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Background: Allergic asthma involves chronic inflammation, airway remodeling, 
and hyperresponsiveness. Inhaled corticosteroids combined with long-acting 
β2 agonists are effective; however, some patients experience side effects, 
highlighting the need for safer natural alternatives suitable for long-term use. 
Chinese quince (Q) and Saururus chinensis (SC) are used to treat various diseases, 
including asthma and inflammation. Q and SC extracts contain bioactive 
compounds that help modulate airway inflammation. Therefore, combining the 
two may enhance their immunomodulatory effects. However, the effects of a 
Q/SC mixture on allergic asthma remain unclear. The aim of this study is to 
assess the therapeutic effectiveness of a Q/SC mixture in treating asthma.

Methods: The therapeutic efficacy of the Q/SC extract was evaluated in an 
ovalbumin (OVA)-induced allergic airway inflammation model. After euthanasia, 
we assessed cell counts, cytokine expression in the bronchoalveolar lavage fluid 
(BALF), blood immunoglobulin (Ig) E levels, inflammatory cell infiltration, mucus 
production in the lung tissue, and the expression of protein and cytokine.

Results: A high-concentration Q/SC extract significantly reduced total cell 
and eosinophil counts, cytokine expression in BALF, and serum IgE levels. 
Furthermore, it reduced the expression of type 2 cytokines (IL-4, IL-5, IL-13) 
and inducible nitric oxide synthase in lung tissue. The extract also attenuated 
inflammatory cell infiltration and mucus production while inhibiting the STAT6 
signaling pathway.

Conclusion: A high concentration of Q/SC extract effectively alleviates allergic 
airway inflammation by reducing eosinophilic inflammation, type 2 cytokine 
secretion, and mucus hyperproduction. This suggests that it could be a potential 
remedy for managing allergic airway inflammation.
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1 Introduction

Asthma is a convoluted respiratory condition marked by 
heightened airway sensitivity, ongoing inflammation, and structural 
changes. These factors can lead to symptoms ranging from mild 
wheezing to severe, life-threatening obstructions (1). Importantly, 
despite advancements in understanding its underlying mechanisms, 
asthma remains a significant global health challenge (2, 3). Various 
allergens (air pollution and house dust mites) and viral infections can 
trigger asthma. The key pathological features include epithelial cell 
hyperplasia, mucus hypersecretion, pulmonary fibrosis, and 
inflammatory cell infiltration. These elements collectively contribute 
to disease progression and severity (4, 5). The mucus plays a vital 
function in the host defense of the airway; however, excessive mucus 
production can lead to airway obstruction and worsen various 
respiratory diseases. MUC5AC is important in mucus 
hyperproduction in asthma, with approximately 20 mucin genes 
involved in mucus secretion (6–8). Type 2 cytokines interleukin (IL)-4 
and IL-13 induce mucus production in the airways, with IL-13 playing 
a significant role in excessive mucus production associated with 
asthma. The key transcription factor STAT6, triggered by IL-4 and 
IL-13 through the IL-4Rα subunit, is crucial in modulating MUC5AC 
gene expression (9, 10).

The inflammatory response in asthma is triggered by various 
inflammatory cells, including mast cells, B cells, T cells, neutrophils, 
eosinophils, and cytokines. T helper 2 (Th2) cells are highly involved 
in the development and progression of allergic asthma. Th2 cells 
release cytokines IL-4, IL-5, and IL-13, which stimulate 
immunoglobulin (Ig) E synthesis and recruit eosinophils to the site of 
inflammation. This process leads to excessive mucus secretion and 
airway inflammation (11). Therefore, Th2 cell immune regulation has 
been recognized as a promising therapeutic strategy for treating 
asthma and monoclonal antibody drugs that regulate type 2 cytokines 
have been approved (12). However, asthma and allergies have complex 
mechanisms involving many cells, making it potentially inadequate to 
target a single pathologic mechanism. Furthermore, the main 
pharmacological approach for treating asthma is the daily use of 
inhaled corticosteroids combined with long-acting β2 agonists. 
Inhaled corticosteroids combined with long-acting β2 agonists therapy 
achieves excellent results in most patients; nevertheless, approximately 
10–25% of patients experience persistent asthma symptoms. Moreover, 
corticosteroid side effects, including pneumonia, hypertension, 
hyperlipidemia, myopathy, and cataracts, have been reported (13). 
Therefore, asthma treatments derived from natural products that are 
free of side effects and suitable for long-term use are needed.

