
Frontiers in Nutrition 01 frontiersin.org

Innovative modeling: a 
diet-induced quail model for 
progressive pathological changes 
in uric acid metabolism disorders
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Background: Diseases associated with uric acid metabolism disorders, primarily 
hyperuricemia, uric acid nephropathy, and gouty arthritis, are increasingly 
prevalent worldwide. Recent research suggests that hyperuricemia, uric acid 
nephropathy, and gouty arthritis can be regarded as distinct phases of the same 
disease, characterized by elevated serum uric acid levels and the progressive 
pathological manifestations observed in clinical settings. Animal models play a 
crucial role in investigating disease mechanisms and therapeutic interventions. 
However, there are currently few animal models available that can accurately 
simulate human uric acid metabolism disorders on the same animal, particularly 
those exhibiting progressive pathological features.

Methods: This study established a quail model of urate metabolism disorder 
using 25-day-old male Defaike quails via dietary induction. The diet consisted 
of high-calcium/high-purine components, including 20% yeast extract and 30% 
bone extract powder, supplemented with 15 mL of 10% fructose water daily 
for 30 days. The model effectively recapitulated three progressive pathological 
stages: (1) Hyperuricemia; (2) Hyperuricemia with urate nephropathy; and (3) 
Hyperuricemia with gouty arthritis. In the simple hyperuricemia stage, serum 
uric acid levels significantly increased after 10 days of intervention, with no 
significant deposition of monosodium urate (MSU) crystals observed in the 
kidneys or synovial fluid. In the second stage, hyperuricemia combined with uric 
acid nephropathy, renal MSU crystals were deposited after 20 days, while serum 
uric acid levels remained elevated, and serum creatinine (CRE) and blood urea 
nitrogen (BUN) significantly increased, accompanied pathological changes in 
renal tissue. In the final stage, hyperuricemia combined with gouty arthritis, MSU 
crystals were deposited in joint synovial fluid after 30 days of intervention, and 
the inflammatory factor IL-1β levels were elevated in both serum and synovial 
fluid.

Results: On day 10, the model quails exhibited significantly increased serum 
uric acid levels, indicating hyperuricemia. This condition was accompanied 
by a decreased uric acid excretion fraction and increased activities of liver 
uricase, xanthine oxidase (XOD), and adenosine deaminase (ADA). Additionally, 
there was a significant upregulation of GLUT9 mRNA levels in the kidney, 
accompanied by a downregulation of renal OAT1, OAT3, and ABCG2 mRNA 
levels. Although high serum uric acid levels have been observed at this time, 
no MSU crystals formation or acute inflammation-related manifestations have 
been noted. On day 20, urate crystals were observed in the kidneys of the model 
quails, accompanied by elevated serum CRE and BUN levels, alongside evident 
pathological damage indicative of uric acid nephropathy. Even if high serum 
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uric acid levels persist on day 20, urate crystals and acute inflammation have 
not yet appeared in synovial fluid, further supporting the notion that crystal 
deposition is a gradual process rather than triggered by hyperuricemia. By day 
30, urate crystals were detected in the synovial fluid of the model quails, and 
the levels of uric acid and inflammatory cytokine IL-1β in synovial fluid were 
significant increased, indicating the presence of gouty arthritis. This suggests 
that uric acid elevation precedes MSU crystal formation, and MSU deposition is 
a crucial event in the development of gouty arthritis. Furthermore, serum levels 
of inflammatory cytokines IL-6, TNF-α, and hs-CRP were elevated considerably 
throughout the modeling process.

Conclusion: This diet-induced quail model successfully recapitulates the 
progressive pathological stages of human uric acid metabolism disorders, 
providing a valuable tool for investigating disease mechanisms and evaluating 
potential therapeutics.
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diet-induced, hyperuricemia, uric acid nephropathy, gouty arthritis, quail models

1 Introduction

Hyperuricemia is a metabolic disorder characterized by 
abnormally elevated serum urate levels resulting from excessive uric 
acid production and/or impaired excretion (1). The prevalence of 
hyperuricemia is steadily increasing across most countries and 
regions, particularly in developed and rapidly developing countries. 
For instance, its prevalence is approximately 20% in the United States, 
24.5% in Europe, 26.8% in Japan, and 13.3% in China (2–5). The 
primary consequences of prolonged hyperuricemia include uric acid 
nephropathy and gouty arthritis (6, 7). When serum urate exceeds 
saturation thresholds, MSU crystals can form in the renal tubules and 
interstitium, leading to kidney damage and potentially inducing renal 
failure, with a 7–11% increased risk of nephropathy for every 1 mg/dL 
elevation in serum urate (8, 9). The deposition of MSU crystals in 
joints and surrounding tissues may result in gouty arthritis, which is 
clinically manifested by joint erythema, swelling, severe pain, and, in 
severe cases, joint deformities (10). Approximately 50% of patients 
with long-term uric acid nephropathy associated with hyperuricemia 
develop gout (6), highlighting the progressive continuum from 
hyperuricemia to nephropathy and gout, which aligns with the latest 
advancements in this research field (5, 11, 12). There is an urgent need 
for further research into its pathology and the development of effective 
prevention and treatment strategies. Animal models are essential tools 
for studying disease pathogenesis and therapeutic interventions. 
However, an ideal model that recapitulates the sustained and 
progressive features of uric acid metabolism disorders remains elusive.

