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Metabolic dysfunction-associated steatotic liver disease (MASLD) and chronic 
kidney disease (CKD) have been demonstrated to be intricately linked in a multitude 
of research studies. The reclassification of MASLD has prompted a reevaluation 
of its epidemiological patterns and the associated risk of CKD. This is crucial as 
MASLD, focusing on cardiometabolic factors, might have a more pronounced 
association with CKD than NAFLD. Additionally, mitochondrial dysfunction has 
been implicated in the pathogenesis of both MASLD and CKD. Studies on metabolic 
dysfunction-associated steatohepatitis mouse models have revealed significant 
mitochondrial alterations, such as loss of cristae and impaired function in the 
kidneys, underscoring the critical importance of mitochondrial integrity in these 
pathologies. This review offers an extensive overview of the existing literature, 
covering the following key aspects: (a) presenting the latest epidemiological 
findings that elucidate the relationship between MASLD and CKD; (b) kidney 
pathological changes associated with MASLD; (c) mitochondrial alterations in 
MASLD and CKD, including oxidative stress, dynamics, and mitophagy; and (d) 
potential mitochondrial-targeted therapies.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) and chronic kidney 
disease (CKD) represent two major non-communicable diseases impacting global health. 
MASLD affects nearly 30% of the adult population (1), while CKD affects 8.2% (2). By the year 
2031, it is projected that the incidence of MASLD will increase by 16.1% and that of CKD by 
11.4% (3). This increase will significantly exacerbate the burden of these conditions, which are 
linked to poor prognosis, premature mortality, and reduced quality of life (4). A significant 
association exists between MASLD and CKD, characterized by notably lower glomerular 
filtration rates (GFR) among MASLD patients, indicating that MASLD may elevate the CKD 
risk (5, 6). Furthermore, in patients with MASLD, the proteinuria and the reduction in GFR are 
associated with the degree of hepatic fibrosis (7). Recent studies have introduced the term 
MLKD as an abbreviation to better encapsulate the relationship between MASLD and CKD 
(MLKD) (8).
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In recent years, a notable shift has occurred in the field, marked 
by the reclassification from “non-alcoholic fatty liver disease” 
(NAFLD) to MASLD. Initially defined in the 1980s, non-alcoholic 
steatohepatitis (NASH) was later broadened to encompass NAFLD 
(9). In 2020, the term “metabolic dysfunction-associated fatty liver 
disease” (MAFLD) was proposed (10, 11), requiring hepatic steatosis 
in conjunction with a minimum of one metabolic risk factor: type 2 
diabetes mellitus (T2DM), overweight/obesity, or evidence of 
metabolic dysfunction in individuals with lean or normal body weight 
(10). In 2023, “NAFLD” was redefined as “MASLD” (12). In contrast 
to the traditional definition, MASLD places increased emphasis on the 
metabolic and cardiovascular risk factors. CKD can emerge as a result 
of metabolic dysfunction. This implies that individuals with MAFLD 
or MASLD—manifested by hepatic steatosis in the presence of at least 
one metabolic factor—are at an increased risk of CKD (4) (Figure 1).

Establishing a causal relationship between MLKD proves 
challenging; however, numerous research indicate that mitochondrial 
dysfunction is a key factor in the development of both conditions. 
Mitochondria play a crucial role in cellular energy metabolism, 
influencing energy production, redox balance, and apoptosis (13–15). 
Recent studies on metabolic dysfunction-associated steatohepatitis 
(MASH) have demonstrated mitochondrial swelling and loss of 
cristae, underscoring the crucial involvement of mitochondrial 
dysfunction in MLKD (16). This review aims to address a critical gap 
in the current literature regarding the interrelationship between 
MLKD, a condition that has garnered increasing attention yet remains 
underexplored. By offering an extensive overview of MLKD’s 
epidemiology, the kidney pathological changes associated with 
MASLD, and the mechanisms linking mitochondrial dysfunction to 
MLKD development, this review seeks to elucidate these connections. 
Ultimately, we  hope to identify effective mitochondrial-targeted 
therapies to address this growing health challenge.