Medicinal plant extracts may exert multiple effects rather than 
blocking a single cell or mechanism, increasing their potential for 
development as asthma treatments. Chinese quince (Q) is a 
medicinal plant species from the Rosaceae family. It has been used 

to treat various diseases in Japan, Korea, and China. Q extract 
contains bioactive compounds (phenolic and triterpene 
compounds) that are known to have antibacterial, anti-
inflammatory, antihypertensive, neuroprotective, and 
antimutagenic effects (14–19). Furthermore, Q extract modulated 
airway inflammation in an OVA-induced allergic rhinitis model 
(20). Saururus chinensis (SC) is a perennial herb found in China 
and southern Korea, traditionally used to treat various 
inflammatory diseases, edema, and jaundice. SC extract showed 
anti-inflammation, anti-angiogenesis, anti-asthma, and anti-
atopic dermatitis activities (21–24). The unique properties of 
these medicinal plant extracts show that their synergistic use may 
enhance their immunomodulatory and anti-inflammatory effects. 
However, the effects of a Q/SC mixture in asthma remain unclear. 
Therefore, the purpose of this study is to evaluate the therapeutic 
efficacy of a Q/SC mixture in asthma. In this study, we sought to 
provide insights that can guide the development of safer and more 
effective therapies for asthma and related inflammatory disorders 
by elucidating their combined mechanisms of action. To achieve 
this goal, OVA-induced allergic asthma models were generated 
and treated with the Q/SC mixture.

2 Materials and methods

2.1 Animal models

All trials were conducted using six-week-old female BALB/c 
mice (Orient Bio Ltd., Seongnam, Korea) housed in a pathogen-
free facility. After a 7-day acclimation period in the animal facility, 
we used a mouse model that showed no physical signs of illness 
and gained weight normally. To create an allergic asthma mouse 
model, we  mixed 50 μg of ovalbumin (OVA) (A5503, Sigma-
Aldrich, St. Louis, MO, United States) and 1.32 mg of aluminum 
hydroxide (Alum) (Sigma-Aldrich) in 200 μL of phosphate-
buffered saline (PBS). The mice were sensitized intraperitoneally 
twice at 1-week intervals. Two weeks post-sensitization, allergen 
exposure was administered via intratracheal injection of 50 μg of 
OVA daily for 7 days. Dexamethasone (DEX, 3 mg/kg) and the Q/
SC extract (50, 100, and 200 mg/kg) were orally administered 1 h 
before the OVA challenge. DEX, a corticosteroid commonly 
prescribed for treating allergies and other respiratory disorders, 
served as the positive control. The normal control (NC) group was 
administered the same amount of PBS. The animals were 
euthanized 24 h after the final OVA exposure, and samples were 
collected for study.

2.2 Preparation of Chinese quince and 
Saururus chinensis extract

Q/SC extract was obtained from Novarex (Cheongju, Chungbuk, 
Korea). The fruits of Q and aerial parts of SC were used for the Q/SC 
extract. Ursolic acid and miquelianin were used as indicative 
compounds, with their quantities in the Q/SC extract analyzed using 
high-performance liquid chromatography (HPLC) to ensure the 
quality of the extraction process. C18 column (4.6 × 150 mm, 5 μm) 
and C18 column (4.6 × 250 mm, 5 μm) were used in HPLC.