Rodents, particularly rats and mice, are commonly employed in 
laboratory research. Researchers have successfully established models 
of hyperuricemia, urate nephropathy, and gouty arthritis through 
various approaches, including chemical induction [e.g., potassium 
oxonate combined with hypoxanthine for hyperuricemia (13), adenine 
for urate nephropathy (14) and MSU injection for acute gouty arthritis 
(15)], dietary induction [e.g., yeast extract combined with fructose 
water for hyperuricemia (16)] and genetic modification [e.g., uricase-
knockout mice (17)]. However, none of these models can 
simultaneously mimic the progressive pathological transition from 
hyperuricemia to urate nephropathy and gouty arthritis. Additionally, 
rodents express uricase, which converts uric acid into the more soluble 

allantoin, complicating the maintenance of stable hyperuricemia 
without external manipulation.

Given these limitations, researchers have shifted their focus to 
avian species. Poultry, including chickens, ducks, quails, and geese, 
have been observed to exhibit phenomena such as elevated uric acid 
levels and joint swelling, which are closely associated with the absence 
of uricase (18). This characteristic provides avian species a distinct 
advantage over rodent models (e.g., rats and mice) in demonstrating 
higher and more sustainable uric acid levels when subjected to 
overnutrition diets (19–22). Our previous research has confirmed that 
quails, due to their unique traits such as the absence of uricase, small 
size, and ease of husbandry, are well-suited for studies on 
hyperuricemia and gouty arthritis (23, 24). In our latest study, 
we discovered that a nutrient-excess dietary induction method enables 
quails to consistently exhibit three stages of progressive pathological 
changes. Clinical evidence and epidemiological studies have shown 
that diets high in calcium, purines, and fructose are critical risk factors 
contributing to disorders of uric acid metabolism (25–27).

Consequently, this study aimed to establish a diet-induced animal 
model with progressive pathological changes associated with uric acid 
metabolism disorders, which gradually exhibit three stages: 
hyperuricemia, hyperuricemia combined with uric acid nephropathy, 
and hyperuricemia combined with gouty arthritis, using quails. This 
model may provide an innovative approach for researching the 
pathogenesis of uric acid disorder development and for evaluating the 
efficacy of potential therapeutic drugs.

2 Materials and methods

2.1 Animal experiments

All experimental procedures and animal care were approved by 
the Animal Ethics Committee of the Beijing University of Chinese 
Medicine (Animal Ethics Approval Number: BUCM-2024070105-
3005). Male Defaike quails, aged 25 days, were raised under standard 
conditions (temperature: 25 ± 2°C, humidity: 50–55%, and a 12-h 
light cycle). Ventilation was maintained within these standard 
environmental parameters.
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After 3 days of adaptive feeding, the quails were subjected to a 
12 h fasting period to collect baseline (0-day) serum samples from the 
jugular vein for uric acid measurement. Based on their body weights 
and 0-day serum uric acid levels, the quails were randomly divided 
into two groups: the control group (Con, n = 30), which was fed a 
standard diet with free access to water, and the model group (Mod, 
n = 40), which received an overnutrition diet supplemented with 20% 
yeast extract powder and 30% bone extract powder (administered at 
a rate of 30 g per quail per day), along with restricted water intake 
(each quail was given 15 mL of 10% fructose-containing water daily). 
Overnutrition specifically refers to a diet high in purines, calcium, and 
fructose. Every modeling cycle lasted 10 days. The compositions of the 
diets are detailed in Table 1.

Blood samples were collected every 10 days. Following a 12-h 
fasting period, 0.8 mL of blood was drawn from the right jugular vein 
of quails using a sterile syringe. The blood sample was then transferred 
into an Eppendorf tube. After being left at room temperature for 2 h, 
the sample was centrifuged at 3,000 r/min for 10 min. The supernatant 
serum was subsequently aspirated and reserved for the subsequent 
determination of serum uric acid, XOD, ADA, and BUN levels 
(Nanjing Jiancheng Bioengineering Institute, China). After blood 
collection, some quails were sacrificed in stages to obtain liver, kidney, 
ankle joint, and synovial tissue samples for subsequent 
histopathological examination. Additionally, the left ankle joint cavity 
of each quail was rinsed with 0.2 mL of saline to collect fluid for 
analyses of uric acid and inflammatory cytokines. The right ankle joint 
cavity was rinsed with 0.2 mL of anhydrous ethanol to collect fluid for 
polarized light microscopy of MSU. The entire experiment was 
conducted over a period of 30 days.

Based on clinical diagnostic markers and the characteristics 
observed in animal experiments, the success criteria for evaluating the 
model are as follows: (1) Hyperuricemia, with an intervention for 
10 days. The key indicators include a significant increase in serum uric 
acid levels, while there is no notable deposition of MSU crystals in the 
kidneys or synovial fluid. (2) Hyperuricemia combined with uric acid 

nephropathy, with an intervention duration of 20 days. The key 
indicators are the deposition of renal MSU crystals, while auxiliary 
indicators include persistently elevated serum uric acid levels, 
significant increase in renal function-related parameters (such as CRE, 
and BUN), and pathological changes in renal tissue. (3) Hyperuricemia 
combined with gouty arthritis, with an intervention duration of 30 days. 
The key indicators are the deposition of MSU crystals in the synovial 
fluid and an elevation of the serum inflammatory cytokine IL-1β, while 
auxiliary indicators include persistently elevated serum uric acid levels.