Epidemiological evidence of the 
association between MASLD and risk 
of CKD

Two studies published in 2008 (17, 18) first reported an increased 
risk of CKD among NAFLD patients, separate from typical factors 
associated with kidney dysfunction. Subsequent studies have further 
substantiated a notable correlation between NAFLD and the risk of 
CKD (4). An analysis synthesizing data included approximately 12 
million middle-aged individuals, revealed that 28.1% of subjects in 13 
longitudinal studies had NAFLD, which was associated with CKD 
(HR 1.43) (7). This analysis also revealed that the risk of CKD escalates 
as liver disease advances, particularly among those with more 
advanced liver conditions (7). The term “MAFLD” was introduced as 
a transitional term in 2020, while “MASLD” was formally adopted in 
2023. Following the reclassification of MAFLD (10), several research 
investigated the influence of MAFLD on CKD risk, confirming an 
elevated risk of CKD among MAFLD patients (19–22).

As shown in Table 1, we focus on longitudinal studies from 2023 
following the renaming to MASLD (12) that examine the association 
between MLKD. Heo et al.’s study including 57,785 Korean patients 
diagnosed with MASLD and with normal renal function at baseline, 
which revealed a CKD incidence of 11.31 per 104 person-years (23). 
Compared to non-MASLD individuals, those with MASLD exhibited 
a higher CKD risk (HR 1.21). In this study, MASLD was found to 
more effectively identify CKD and proteinuria risk compared to 
NAFLD (23). Gao et al. (6) recruited 79,540 participants who were 
diagnosed with hepatic steatosis through ultrasound, of which 
19,062 were identified as having MASLD. The CKD incidence rate 
among MASLD patients was 22.4 per 103 person-years. After 
adjusting for confounders, MASLD exhibited a substantially elevated 
risk of CKD, with a HR of 1.15. The study also found that MASLD 

FIGURE 1

From non-alcoholic fatty liver disease (NAFLD) to metabolic dysfunction associated steatotic liver disease (MASLD), the naming evolution of MASLD.
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TABLE 1 Longitudinal studies evaluating the relationship between MASLD and CKD following the adoption of the new MASLD nomenclature in 2023.

Author 
(References)

Country Study 
characteristics

Follow-up 
period

Definition of 
SLD

Number of 
MASLD 
patients

Age (mean 
or median) 
(years)

Male, n (%) Definition of 
CKD; 
Incidence of 
CKD

Covariate 
adjustments

HR (95% CI)

Heo et al. (23) Korean The cohort study of 

Korean individuals aged 

18 years and older who 

received annual or 

biannual comprehensive 

health checkups at the 

Kangbuk Samsung 

Hospital Health 

Checkup Centers in 

South Korea. All study 

participants who 

underwent thorough 

physical examinations at 

least twice between 

January 1, 2011, and 

December 31, 2018, as 

well as those who had at 

least one additional 

follow-up visit before 

December 31, 2020, were 

included in the analysis

The mean follow-

up time was 

6.1 years

The presence of 

fatty liver was 

based on typical 

ultrasonographic 

features, such as 

hepatorenal echo 

contrast, liver 

brightness, or 

vascular blurring

57,785 39.8 50,521 (87.4) CKD was defined 

as occurrence of 

eGFR < 60 mL/

min/1.73 m2 over 

the follow-up 

period. Incidence 

of CKD was 11.31 

(10.25–12.48) (per 

104 person years)

Age, sex, 

education level, 

smoking history, 

regular exercise (3 

times/week), 

alcohol intake, 

prior history of 

coronary artery 

disease, use of any 

anti hypertensive 

medications, and 

eGFR at baseline

1.21 (1.04–1.42)

(Continued)
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TABLE 1 (Continued)

Author 
(References)

Country Study 
characteristics

Follow-up 
period

Definition of 
SLD

Number of 
MASLD 
patients

Age (mean 
or median) 
(years)

Male, n (%) Definition of 
CKD; 
Incidence of 
CKD

Covariate 
adjustments

HR (95% CI)

Gao et al. (6) China The Kailuan cohort was 

established in the 

Kailuan community of 

Tangshan City, Hebei 

Province, China. 

Between June 2006 and 

October 2007, they 

performed 

reexaminations at 2-year 

intervals up to the end of 

the last follow-up on 

December 31, 2019

The median 

follow-up time 

was 12.9 years

Hepatic steatosis 

was diagnosed by 

ultrasound

19,062 51.6 14,966 (78.5) CKD was defined 

as eGFR <60 mL/

min per 1.73m2 or 

positive 

proteinuria (≥1+). 