Abbreviations: BALF, Bronchoalveolar lavage fluid; DEX, Dexamethasone; ELISA, 

Enzyme-linked immunosorbent assay; HPLC, High-performance liquid 

chromatography; ICS, Inhaled corticosteroids; Ig, Immunoglobulin; IL, Interleukin; 

iNOS, Inducible nitric oxide synthase; LABA, Long-acting β2 agonists; NC, Normal 

control; NO, Nitric oxide; OVA, Ovalbumin; PAS, Periodic acid Schiff; PBS, 

Phosphate-buffered saline; Q, Chinese quince; SC, Saururus chinensis; TNF, Tumor 

necrosis factor.
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2.3 Collection and preparation of 
bronchoalveolar lavage fluid, serum 
samples, and lung tissues

Bronchoalveolar lavage (BALF) collection and cytostaining from 
anesthetized mice were conducted as previously reported (25, 26). 
Following tracheal lavage, the lungs were immediately resected, and the 
left lung tissues were preserved in 10% (v/v) buffered formalin. A portion 
of the right lung tissue was placed in RNA later solution (AM7020, 
Invitrogen, Waltham, MA, United States), while the remaining tissues 
were stored in a tube at −80°C. Blood samples were obtained from the 
abdominal vein, and the serum was used for the OVA-specific IgE assay.

2.4 Enzyme-linked immunosorbent assay

A mouse IgE enzyme linked immunosorbent assay (ELISA) kit 
(Thermo Fisher Scientific, Waltham, MA, United States) was used to 
measure serum OVA-specific IgE levels. ELISA kits (R&D Systems, 
Minneapolis, MN, United States) were used to quantify the cytokines 
TNF-α, IL-17, and IL-1β in lung homogenates, while an ELISA kit 
(Cusabio Biotech, Wuhan, China) was used to measure inducible 
nitric oxide synthase (iNOS) levels. ELISA kits (R&D Systems) were 
also used to determine IL-4 and IL-13 levels in BALF. All analyses 
were conducted following the manufacturer’s guidelines.

2.5 Real-time quantitative polymerase 
chain reaction

As previously described, total RNA was extracted from a portion 
of the right lung tissue sample, and quantitative real-time RT-PCR was 
conducted (27). Target gene levels were normalized to Glyceraldehyde 
3-phosphate dehydrogenase. The primer sequences are listed in 
Table 1.

2.6 Lung tissue histology

The left lung tissue, preserved in 10% (v/v) buffered formalin, was 
stained with hematoxylin and eosin to assess inflammatory cells. The 
periodic acid-Schiff (PAS) kit (ab150680, Abcam, Cambridge, 
United Kingdom)was used to stain goblet cells, while the toluidine blue 

protocol was used to stain the mast cells. Stained slides were analyzed 
using light microscopy, and the extent of goblet cell hyperplasia and 
inflammatory cell infiltration was scored using a subjective scale, as 
previously described (28–30). Mast cells were counted in toluidine blue-
stained sections, with at least three regions analyzed per section.

2.7 Western blotting

Protein extraction and quantification from lung tissue, followed 
by WB analysis, were conducted as previously reported (31–33). The 
primary antibodies used were STAT6 (Cat# 9362, Cell Signaling, 
Beverly, MA, United States), p-STAT6 (Cat# 56554), and β-actin (Cat# 
5125s). The detected immune-reactive bands were evaluated using 
ImageJ software.

2.8 Statistical analysis

Statistical analyses were conducted using GraphPad Prism version 
10.2.2 (GraphPad Software, San Diego, CA, United States). Differences 
between multiple experimental groups were assessed using a one-way 
analysis of variance, with post-hoc Tukey and Dunnett tests conducted 
afterward. A p-value of <0.05 was regarded as statistically significant. 
Data are shown as the mean ± SEM.