2.2 Detection of uric acid and creatinine 
levels in the feces-urine mixture

Metabolic cages were employed every 10 days to collect the feces-
urine mixture from quails following a 12 h fasting period, during 
which they had free access to water. A 0.2 g sample of the feces-urine 
mixture was weighed, combined with 1.8 mL of saline, vortexed until 
homogeneous, and then centrifuged to obtain the supernatant. The 
supernatant was collected for the subsequent detection of uric acid 
and creatinine (Nanjing Jiancheng Bioengineering Institute, China), 
following the instructions provided with the corresponding kits.

2.3 Calculation of uric acid excretion 
fraction

The uric acid excretion fraction of quails was calculated at 10, 20, 
and 30 d using the following formula: Uric acid excretion fraction 
(%) = (Fecal-urinary mixture uric acid * Serum creatinine/Serum uric 
acid * Fecal-urinary mixture creatinine) * 100%.

2.4 Detection of inflammatory cytokines

Enzyme-linked immunosorbent assay kits were utilized to measure 
levels of inflammatory factors, including Interleukin-1β (IL-1β), 
Interleukin-6 (IL-6), Hypersensitive C-reactive protein (hs-CRP), and 
Tumor Necrosis Factor-α (TNF-α) (Jianglai Biology, Shanghai) in serum 
on days 10, 20, and 30, as well as IL-1β level in synovial fluid. Neither 
serum nor synovial fluid samples were diluted, and all procedures were 
conducted in strict accordance with the reagent instructions.

2.5 Observation of MSU deposition in the 
kidney and joint using polarized light 
microscopy

Following fixation in anhydrous ethanol overnight, the kidneys 
underwent dehydration, dewaxing, paraffin embedding, sectioning, 
dewaxing, and mounting (note: the kidney tissue should not come 
into contact with water throughout the experimental process). An 
optical microscope equipped with a polarized filter (Nikon ECLIPSE 
E200) was used to observe MSU in the kidneys. In addition, wash the 
joint cavities of quails with 0.2 mL of physiological saline and collect 
synovial fluid from each group. Polarized light microscopy serves as 
the gold standard for diagnosing gout (28), and the crystal morphology 
features conform to international consensus (29).

TABLE 1 Experimental feed proportions and nutritional levels (%).

Items Diet 
composition

The 
control 
group

The 
model 
group

Feed ratio

Corn 55.00 26.00

Soybean meal 33.00 15.60

Fish meal 2.00 1.00

Stone powder 5.00 2.40

Bovine bone meal – 30.00

Yeast extract powder – 20.00

premix 5.00 5.00

Total 100.00 100.00

Nutrient levels

CP 21.70 29.50

Ca 1.00 7.80

AP 0.50 3.73

The premix provides the following nutrients per kg diets: VA 200,000 IU, VD3 60,000 IU, VE 
380 mg, VK3 56 mg, VB156 mg, VB2 200 mg, VB6 60 mg, VB12 300 μg, biotin 3 mg, niacin 
600 mg, pantothenic acid 240 mg, folic acid 30 mg, Cu 0.2 g, Fe 1.8 g, Mn 1.4 g, Zn 1.1 g, Se 
6 mg, I 8.5 mg, P 15–60 g, Ca 100–250 g, NaCl 50–150 g, amino acids 28 g.
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2.6 Histological analysis

Liver, kidney, and joint tissues were collected and fixed in 4% 
paraformaldehyde (Servicebio, China) at room temperature for 48 h. 
The joint tissues underwent decalcification in a 10% EDTA solution 
(Aqlabtech, China) at room temperature for 45 days. Subsequently, the 
tissues were embedded in paraffin, and paraffin sections (3 μm thick) 
were prepared, followed by dewaxing and dehydration. Finally, the 
sections were stained with hematoxylin and eosin (H&E). Synovial 
hyperplasia and inflammation were evaluated using the Krenn scoring 
system (23) on H&E-stained sections. This system semi-quantitatively 
assesses three parameters: the synovial lining cell layer, stromal cell 
density, and inflammatory infiltrate using a scale of 0–3 (0 = none, 
1 = slight, 2 = moderate, 3 = strong) (30). The individual subscores were 
summed to yield a total Krenn score ranging from 0 to 9, with higher 
scores indicating more severe synovial proliferation and inflammation.

2.7 Reverse transcription quantitative 
polymerase chain reaction (RT-qPCR) 
analysis

Total RNA of kidney tissue was extracted with TRIzol reagent 
(Thermo Fisher Scientific, USA) and quantified using a NanoDrop 
ONEc spectrophotometer (Thermo Fisher Scientific, USA). Then, the 
total RNA was reverse transcribed into cDNA using the RevertAid 
First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA). 
cDNA amplification was performed using PowerUp™ Green Master 
Mix (Thermo Fisher Scientific, USA) on a CFX96 Real-Time PCR 
System (Bio-Rad, USA). The relative gene expression levels were 
determined using the 2−ΔΔCT method. Specific primers were purchased 
from Beijing Bomaide Gene Technology Co., Ltd., and their sequences 
are listed in Table 2.