Incidence of CKD 

was 22.4 (21.8–

23.0)(per 103 

person-years)

Age, sex, smoking 

habits, drinking 

consumption, 

exercise, 

education, income, 

baseline eGFR, 

uric acid, alanine 

aminotransferase, 

metabolic 

dysfunction, use of 

antihyperglycemic 

agents, use of 

antihypertensive 

agents, use of 

antilipidemic 

agents.

1.15 (1.11–1.19)

Mori et al. (24) Japan All individuals who 

received annual health 

examinations at 

Keijinkai Maruyama 

Clinic, Sapporo, Japan in 

2006 were enrolled in 

this registry

The median 

follow-up time 

was 9 years

Steatotic liver 

disease was 

defined as the 

presence of hepatic 

steatosis 

determined by 

abdominal 

ultrasonography

3,187 49 2,655 (83.3) CKD was defined 

as eGFR <60 mL/

min/1.73 m2 or 

positive for 

urinary protein by 

the dipstick 

method. Incidence 

of CKD was 28.3 

(per 103 person-

years)

Age, sex, eGFR, 

current smoking 

habit, diabetes 

mellitus, 

hypertension, and 

dyslipidemia

1.20 (1.08–1.33)

(Continued)
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more effectively identifies CKD risk compared to conventional 
NAFLD, as demonstrated above (6). In a study by Mori et al. (24), 
which followed 3,187 Japanese patients with MASLD, the CKD 
incidence rate among MASLD patients was 28.3 per 103 person-years 
(24). MASLD subjects had a significantly higher incidence risk of 
CKD (HR 1.20) compared to those with non-steatotic liver disease 
(non-SLD) (24). Therefore, numerous epidemiological studies 
suggest that the definition of MASLD effectively identifies high-risk 
subgroups of patients who are likely to develop CKD. Moreover, 
MASLD appears to be a superior indicator of CKD risk compared to 
conventional NAFLD. This underscores the critical necessity of 
recognizing and addressing MLKD as a significant public health 
concern, while also highlighting the imperative for early 
identification and intervention to effectively mitigate this risk. Given 
the observational nature of the existing studies, the causal link 
between MASLD and increased CKD incidence remains uncertain. 
Additionally, the aforementioned study was conducted on an Asian 
population, highlighting the need for future studies to investigate 
other regions or ethnicities.

Kidney pathological changes linked to 
MASLD

Animal evidence
In various MASLD mouse models, including those subjected to 

high-fat diet (HFD) (25, 26) combined or not with weekly low-dose 
CCl4 (16), significant pathological damage to the kidneys has been 
documented. The HFD model is known for its capacity to induce 
metabolic disturbances, including obesity, insulin resistance, and 
dyslipidemia, which are central to the pathogenesis of MASLD (27). 
The combination of a high-fat diet with CCl4-induced liver injury 
provides a more comprehensive model that encompasses both 
metabolic and fibro-inflammatory aspects of the disease (28).

These injuries are characterized by glomerular enlargement, 
increased cross-sectional area of the glomeruli, a higher percentage of 
mesangial area, and renal fibrosis in both the tubules and interstitium 
(16, 25, 26). Electron microscopy reveals a marked loss of podocyte 
foot processes. However, Saito et al. (25) noted that the quantity of 
podocytes expressing WT-1 did not decrease, and they found no 
significant correlation between levels of proteinuria and the foot 
process loss. This suggests that factors beyond the loss of foot 
processes may contribute to the development of proteinuria (25). Mice 
subjected to a HFD exhibited a considerable accumulation of lipid 
droplets in the renal tubules, along with notable increases in neutral 
lipids in the interstitial cells of both the glomeruli and tubules (26).

Human correlates
Li et  al. (16) reported a patient with a history of NASH who 

subsequently developed proteinuria. Similar to the pathological 
features of renal injury observed in the MASH mouse models, the 
pathology in this patient was characterized by focal segmental 
glomerulosclerosis, increased mesangial matrix, glomerular 
enlargement, and tubular interstitial fibrosis with inflammatory 
infiltration (16). A number of non-atrophic tubules contained 
intracellular lipid and protein absorption droplets. Some podocyte 
foot processes mildly diminished, while the thickness of the 
glomerular basement membrane seemed normal. Abundant lipid T
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inclusions were observed in podocytes, mesangial cells, and tubular 
epithelial cells (TECs) (16).