3 Results

3.1 Effect of Q/SC extract on inflammatory 
cells infiltration in BALF

To determine the anti-inflammatory effect of Q/SC extract on allergic 
asthma, an allergic asthma mouse model was established. Cell infiltration 
in the BALF was more pronounced in the OVA-challenged group than it 
was in the NC group. The number of inflammatory cells, particularly 
eosinophils, was markedly higher in the OVA-challenged group. 
Conversely, the eosinophil counts were notably lower in the DEX and Q/
SC groups. Furthermore, the total cell count and number of inflammatory 
cells, including lymphocytes and eosinophils, were notably higher in the 
OVA-challenged group than it was in the NC group. Meanwhile, 
compared with the OVA-challenged group, the Q/SC group had notably 
lower total cell count and number of eosinophils (Figures 1A–C).

TABLE 1 Primer sequences used.

Target gene Forward primer (5′ to 3′) Reverse primer (5′ to 3′)
IL-1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG

IL-4 CCCCCAGCTAGTTGTCATCC CCCTTCTCCTGTGACCTCGT

IL-5 TGGAGATTCCCATGAGCACAGT GCCTCATCGTCTCATTGCTTGT

IL-13 GGAGCTGAGCAACATCACACAA GCGGCCAGGTCCACACT

TNF-α CCCAGACCCTCACACTCAGAT CCTCCACTTGGTGGTTTGCT

IL-17F TGCTACTGTTGATGTTGGGAC CAGAAATGCCCTGGTTTTGGT

MUC5AC TGCATGCGTACCTGCCAGAA CACACTGCATTGTGCCCTCA

iNOS AACGGAGAACGTTGGATTTG CAGCACAAGGGGTTTTCTTC

GAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGA

IL, Interleukin; TNF, Tumor necrosis factor; GAPDH; Glyceraldehyde 3-phosphate dehydrogenase; iNOS, Inducible nitric oxide synthase.
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FIGURE 1

Experimental schedule for the asthma mouse model and the effect of Chinese quince/Saururus chinensis (Q/SC) extract on inflammation in 
bronchoalveolar lavage fluid (BALF). (A) Experimental procedure for the allergic asthma model and administration of dexamethasone (DEX) and Q/SC 
extract. (B) BALF cells are plated on clean glass slides and stained with Diff-Quik. Scale bar = 50 μm. (C) Total and differential cell counts are conducted 
using a cell counter under light microscopy. Data are shown as the means ± SEMs. ###p < 0.001 vs. the normal control group. ***p < 0.001 and 
**p < 0.01 vs. the ovalbumin-challenged group. NC, normal control; OVA, ovalbumin; DEX, dexamethasone; Q, Chinese quince; SC, Saururus 
chinensis; BALF, bronchoalveolar lavage fluid.
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3.2 Effect of Q/SC on inflammatory cell 
recruitment and IgE production

The effect of Q/SC extract on airway inflammation was 
evaluated via tissue staining. Consequently, inflammatory cell 
infiltration was increased in the OVA-challenged group, whereas 
it was significantly reduced in the DEX, Q/SC-100, and Q/SC-200 
treatment groups (Figures  2A,B). IgE is secreted from B cells 
activated by antigens and causes atopic dermatitis, allergic rhinitis, 
and asthma (12). To examine the influence of the Q/SC extract on 
IgE production, IgE serum levels were measured. Consequently, 
IgE levels were increased in the OVA-challenged group, whereas 
they were decreased in all Q/SC treatment groups (Figure 2C). 
The findings show that the Q/SC extract, particularly at doses of 
100 mg/kg and 200 mg/kg, attenuated OVA-induced 
allergic asthma.