2.8 Statistical analysis

Statistical analyses and graphical representations were performed 
using GraphPad Prism 9 (GraphPad Software, USA). Data are 
presented as mean ± standard deviation (SD). Initially, normality and 
homogeneity of variance tests were performed. For two-group data 
that met the assumptions of normal distribution and homogeneity of 
variance, an unpaired t-test was utilized. In cases where the two-group 
data did not conform a normal distribution, the Mann–Whitney U 
test was employed. When the two-group data adhered to normality 
but exhibited unequal variances, a t-test with Welch’s correction was 
applied. p < 0.05 was considered statistically significant.

3 Results

3.1 The elevated serum uric acid levels and 
impaired uric acid excretion in 
diet-induced quail model persisted 
throughout the experimental period

The entire experimental period lasted for 30 d (Figure 1A). Serum 
uric acid levels serve as key indicators of hyperuricemia. The results 

showed that compared to the Con group, serum uric acid levels in the 
Mod group of quails significantly increased from day 10 and persisted 
until day 30 (Figure 1B). Fecal-urinary mixture uric acid levels and the 
12 h uric acid excretion fraction are effective measures for evaluating 
uric acid excretion (20). Compared to the Con group, the uric acid 
levels in the fecal-urinary mixture and the 12 h fraction excretion of 
uric acid in the Mod group were significantly reduced at all time 
points (Figures  1C,D). These findings suggest that hyperuricemia 
induced by nutritional excess can be established by day 10 and that 
persists until the end of the experiment.

3.2 The abnormal expression levels of 
purine metabolizing enzymes and uric acid 
transporters in diet-induced quail model of 
hyperuricemia stage

The production and excretion of uric acid in the body depend on 
purine metabolizing enzymes and the uric acid transporter protein 
(31). XOD and ADA are key rate-limiting enzymes that convert 
endogenous purines into uric acid (32, 33). GLUT9 serves as a crucial 
uric acid reabsorption transporter, facilitating the reabsorption of uric 
acid into the bloodstream (34). OAT1, OAT3, and ABCG2 are uric 
acid secretion proteins that enhance the excretion of serum uric acid 
via urine (35). We measured the activities of XOD and ADA in serum, 
as well as the mRNA expression levels of GLUT9, OAT1, OAT3, and 
ABCG2 in the kidneys on day 10.

The results showed that, compared to the Con group, the serum 
activities of XOD and ADA in the Mod group were significantly 
elevated (Figures 2A,B). Furthermore, the renal mRNA expression 
level of GLUT9 was increased considerably, while the mRNA 
expression levels of renal OAT1, OAT3, and ABCG2 were significantly 
decreased (Figures 2C–F). This result proves that the key pathological 
mechanism underlying diet-induced hyperuricemia is associated with 
the abnormal expression of purine metabolizing enzymes and uric 
acid transporters. It also indicates that the hyperuricemia quail model 
caused by overnutrition can be established on the 10th day.

TABLE 2 Quail related gene specific primer sequences.

Gene 
name

Upper/
lower 
primer

Sequence (5′–3′)

GLUT9
Forward primer GCATCATTCTGCATTGGACC

Reverse primer AAGTTGGAGAGCCAGTTGAC

OAT1
Forward primer CTGCGCCTACATCTTCACCG

Reverse primer CCACGTCCTCCACAGTTTCG

OAT3
Forward primer TCGCCTACGCCGTCCCACA

Reverse primer TTCCTTCCCCGCCAGCACC

ABCG2
Forward primer CAGCAAGCAAGGAAGATCAC

Reverse primer GGCTGGAGTTGAGATACTTC

β-actin
Forward primer GATGAAGCCCAGAGCAAAAGA

Reverse primer ACCAGAGGCATACAGGGACAG

GLUT9: Solute Carrier Family 2, Facilitated Glucose Transporter Member 9; OAT1: Solute 
Carrier Family 22 Member 6; OAT3: Solute Carrier Family 22 Member 8; ABCG2: ATP-
binding Cassette, Sub-family G (WHITE), Member 2.
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3.3 The observation of MSU deposition in 
the kidney and renal function of 
diet-induced quail model during the 
experimental period

Persistently elevated serum uric acid levels can overwhelm renal 
excretion, resulting in uric acid supersaturation. This condition leads 
to the deposition of MSU in the kidneys, exacerbating renal damage 
and creating a vicious cycle of abnormal uric acid metabolism (36). 
During the experiment, the kidneys in the Con group exhibited a 
standard deep red color, characterized by a smooth surface and the 
absence of apparent abnormalities. In contrast, the kidneys in the Mod 
group appeared slightly bloodless on day 10 and became increasingly 
pale and bloodless on days 20 and 30, with a surface exhibiting white, 
dot-like changes that formed a “mottled kidney” (Figure  3A). 
Similarly, we observed a few MSU deposits in the kidneys of some 
quails in the Mod group under polarized light microscopy. However, 
significant MSU deposition was evident in the kidneys of all quails in 
the Mod group on days 20 and 30 (Figure 3A).

The serum levels of Cre and BUN are sensitive indicators for 
assessing renal function (37–39). Compared to the Con group, the 
Mod group exhibited a significant increase in serum Cre and BUN 
levels on days 20 and 30 (Figures 3B,C). Additionally, we examined 
the histopathological changes in the kidney tissue of quails using H&E 
staining. On days 10, 20 and 30, the Con group exhibited normal 
kidney structure with no signs of hyperplasia or atrophy in the 
glomeruli or tubules. In contrast, starting from day 20, the Mod group 
exhibited glomerular atrophy, enlarged glomerular capsules, and 
vacuolar degeneration in tubules compared to the Con group 
(Figure 3D).