Mitochondrial structural alterations in 
MLKD

Mitochondria are organelles with double membranes that contain 
their own genetic material. Generally, their diameter ranges from 
approximately 0.5 to 1.0 μm, although size variations exist among 
different species. The outer mitochondrial membrane, which is 
smooth, functions as the boundary of the organelle. The inner 
mitochondrial membrane, characterized by its inward folds forming 
cristae, plays a crucial role in biochemical reactions (29).

The liver is particularly rich in mitochondria, with each liver cell 
containing between 1,000 and 2000 mitochondria (30, 31). Structural 
and functional impairments of mitochondria significantly contribute 
to the development of metabolic syndrome-related diseases (32–34). 
Patients with MASLD exhibit mitochondrial dysfunction 
characterized by mitochondrial swelling, cristae disorientation and 
fragmentation, mtDNA deletions, decreased activity of mitochondrial 
respiratory chain complexes, and impaired mitochondrial β-oxidation 
(35). As the disease progresses, mitochondrial mass increases, while 
the maximum respiratory capacity measured using high-resolution 
respirometry decreases by 31 to 40% (36). Alterations in mitochondrial 
structure, elevations in oxidative stress, and reductions in ATP 
production were more pronounced (37).

The kidneys are the second most energy-consuming organs, with 
more than 80% of renal oxygen consumption attributed to Na/K-
ATPase activity. Glomerular cells predominantly depend on glucose 
for energy, resulting in comparatively low mitochondrial density 
(38–40). Renal tubular cells mainly rely on fatty acids (FAs) for energy 
and have a high mitochondrial content. The proximal convoluted 
tubules (PCT) lack the enzymes necessary for glycolysis and depend 
entirely on mitochondrial oxidation of key substrates including FAs, 
lactate, citrate, and glutamate to produce energy (41). Under 
pathological conditions, PCT cells exhibit depolarization of the 
mitochondrial membrane potential (MMP) (ΔΨm) (42, 43). Electron 
microscopy reveals mitochondrial damage, such as swelling and losing 
cristae. Notably, damaged mitochondria and lysosomes are observed 
surrounding myelin-like membranous inclusions within TECs (16). 
Mitochondrial abnormalities above have also been observed in 
individuals clinically diagnosed with MASH combined with CKD 
(16). This underlines the crucial involvement of the intricate and 
dynamic structure and functionality of mitochondria in the 
advancement of MLKD.

Metabolic reprogramming of 
mitochondrial fatty acid oxidation

Under physiological conditions, tissues uptake FAs through 
various transport proteins, including scavenger receptor class B 
(CD36), fatty acid transport proteins (FATP), and fatty acid-binding 
protein (FABP). FATP are a class of multi-channel membrane proteins 
primarily responsible for transporting extracellular free fatty acids 
(FFAs) into cells while also participating in fatty acid metabolism (44). 
FABP, a family of intracellular proteins, recognizes long-chain fatty 

acids (LCFAs) as substrates, is important in the metabolism and 
transport of FAs (44). CD36 primarily facilitates the transport of 
LCFAs into cells. As a transmembrane glycoprotein, CD36 is widely 
expressed across various cell types, including adipocytes, hepatocytes, 
and TECs. It is involved not only in the uptake and transport of FAs 
but also plays a role in signal transduction (44–46).

Fatty acid oxidation is a crucial component of energy metabolism, 
crucial for maintaining energy balance and regulating lipid storage. 
Most FAs are oxidized within the mitochondria (44), with 
mitochondrial fatty acid oxidation (mtFAO) serving as essential 
pathway for reducing fat accumulation (47, 48). In the canonical 
pathway of mtFAO, FFAs are first activated to form acyl-CoA within 
the cytoplasm before being shifted into the mitochondrial matrix via 
carnitine palmitoyltransferase 1 (CPT1) and carnitine 
palmitoyltransferase 2 (CPT2) (45). Acyl-CoA is metabolized 
gradually by β-oxidation, the tricarboxylic acid (TCA) cycle, and 
oxidative phosphorylation (OXPHOS), producing a substantial 
amount of ATP.