3.3 Effect of Q/SC extract on airway 
inflammation

Allergic asthma is primarily associated with type 2 immune 
responses, which are modulated by type 2 cytokines that induce 
pathological changes at the site of inflammation and exacerbate 
asthma symptoms (34). Therefore, to determine the effectiveness 
of Q/SC extract on allergic airway inflammation, the levels of 
type 2 and non-type 2 inflammatory cytokines in BALF and lung 
homogenates were measured using an ELISA kit. Compared with 
the NC group, the OVA-challenged group showed higher levels 
of type 2 and non-type 2 cytokines in BALF and lung 
homogenates. In BALF, IL-4 levels were decreased in the Q/
SC-100 treatment group, and IL-13 levels were notably decreased 
in the Q/SC-100 and Q/SC-200 treatment groups (Figures 3A,B). 
Additionally, non-type 2 cytokines levels in lung homogenates 

FIGURE 2

Effects of Chinese quince/Saururus chinensis (Q/SC) extract on immunoglobulin E (IgE) production and immune cell infiltration in ovalbumin (OVA)-
induced allergic asthma mice. (A) The paraffin-embedded lung sections were stained with hematoxylin and eosin. Scale bar = 200 μm. (B) Lung 
inflammatory scores are determined using histological analysis of lung tissues. (C) Serum IgE levels are detected using enzyme-linked immunosorbent 
assay. Data are displayed as the means ± SEMs. ###p < 0.001 vs. normal control group. ***p < 0.001 and **p < 0.01 vs. OVA-challenged group. NC, 
normal control; OVA, ovalbumin; IgE, immunoglobulin E.
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were not reduced in the Q/SC treatment groups (Figures 3C–E). 
Increased iNOS expression is common in allergic airway 
inflammation; however, under normal conditions, iNOS is either 
absent or present in minimal amounts in most cell types and 
tissues. iNOS activity can be upregulated by various inflammatory 
factors, including allergen exposure, leading to bronchial 
hyperresponsiveness and contributing to eosinophil recruitment 
(35–37). In this study, iNOS production in lung homogenates 
was significantly lower in the Q/SC-200 treatment group than it 
was in the OVA-challenged group (Figure 3F). Furthermore, the 
effect of Q/SC extract was investigated by assessing mRNA 
expression levels for type 2 and non-type 2 mediated allergic 
responses in lung homogenates. The amount of type 2 cytokines, 
but not that of non-type 2 cytokines, was significantly reduced 
in the Q/SC-100 and Q/SC-200 treatment groups (Figures 4A–F). 
Like the ELISA results, the mRNA expression levels showed that 
iNOS expression was significantly decreased in the Q/SC-200 
treatment group (Figure 4G). These findings show that Q/SC-100 
and Q/SC-200 treatment alleviated airway inflammation 
by  regulating type 2-related cytokines and iNOS  
production.

3.4 Effect of Q/SC extract on OVA-induced 
mucus production and the STAT6 signaling 
pathway

Goblet cell hyperplasia and excessive mucus production in the 
bronchi are the most common features observed in allergic asthma 
models. Therefore, PAS staining was carried out to evaluate the effect of 
the Q/SC extract on mucus production. The results showed higher mucus 
production in the lung epithelium of the OVA-challenged group than in 
that of the NC group. Conversely, mucus production was significantly 
lower in the DEX and Q/SC-200 treatment groups than in that of the 
OVA-challenged group (Figures 5A,B). Furthermore, MUC5AC mRNA 
expression was significantly higher in the OVA-challenged group than it 
was in the NC group, whereas it was significantly lower in the DEX, Q/
SC-100, and Q/SC-200 treatment groups (Figure 5C). Finally, STAT6 
phosphorylation was markedly increased in the OVA-challenged group, 
whereas it was substantially decreased in the DEX and Q/SC treatment 
groups (Supplementary Figure S1). STAT6 phosphorylation was 
eliminated in the Q/SC-200 treatment group (Figure 5D). Collectively, 
these results show that high concentrations of Q/SC extract inhibit 
MUC5AC expression by suppressing the STAT6 signaling pathway.