Collectively, the evident MSU deposition in the kidneys, 
combined with the impaired renal function observed in the quails of 
the Mod group, indicates that uric acid nephropathy induced by 
nutritional excess can be established by day 20.

3.4 The observation of MSU deposition and 
inflammation in the joint of diet-induced 
quail model during the experimental period

To investigate MSU deposition in the joints of quails in the Mod 
group, we examined uric acid levels in the synovial fluid. We found a 
consistent and significant increase in synovial fluid uric acid levels in 
the Mod group on days 10, 20, and 30 (Figures 4A–C). According to 
the clinically established gold standard for diagnosing gouty arthritis, 
which relies on the presence of MSU in synovial fluid aspirates (40), 
we found no MSU deposition in the synovial fluid of the Mod group 
quails on days 10 and 20; needle-like crystals appeared only on day 30 
(Figure  4D). Additionally, only on day 30, the IL-β levels in the 
synovial fluid on the Mod group quails significantly increased 
(Figures  4E–G). Histopathological observations of the ankle joint 
tissue revealed that on days 10, 20, and 30, the ankle joint structure of 
quails in the Con group was well-defined, with regularly arranged 
synovial tissue. In contrast, the quails in the Mod group exhibited 
dilated and congested blood vessels, inflammatory cell infiltration, and 
synovial hyperplasia that extended into the joint cavity. These 
conditions worsened over time, particularly by day 30 (Figure 4H). 
The synovitis score showed that the model group had significantly 
higher scores compared to the normal group, with the highest scores 
recorded on the 30th day (Figure 4I).

FIGURE 1

Levels of serum uric acid and uric acid excretion during the experimental period. (A) Schematic diagram of the study protocol. (B) Serum uric acid level 
(On day 10, n = 30 per group; On day 20, n = 20 in the Con group and n = 13 in the Mod group; On day 30, n = 10 in the Con group and n = 7 in the 
Mod group). (C) Uric acid levels in the fecal-urinary mixture (n = 7 per group). (D) 12 h uric acid excretion fractions (n = 7 per group). Data are 
presented as mean ± SD. All data are expressed as mean ± SD. Statistical significance is indicated as *p < 0.05, **p < 0.01.
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Collectively, the evident MSU deposition in the synovial fluid, 
along with the inflammation and histopathological impairment 
observed in the joints of quails in the Mod group, indicates that 
gout arthritis induced by nutritional excess can be  established 
by day 30.

3.5 The observation of serum inflammatory 
cytokines in the diet-induced quail model 
during the experimental period

According to reports that both soluble uric acid and MSU can 
promote inflammation (41, 42), we dynamically measured the levels 
of serum inflammatory cytokines in experimental quails, including 
IL-6, hs-CRP, TNF-α, and IL-1β. The results showed that on days 
10, 20, and 30, the Mod group exhibited significantly elevated levels 
of hs-CRP, TNF-α, and IL-6 in quail serum compared with the Con 
group, with no significant change in IL-1β. By day 30, the model 
group showed a substantial increase in serum IL-1β levels 
(Figure 5). This indicates that the overall pathological state of the 
quail model exhibits a characteristic progression from low-grade 
inflammation to acute inflammation. This finding aligns with 
clinical reports of increased levels of hs-CRP, TNF-α, and IL-6 in 

the serum of patients with hyperuricemia and uric acid 
nephropathy, as well as elevated IL-1β expression in the serum of 
patients with gouty arthritis (43, 44).

4 Discussion

4.1 Quails serve as the ideal animal for the 
study of uric acid metabolism disorders

The quail, classified under the class Aves, order Galliformes, 
family Phasianidae, and genus Coturnix, is scientifically designated 
as Coturnix japonica. In the late 20th century, quails became 
significant subjects of research due to their practical advantages, 
including small size, high disease resistance, and short generational 
intervals of approximately 3 months. These characteristics make 
them particularly suitable for genetic and toxicological studies. The 
completion of their genome sequencing has further underscored 
their importance in contemporary biomedical research, particularly 
in developmental studies, environmental toxicology, and human 
disease modeling (45).

In the early 1990s, our research group was among the first to 
systematically utilize quail in studies of hyperuricemia, capitalizing on 

FIGURE 2

Levels of purine metabolizing enzymes and uric acid transporters on day 10. (A) XOD activity in serum (n = 10 per group). (B) ADA activity in serum 
(n = 10 per group). Bar diagram showing the relative expression levels of (C) GLUT9 mRNA, (D) OAT1 mRNA, (E) OAT3 mRNA, and (F) ABCG2 mRNA, 
n = 6 per group. All data are expressed as mean ± SD. Statistical significance is indicated as *p < 0.05, **p < 0.01.
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their unique biological characteristic: a natural deficiency of uricase, 
similar to that found in humans (46). This physiological trait increases 
the risk of hyperuricemia and related diseases, such as gout, in both 
humans and quail. Through our investigations, we  developed a 
modeling approach that combines a high-calcium, high-purine diet 
with fructose water supplementation. This method maintains stable 
elevated serum urate levels in quail and induces MSU crystal 
deposition in renal tissues and joint synovial fluid. Consequently, 
we  established a comprehensive progressive animal model 
encompassing three pathological stages: hyperuricemia, 
hyperuricemia combined with urate nephropathy, and hyperuricemia 
combined with gouty arthritis. This quail model naturally recapitulates 
the progressive pathological changes associated with human urate 
metabolism disorders, thereby serving as a valuable complement to 
rodent models. No other animal model can consistently demonstrate 
all three pathological stages within a single system despite rodents 
being the most commonly used laboratory animals.