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is 
extensively expressed in adipose tissue, liver, and kidneys. PPAR-γ 
regulates transport proteins, and its upregulation correlates with lipid 
accumulation, inflammation, and fibrosis, thereby promoting 
metabolic reprogramming and the development of MLKD (Figure 2). 
In the liver, PPAR-γ influences the uptake and metabolism of FAs 
through promoting the expression of transport proteins such as CD36 
(49). Selective deletion of PPAR-γ significantly reduces hepatic 
steatosis caused by a HFD in hepatocytes (50). Hepatic steatosis 
induced by a HFD in mice is closely associated with the expression of 
CD36, FATP2, and FATP5 (51, 52). Liver cell-specific deletion of 
CD36 can mitigate HFD-induced fatty degeneration in mice (53). 
Within the nephron, proximal renal tubules and glomeruli are 
particularly vulnerable to lipid accumulation, leading to renal damage. 
This susceptibility is linked to the upregulation of PPAR-γ and lipid 
uptake transporters such as CD36 and FABP (41). Elevated activity of 
FATP1, FATP4, and FATP2 results in an overload of FFAs in renal 
cells (44).

Mitochondrial fatty acid oxidation respiratory deficiencies might 
significantly contribute to the progression of MLKD (Figure  2). 
Among the enzymes involved, β-hydroxyacyl-CoA dehydrogenase is 
particularly crucial in the β-oxidation pathway (54). Mary et al.’s study 
revealed a significant 40–50% reduction in β-hydroxyacyl-CoA 
dehydrogenase activity among MASLD patients compared to the 
control group, suggesting impaired β-oxidation (55). Furthermore, 
multiple studies have consistently shown decreased levels of CPT1 and 
CPT2 in animal models induced by a HFD (56–58). In obesity-related 
kidney disease models, the downregulation of long-chain acyl-CoA 
synthetase-1 (ACSL1), a vital enzyme in fatty acid oxidation, is closely 
linked to heightened lipid accumulation in the kidneys (54). Notably, 
in CKD, the diminished expression of CPT1 and CPT2 also results in 
decreased fatty acid oxidation, inadequate NADH generation, 
impaired electron transport chain (ETC) activity, depleted ATP levels, 
culminating in mitochondrial dysfunction (59).

The prolonged presence of elevated FFAs and persistent buildup 
of acyl-CoA disrupt the TCA cycle and mitochondrial respiration, 
leading to excessive production of reactive oxygen species (ROS) (60). 
Moreover, compromised mitochondrial β-oxidation can prompt the 
peroxisomal and cytosolic oxidation of FFAs, giving rise to 
peroxidative byproducts and excess ROS levels (61). ROS can induce 
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oxidative damage to mitochondrial DNA (mtDNA), resulting in a 
reduction in MMP and an increase in mitochondrial permeability 
(30), exacerbating mitochondrial dysfunction and lipid peroxidation, 
thereby establishing a vicious cycle that favors metabolic  
reprogramming.

Oxidative stress

ROS are generated from various pathways within the 
mitochondria, involving a series of interconnected mechanisms. 
Initially, electrons leak from complexes of the ETC and interact with 
oxygen to produce superoxide radicals. Subsequently, these superoxide 
produce other ROS, including superoxide anions and hydrogen 
peroxide (H₂O₂), through both enzymatic and non-enzymatic 
reactions. Dysfunction in the ETC or mitochondrial impairment can 

exacerbate this process, leading to an increased production of ROS 
(15, 62). The mitochondria possess several antioxidant defense 
mechanisms to mitigate ROS accumulation. Key antioxidant enzymes 
such as superoxide dismutase (SOD) and catalase, play crucial roles in 
ROS clearance (15, 63). Under physiological conditions, these 
enzymes convert superoxide radicals into H₂O₂ and water (64). A 
decline in antioxidant enzyme levels is a significant factor in the 
development of excessive oxidative stress.