FIGURE 3

Effects of Chinese quince/Saururus chinensis (Q/SC) extract on non-type 2 and type 2 inflammation and inducible nitric oxide synthase (iNOS) 
expression in ovalbumin (OVA)-induced allergic asthma. (A,B) Enzyme-linked immunosorbent assay (ELISA) is conducted to detect the levels of 
interleukin (IL)-4 and IL-13, as type 2 cytokine levels in bronchoalveolar lavage fluid (BALF). (C–F) ELISA is also conducted to measure the levels of 
interleukin (IL)-1β, Tumor necrosis factor (TNF)-α, and IL-17, as non-type 2 cytokines, and iNOS expression in lung homogenates. Data are displayed as 
the means ± SEMs. ###p < 0.001, ##p < 0.01, and #p < 0.05 vs. the normal control group. ***p < 0.001, **p < 0.01, and *p < 0.05 vs. the OVA-challenged 
group. iNos, inducible nitric oxide synthase; OVA, ovalbumin; BALF, Bronchoalveolar lavage fluid; ELISA, Enzyme-linked immunosorbent assay.

https://doi.org/10.3389/fnut.2025.1613413
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Lee et al. 10.3389/fnut.2025.1613413

Frontiers in Nutrition 07 frontiersin.org

4 Discussion

In this study, we found that high concentrations of the Q/SC extract 
significantly inhibited serum IgE production, type 2 cytokine levels, and 
iNOS expression. Additionally, high concentrations of the Q/SC extract 
effectively inhibited mucus secretion and immune cell infiltration in the 
lung tissues of OVA-challenged mice with allergic airway inflammation, 
similar to the effect of DEX. Collectively, our results show that high 
concentrations of the Q/SC extract are effective against allergen-induced 
airway inflammation in asthma.

Asthma is a chronic respiratory condition characterized by reversible 
airway obstruction and bronchial hyperresponsiveness. It affects 
approximately 300 million people worldwide (38). In most patients, 
inhaled corticosteroids and long-acting β2 agonists are used to control 
asthma symptoms; however, long-term and high-dose use of these drugs 

can lead to side effects (39). Additionally, some patients require repeated 
use of systemic steroids because of poor response to drug treatment, 
leading to steroid-related side effects. Therefore, there is increasing 
awareness of the significance of medicinal plants for the effective and safe 
management of asthma symptoms (40). Q extract may be  effective 
against allergic inflammation, while SC extract may modulate lung 
inflammatory diseases in allergic asthma (41). However, the potential 
therapeutic mechanisms of a Q/SC mixture in allergic asthma-associated 
lung inflammation are not well understood. Asthma is categorized into 
type 2 and non-type 2 endotypes, depending on the immune cell types 
and inflammation patterns. Allergic asthma is classified as a type 2 
endotype marked by increased eosinophilic inflammation and expression 
of type 2 cytokines, including IL-4, IL-5, and IL-13 (42). IL-4 promotes 
IgE synthesis from B cells and Th2 cell differentiation, whereas IL-5 is 
involved in recruiting eosinophils to inflammatory sites. IL-13 is essential 

FIGURE 4

Chinese quince/Saururus chinensis (Q/SC) extract suppresses mRNA expressions of type 2-related cytokines and inducible nitric oxide synthase (iNOS). 
(A–C) The mRNA levels of type 2 cytokines (interleukin (IL)-4, IL-5, and IL-13), (D–F) non-type 2 cytokines (IL-1β, TNF-α, and IL-17), and (G) iNOS in 
homogenates are assessed using reverse transcription quantitative polymerase chain reaction and are normalized to glyceraldehyde 3-phosphate 
dehydrogenase levels. Data are displayed as the means ±SEM. ###p < 0.001 and #p < 0.05 vs. the normal control (NC) group. ***p < 0.001, **p < 0.01, 
and *p < 0.05 vs. the ovalbumin-challenged group.
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FIGURE 5