Rodent models (rats and mice) naturally express urate oxidase, 
necessitating continuous administration of urate oxidase 
inhibitors (e.g., potassium oxonate) to induce and maintain 
hyperuricemia. However, this method cannot spontaneously 
induce gouty arthritis unless supplemented with exogenous MSU 
crystal injections into joint cavities (22, 47). Such injections fail to 
replicate the systemic pathological state associated with elevated 

serum urate levels. To effectively model gouty arthritis under 
hyperuricemic conditions, additional administration of urate 
oxidase inhibitors is required. These interventions not only 
diverge significantly from human urate metabolism pathways but 
also raise concerns regarding model stability and the potential for 
nonspecific organ damage due to exogenous compounds (13). 
Although urate oxidase-deficient (Uox−/−) rodent models have 
provided valuable insights, some limitations remain. For instance, 
Uox−/− models primarily simulate isolated hyperuricemia (HUA) 
without facilitating the progressive development of gouty arthritis. 
Uricase knockout induces systemic effects that extend beyond 
urate metabolism, including developmental, metabolic, and 
cardiovascular abnormalities (48), thereby introducing 
experimental confounders. The substantial costs associated with 
maintaining Uox−/− colonies pose significant barriers to large-
scale studies (48, 49). Beyond rodent models, researchers have also 
utilized primates and zebrafish for urate metabolism studies. 
While primates theoretically represent ideal models due to their 
nearly identical urate metabolic pathways to humans, their use is 
constrained by ethical regulations, high costs, and technical 
challenges. Zebrafish models are still in the preliminary 
exploration stages (50). In contrast, quails exhibit a natural 
deficiency in uricase akin to humans while providing practical 
advantages such as low maintenance costs and ease of husbandry, 

FIGURE 3

Overnutrition leads to renal MSU deposition, renal dysfunction, and renal pathological damage. (A) External morphology of quail kidneys and renal 
MSU deposition under polarized light on days 10, 20, and 30 (red background indicates bright field and black background indicates dark field). 
(B) Serum creatinine level. (C) Blood urea nitrogen levels. (D) Pathological image of renal H&E staining. n = 7 per group. All data are expressed as 
mean ± SD. Statistical significance is indicated as *p < 0.05, **p < 0.01.
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making them uniquely suited for the study of urate 
metabolism disorders.

4.2 Dietary overnutrition is the primary 
clinical cause of uric acid metabolism 
disorders and can serve as an inducer in 
animal models

Uric acid metabolism is influenced by various factors, such as 
genetics, race, age, gender, geographical environment, and diet (7). 
Among these, alterations in dietary structure have emerged as a 
significant trigger for clinical hyperuricemia and gout (25, 51). For 
example, a case–control crossover study demonstrated that exposure 
to purine-rich foods, such as red meat, seafood, and sugary foods, 
increased the risk of recurrent gout attacks by fivefold (52). 
Additionally, a longitudinal study showed that the consumption of 
sugary drinks elevates the risk of hyperuricemia in adults (53). 
Conversely, dietary patterns such as the Mediterranean Diet, which is 
abundant in plant proteins, whole grains, olive oil, and fish, as well as 
the Dietary Approaches to Stop Hypertension Diet, rich in whole 
grains, fruits, vegetables, and low-fat dairy products, along with a 
low-purine diet that avoids shellfish, organ meats, and alcoholic 
beverages, are associated with a reduced risk of uric acid metabolism 
disorders (54, 55). Both the ACR 2020 and EULAR 2016 guidelines 
recommend the conditional limitation of high-purine foods (e.g., red 

meat, organ meats, seafood) and fructose intake, regardless of disease 
activity (56, 57). This underscores the well-established role of purine-
rich diets in the promotion of uric acid dysregulation. Excessive intake 
of high-purine foods promotes de novo purine synthesis and XOD 
activity, thereby increasing uric acid production (58). The 
phosphorylation of fructose results in ATP depletion, augmenting the 
compensatory effect on purine synthesis (59). In studies investigating 
the pathogenesis and intervention strategies of hyperuricemia, many 
studies have successfully established hyperuricemia animal models 
through the administration of high-purine diets and fructose 
induction. For instance, researchers induced hyperuricemia in mice 
by administering yeast extract combined with a 10% fructose solution 
(60). Our previous research also found that the serum uric acid levels 
in quails consistently increased following prolonged intake of a high-
purine diet (61).

In addition to excessive uric acid production, disorders in uric 
acid excretion represent a significant factor in abnormal uric acid 
metabolism, with renal excretion being particularly critical. As the 
primary pathway for uric acid clearance in the body, the kidneys are 
responsible for approximately 2/3 of uric acid excretion (62). 
Clinical research reports that over 90% of patients with primary fall 
into the category of renal excretion disorder (63). Research has 
reported that prolonged high-calcium diets can impair renal 
function and inhibit uric acid excretion (64). The influx of 
substantial calcium ions into the bloodstream tends to bind with 
uric acid, which can subsequently impair the kidney (65, 66). 

