelerating atherosclerosis progression 
(76, 77). Vitamin A, a vital fat-soluble antioxidant, stabilizes cell 
membranes, modulates gene expression linked to endothelial repair 
and inflammation, and inhibits arterial remodeling and vascular aging 
via nuclear receptor mechanisms (78). Theaflavin 3′-gallate effectively 
prevents LDL oxidation, reduces vascular inflammation, and exhibits 
anti-platelet, lipid-lowering, and antihypertensive effects, thus 
disrupting multiple cardiovascular risk pathways (79, 80). These 
natural bioactive compounds offer multi-targeted antioxidant, anti-
inflammatory, lipid-regulating, and vascular-protective effects, 
providing a comprehensive approach to CVD prevention.

Our study holds certain clinical application value. Firstly, the 
developed predictive model demonstrated strong performance in 
assessing CVD risk, indicating the potential for future non-invasive 
risk stratification in diabetic patients through dietary intake 
assessments. Secondly, this study identifies a significant association 
between several antioxidant nutrients and CVD risk in diabetic 
patients, providing evidence to inform clinical dietary 
recommendations. Consistent with the guidelines from the American 
Diabetes Association (ADA) and other relevant nutritional 
frameworks, the findings offer specific guidance for dietary 
interventions targeting CVD risk in diabetic individuals. The study 
highlights that antioxidants such as soy isoflavones (e.g., Daidzein), 
Mg, isorhamnetin, pelargonidin, epigallocatechin gallate (EGCG), and 
Se are strongly correlated with CVD risk. Consequently, it is 
recommended that diabetic patients incorporate moderate amounts 
of soy products (such as soy milk and tofu) to achieve a daily intake of 
25–50 mg of isoflavones; consume 310–420 mg of magnesium daily 
from sources like leafy vegetables, nuts, and whole grains; increase the 
consumption of fruits and vegetables rich in isorhamnetin and 
pelargonidin (e.g., apples, onions, and berries), aiming for at least 400 
grams per day; drink 1–2 cups of green tea per day to supplement 
EGCG; and ensure an intake of approximately 55 μg of selenium, 
primarily from natural sources like Brazil nuts and seafood. By 
optimizing the intake of these antioxidant nutrients, diabetic patients 
may further reduce their CVD risk in addition to blood glucose 
control. Lastly, although various small-molecule antioxidants have 
shown promise in preclinical research, clinical trials have yielded 
inconsistent or unsatisfactory outcomes. Our findings may offer 
valuable insights for future mechanistic studies and the refinement of 
evidence-based nutritional intervention strategies.

This study has several limitations. First, the diagnosis of diabetes 
and cardiovascular disease was partially based on self-reported data 
from the NHANES interview questionnaire, which may introduce 
information bias due to recall bias or cognitive limitations. Second, 
variations in dietary habits across different populations and regions 
could influence the model’s predictions, but further analysis was not 
possible due to the lack of relevant data. As cross-sectional data were 
used, this study is unable to establish causal relationships, and future 
longitudinal studies will be  necessary to validate the model’s 
effectiveness. Although the use of the nationally representative 
NHANES dataset, along with the inclusion of factors such as gender, 

race, income, lifestyle, and health status, enhances the generalizability 
of the results, differences in dietary habits and health conditions across 
countries and regions may limit the external validity of the findings. 
Future research should aim to validate the model in diverse countries 
and dietary contexts. In addition, the complexity and limited 
interpretability of the model may impact its reproducibility and 
practical utility. Although SHAP values facilitate the assessment of 
feature contributions, they rely on the assumption of feature 
independence and may be  affected by residual inter-feature 
correlations. While highly collinear variables were excluded in this 
study, the interpretation of feature importance should be approached 
with caution. Future efforts toward more rigorous feature selection 
may improve model robustness, though this must be balanced against 
potential information loss. Finally, the study observed a significant age 
difference between the DM without CVD group and the DM + CVD 
group, as well as a higher proportion of females in the CVD group. 
These factors may influence the results. While machine learning 
methods can partially adjust for these differences, future research 
should conduct more detailed analyses of age, gender, and other 
potential confounders, and use more representative samples to 
minimize bias.

Conclusion

In conclusion, we  developed and validated a cardiovascular 
disease prediction model for diabetic patients using eight different 
algorithms: RPART, RF, K-KNN, NB, LightGBM, XGBoost, MLP, and 
SVM. Of these, XGBoost exhibited the highest discrimination and 
accuracy in predicting cardiovascular disease in diabetes. SHAP value 
analysis further elucidated the roles and contributions of various 
antioxidants, with Daidzein and Mg emerging as the key antioxidants 
in the model.
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Glossary

CVD - cardiovascular disease

NHANES - National Health and nutrition examination survey

RPART - recursive partitioning and regression trees

RF - random ForestRF

K-KNN - kernel K-nearest neighbors

NB - Naive Bayes

LightGBM - light gradient boosting machine

XGBoost - extreme gradient boosting

MLP - multi-layer perceptron

SVM - support vector machine

SHAP - SHapley additive explanation

Mg - magnesium

EGCG - epigallocatechin-3-gallate

Se - selenium

DM - diabetes mellitus

AGEs - advanced glycation end products

MI - myocardial infarction

ML - machine learning

SMOTE - synthetic minority over-sampling technique

ROC - receiver operating characteristic

PR - precision-recall

AUC-ROC - area under the ROC curve

AUC-PR - area under the PR curve

PPT - personalized postprandial target

GPx - glutathione peroxidase

ROS - reactive oxygen species

RNS - reactive nitrogen species

SOD - superoxide dismutase

GSH - glutathione

BMI - body mass index

HDL-C - high-density lipoprotein cholesterol

LDL-C - low-density lipoprotein cholesterol

MAP - mean arterial pressure

TG - triglyceride

NO - nitric oxide

https://doi.org/10.3389/fnut.2025.1612369
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

	Machine learning and SHAP value interpretation for predicting cardiovascular disease risk in patients with diabetes using dietary antioxidants
	Introduction
	Participants and methods
	Participants
	Dietary antioxidant intake
	Diagnosis of CVD and diabetes
	Collection of baseline features
	Pre-processing of machine learning features
	Statistical analysis

	Results
	Characteristics of the features
	Development and validation of the comorbidity disease prediction model
	Importance of dietary antioxidant features interpreted by SHAP value

	Discussion
	Conclusion

	References