Effect of the Chinese quince/Saururus chinensis (Q/SC) extract on mucus production and the STAT6 signaling pathway in ovalbumin (OVA)-induced 
allergic asthma. (A) Periodic acid-Schiff staining is used to assess goblet cell hyperplasia in the epithelium. Scale bar = 100 μm. (B) Quantification of 
goblet cells in lung tissues. (C) The mRNA level of the mucus gene MUC5AC is quantified using reverse transcription quantitative polymerase chain 
reaction and is normalized to glyceraldehyde 3-phosphate dehydrogenase levels. (D) STAT6 phosphorylation is measured using western blot. The total 
forms of each protein are used as loading controls. Data are displayed as the means ± SEMs. ###p < 0.001 vs. the normal control group. ***p < 0.001, 
**p < 0.01, and *p < 0.05 vs. the OVA-challenged group.
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in excessive mucus secretion, immune cell influx, and airway 
hyperresponsiveness (43, 44).

Nitric oxide (NO) plays an important role as an endogenous 
regulator of airway and distal lung constriction. NO levels are 
accordingly used as an indicator of eosinophilic airway inflammation. 
iNOS, the enzyme that produces NO, has increased transcriptional 
expression owing to the inflammatory cytokines IL-4 and IL-13 and is 
directly involved in eosinophil recruitment. Moreover, iNOS expression 
is associated with inflammation of the upper and lower airways (45–
47). Therefore, regulating IgE, iNOS, and type 2 cytokines is crucial for 
improving allergic asthma. However, the expression of non-type 2 
cytokines was not suppressed in the DEX group in this study, which 
aligns with reports that non-type 2 asthma was not controlled by DEX, 
a corticosteroid (48, 49). Airway mucus hypersecretion leads to a 
higher number of goblet cells in the airway epithelium, and this, in 
turn, leads to elevated MUC5AC expression, exacerbating asthma. 
MUC5AC expression is higher in patients with asthma than in healthy 
individuals. Additionally, the transcript levels of MUC5AC are 
significantly elevated during allergen-induced airway inflammation, 
whereas those of MUC1, MUC2, MUC3, MUC4, MUC5B, and 
MUC13 remain unchanged in the mouse lung tissue (50–54). 
Furthermore, MUC5AC levels are higher in type 2 asthma than in 
non-type 2 asthma (55, 56). In mouse lungs, IL-13 upregulates 
MUC5AC through a STAT6-dependent pathway, where STAT6 plays 
a critical function in regulating the transcription of several IL-4/IL-13-
dependent genes. In previous studies, siRNA knockdown of STAT6 
significantly reduced IL-4/IL-13-induced MUC5AC promoter activity 
(54, 57). In this study, goblet cell and MUC5AC expressions and STAT6 
pathway phosphorylation were markedly elevated in OVA-challenged 
mice than it was in NC mice. Importantly, treatment with high 
concentrations of the Q/SC extract markedly reduced goblet cell and 
MUC5AC expressions and STAT6 pathway phosphorylation. This 
finding shows that high concentrations of the Q/SC extract have 
therapeutic potential for inhibiting mucus production and secretion in 
allergic airway inflammation. However, this study has some limitations 
in elucidating the molecular mechanisms through which Q/SC extract 
is involved in asthma. Future studies should focus on using asthma 
models to clarify the mechanism of action of Q/SC extract with a more 
rigorous research design.

5 Conclusion

High concentrations of the Q/SC extract effectively alleviate allergic 
airway inflammation by suppressing OVA-induced eosinophilic airway 
inflammation and type 2 cytokine secretion. Additionally, this extract 
effectively inhibits the STAT6 signaling pathway and reduces mucus 
hyperproduction. Thus, high concentrations of the Q/SC extract have 
potential as a treatment for managing allergic airway inflammatory 
diseases, including asthma.
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