FIGURE 4

Overnutrition leads to MSU deposition in quail synovial fluid and joint pathological damage. Synovial fluid uric acid in quails on day 10 (A), day 20 (B), 
and day 30 (C), n = 7 per group. (D) Observation of MSU crystals in the synovial fluid of quails on days 10, 20, and 30, under polarized light. Levels of 
IL-1β in the synovial fluid of quails on day 10 (E), day 20 (F), and day 30 (G). n = 10 on day 10 per group, n = 7 on day 20 and 30 per group. (H) H&E 
staining of quail ankle joints. (I) Synovial hyperplasia and inflammation score. Blue arrow represents synovial hyperplasia toward the joint cavity, the 
green arrow represents the lining layer, the black arrow represents the cell matrix, the red arrow represents inflammatory cell infiltration, and the 
yellow arrow represents the formation of vascular opacities. n = 7 per group. All data are expressed as mean ± SD. Statistical significance is indicated as 
*p < 0.05, **p < 0.01.
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FIGURE 5

Levels of inflammatory cytokines during the experimental period. The concentrations of IL-6, hs-CRP, TNF-α, and IL-1β in quail serum on days 10, 20, 
and 30 were determined. n = 10 on day 10 and 20, n = 10 in the con group and n = 7 in the mod group on day 30. All data are expressed as 
mean ± SD. Statistical significance is indicated as *p < 0.05, **p < 0.01.
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Research has shown that the prolonged administration of high-
calcium feed to poultry, including chickens and quails, may result in 
gout affecting the internal organs and joints (67). Additionally, 
insufficient water intake is another factor contributing to abnormal 
renal function, as optimal renal function relies on adequate 
hydration (68). When the body experiences relative dehydration, 
urine concentration increases, and both fecal and urinary excretion 
decrease. This reduction inhibits uric acid excretion, exacerbating 
serum uric acid levels and potentially leading to MSU deposits in 
the kidneys, which can further impair renal function (69). Therefore, 
the 2020 American Society of Nephrology Clinical Practice 
Guidelines recommends that healthy adults should consume 
between 2.5 and 3.7 L of water daily for males and between 2.0 and 
2.7 L for females (70).

Based on the analysis of the clinical factors associated with 
disorders of uric acid metabolism, this study successfully established 
a stable animal model of abnormal uric acid metabolism in quails. 
This model, which can be maintained for 30 days, was induced by 
combining a high-purine, high-calcium, and high-concentration 
fructose diet with restricted water intake, demonstrating significant 
clinical relevance.

4.3 Characteristics of the progressive 
pathological alterations associated with 
disordered uric acid metabolism in the 
quail model

Hyperuricemia, uric acid nephropathy, and gouty arthritis are 
prevalent diseases associated with disorders of uric acid metabolism. 
Currently, the development of experimental animal models for these 
conditions has become relatively advanced. Hyperuricemia can 
be induced in rat or mouse models through gavage or intraperitoneal 
injection of potassium oxonate, while gouty arthritis models can 
be established via intra-articular injection of MSU (22, 47). However, 
clinical research has revealed the progressive nature of uric acid 
metabolism disorders (5). There is a growing focus on studying the 
pathological mechanisms underlying the transition from 
hyperuricemia to uric acid nephropathy and gouty arthritis, as well as 
on the development of pharmacological interventions aimed at 
comprehensively regulating these disorders. Existing animal models 
are inadequate for research purposes, underscoring the urgent need 
for a model that accurately simulates the progressive characteristics of 
uric acid metabolism disorders. Our research has provided an 
innovative experimental animal model to fulfill this requirement.

In this study, on day 10, we observed significantly elevated serum 
uric acid levels in the model quail without apparent renal damage or 
MSU deposition in the kidneys and joints, thereby mimicking the 
hyperuricemia stage. By day 20, all euthanized model quails exhibited 
MSU deposition in the kidneys, accompanied by renal dysfunction 
and structural abnormalities, indicating the progression to uric acid 
nephropathy. Despite high UA levels on the 10th and 20th day, MSU 
and acute inflammation did not immediately appear. By day 30, 71% 
of the model quails displayed MSU deposition in the synovial fluid, 
along with increased uric acid levels and significant acute 
inflammatory response (IL-1β significantly increased), effectively 
simulating the stage of gouty arthritis. These findings suggest that the 
quail model accurately reflects the natural course of uric acid 

metabolism disorders. This also indicates that uric acid elevation 
precedes crystal deposition, which is a key event in the development 
of gouty arthritis. However, the reported incidences of uric acid 
nephropathy and gouty arthritis in this study are case-based, and 
individual variations among quails and limitations in sample size may 
introduce deviations.

In terms of pathological mechanisms, the notably increased 
mRNA expression levels of GLUT9, a uric acid reabsorption 
transporter, in the kidneys, along with the significantly elevated 
activities of XOD and ADA in the serum, as well as the significantly 
reduced mRNA expression levels of OAT1 and OAT3 in the kidneys, 
which are the primary uric acid secretion proteins, constitute the 
core pathological mechanism of hyperuricemia in our quail models. 
GLUT9 is a uric acid reabsorption transporter located on both the 
apical and basolateral membranes of renal proximal tubular cells. It 
can reabsorb uric acid from the renal tubules and transport it to the 
bloodstream, thereby increasing uric acid levels in the body (71). 
Its genetic polymorphism has been confirmed to be  directly 
associated with hyperuricemia in humans (72). OAT1/3 and 
ABCG2 are uric acid secretion transporters, expressed in the 
basolateral and apical membranes of the renal proximal tubules, 
respectively (73, 74). They are responsible for transporting uric acid 
from the blood to the renal tubules for secretion into the urine. 
Reduced expression of OAT1/3 significantly inhibits uric acid 
excretion (75). XOD and ADA serve as rate-limiting enzymes in the 
purine nucleoside metabolism pathway, directly or indirectly 
regulating uric acid levels in the body. XOD can catalyze the 
conversion of hypoxanthine to xanthine, ultimately producing uric 
acid (76). ADA indirectly promotes uric acid production by 
increasing purine degradation substrates (77). The increased 
activity of both enzymes leads to an excess synthesis of uric acid. 
The formation of MSU is crucial in the progression from 
hyperuricemia to uric acid nephropathy or gouty arthritis (36). 
Polarized light microscopy revealed the presence of yellow-green, 
nearly round urate crystals in the kidneys of model group quails. 
MSU exhibits various morphologies influenced by factors such as 
temperature, ion concentration, and pH. These morphologies 
include needle-like structures, arcuate aggregates, sea urchin-like 
aggregates, and beach ball-like forms (66). Among these, the “beach 
ball-like” MSU crystal is considered an essential metastable 
precursor in the morphological evolution of urate crystal (66). This 
observation aligns closely with the MSU crystal morphology 
observed in quail kidneys in our study. Renal MSU crystals activate 
the NLRP3 inflammasome in monocytes and macrophages, 
triggering the extracellular release of inflammatory cytokines and 
subsequent recruitment of leukocytes, thereby promoting 
inflammation (78). However, the pathological mechanisms through 
which ‘beach ball-like’ MSU crystals induce inflammatory 
activation or tissue damage remain unclear and warrant further 
investigation. Research reported that the pathogenesis of gouty 
arthritis might be linked to the morphological transformation of 
MSU from “beach ball-like” to “needle-like” forms (79), as 
evidenced by the presence of needle-like MSU crystals in the 
synovial fluid of the model quails on the 30th day of this study. 
Studies demonstrate that needle-shaped MSU crystals physically 
pierce cell membranes due to their sharp structure, leading to 
lysosomal rupture and the activation of the NLRP3 inflammasome, 
which subsequently induced acute gouty arthritis (80). Additionally, 
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studies have reported that persistent low-grade inflammation may 
be a critical factor in promoting uric acid metabolic disorders and 
exacerbating MSU deposition, as inflammation can intensify tissue 
and organ damage (81–84). Clinical data indicate that patients with 
hyperuricemia or uric acid nephropathy exhibit significantly higher 
levels of low-grade inflammatory markers, such as hs-CRP, TNF-α, 
and IL-6, in their serum compared to healthy individuals (43). In 
our model quails, we  also observed this characteristic, finding 
significantly elevated levels of low-grade inflammatory factors on 
days 10, 20, and 30. At the same time, the deposition of MSU 
crystals in the kidneys increases over time, indicating that 
low-grade inflammation may serve as a significant promoter of 
MSU deposition. In the model group, serum IL-1β levels in quails 
increased only on day 30 coinciding with the onset of gouty 
arthritis. During this period, needle-shaped MSU crystals were 
observed in the synovial fluid, which were absent on days 10 and 
20. This temporal characteristic aligns well with the pathological 
process of the ‘crystal inflammation’ cascade observed during acute 
gout attacks in clinical practice. Additionally, these findings suggest 
that IL-1β could serve as a specific biomarker for acute gout 
inflammation. Collectively, this quail model addresses the 
limitations of traditional single-phenotype models, which are 
unable to simulate the progression of uric acid metabolism 
disorders. It offers a valuable animal model for in-depth exploration 
of the pathological mechanisms and the evaluation of potential 
therapeutic approaches, providing significant practical value.

Indeed, this quail model presents specific challenges. First, the 
basal metabolism in quails differ from humans, which may limiting 
the model’s capacity to fully recapitulate the spectrum of human 
urate metabolism disorders. Future studies should systematically 
validate the clinical relevance of this model to enhance its reliability 
and utility. Second, the absence of quail-specific research reagents, 
particularly antibodies, poses significant challenges for mechanistic 
investigations, highlighting the necessity for the development of 
avian-specific biological tools. Third, as an exploratory model, it 
requires more comprehensive validation, including the 
characterization of intestinal urate transporters and gut microbiota 
dynamics, systematic evaluation of MSU deposition patterns across 
multiple organs, and investigation of pathological targets, 
mechanisms, and genetic signatures associated with progressive 
hyperuricemia in this model.

5 Conclusion

In conclusion, we  successfully established a quail model that 
comprehensively simulates the progressive pathological changes 
associated with uric acid metabolism disorders. This model compasses 
the pathological progression from hyperuricemia to uric acid 
nephropathy and gouty arthritis, achieved through a dietary induction 
method involving the daily feeding of quails with a high-calcium, 
high-purine diet alongside a quantitative 10% fructose solution. This 
innovative animal model serves as a valuable tool for investigating the 
pathogenesis of uric acid disorders and can be employed in drug 
efficacy evaluations, safety studies, and the development of new 
therapeutic strategies for regulating diseases related to uric 
acid disorders.
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