As previously mentioned, lipid metabolism is a key factor in the 
oxidative stress associated with MLKD. Numerous studies have 
indicated that MASH patients exhibited elevated ROS (65–67). 
Additionally, some studies have confirmed an increase in 
mitochondrial ROS (mtROS) in CKD (68, 69), with FAs contributing 
to elevated ROS levels. A HFD increases CD36 expression in the 
kidneys of mice, while palmitic acid treatment enhances CD36 levels 
in podocytes in  vitro (44). In contrast, treatment with the CD36 

FIGURE 2

Metabolic reprogramming of mitochondrial fatty acid oxidation and shared pathogenic mechanisms in MASLD and CKD. Scavenger receptor class B 
(CD36), fatty acid transport proteins (FATP), and fatty acid-binding protein (FABP) are critical transport proteins involved in the uptake of fatty acids by 
tissues. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is extensively expressed in adipose tissue, liver, and kidney. It regulates fatty acid 
transport proteins, and its upregulation is associated with lipid accumulation, inflammation, and fibrosis, thereby facilitating metabolic reprogramming. 
In MLKD, the upregulation of PPAR-γ correlates with elevated expression levels of CD36, FATP, and FABP, which correlates with free fatty acid (FFA) 
overload in renal and hepatic cells. Decreased levels of carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2) lead to 
reduced fatty acid oxidation, insufficient production of NADH, decreased activity of the electron transport chain (ETC), and inadequate levels of ATP, 
ultimately resulting in mitochondrial dysfunction. Mitochondrial respiratory defects, specifically fatty acid oxidation (mtFAO) deficiency, can lead to 
chronic accumulation of FFAs and acyl-CoA, disrupting the function of the tricarboxylic acid cycle and mitochondrial respiration, leading to excessive 
production of reactive oxygen species (ROS). ROS can induce oxidative damage to mitochondrial DNA (mtDNA) and are associated with reduced 
mitochondrial membrane potential (MMP) and increased mitochondrial permeability exacerbating mitochondrial dysfunction, inflammation, and lipid 
peroxidation. Furthermore, ROS can disrupt the mitochondrial permeability transition pore (MPTP), resulting in the leakage of mtDNA into the 
cytoplasm. ROS trigger downstream signaling pathways regulating inflammatory responses, including the nuclear factor kappa B (NF-κB) pathway and 
the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome pathway. This activation results in the production of substantial 
amounts of ROS, creating a vicious cycle of inflammation and oxidative damage. Created with MedPeer (medpeer.cn).
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inhibitor has been shown to effectively reduce lipid accumulation and 
ROS production in podocytes (44, 70).

Elevated levels of ROS exacerbate oxidative stress associated with 
mitochondrial dysfunction, leading to cellular damage and lipid 
peroxidation, which further aggravate the pathological state of 
MASLD (15) and the progression of CKD (14, 71) (Figure  2). 
Additionally, ROS can disrupt the mitochondrial permeability 
transition pore (MPTP), resulting in the leakage of mtDNA into the 
cytoplasm (72). ROS triggers downstream signaling pathways that 
regulate inflammatory responses, leading to increased production of 
pro-inflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α) (62, 73). TNF-α exacerbates oxidative damage and 
inflammatory responses while triggering the activation of mitogen-
activated protein kinases (MAPKs). This results in the generation of 
substantial amounts of ROS, especially superoxide anions. The 
consequent oxidative stress not only exacerbates damage to cellular 
components but also stimulates the generation of additional TNF-α, 
perpetuating a cycle of inflammation and oxidative damage (62, 73).

Mitochondrial biogenesis

Mitochondrial biogenesis is a sophisticated process that enables 
cells to produce new mitochondria in order to satisfy their energy 
requirements and preserve cellular homeostasis. Mitochondrial 
transcription factor A (TFAM) is a crucial regulatory factor for 
mtDNA processes. By binding to mtDNA, TFAM promotes the 
production of mtDNA and proteins, transcribing and packaging them 
into nucleoids (74). The expression of TFAM is regulated by 
peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-
1α), which connects the nuclear control of mitochondrial biogenesis 
with the maintenance and expression of mtDNA (14). AMP-activated 
protein kinase (AMPK) facilitates the activation of PGC-1α (75, 76).

In MASLD, the expression of key regulatory factors involved in 
mitochondrial biogenesis (77), such as Sirt3 and PGC-1α, is 
diminished. In models of CKD in mice, levels of PGC-1α (78, 79) and 
SIRT3 (80) are consistently reduced. The downregulation of SIRT3 
results in the hyperacetylation of mitochondrial proteins, thereby 
promoting oxidative stress and fat accumulation in the liver (77). 
Additionally, low levels of PGC-1α are linked to a decline in 
antioxidant mechanisms (81). Inhibition of PGC-1α impedes 
mitochondrial biogenesis, leading to a decrease in mitochondrial 
quantity and impaired functionality, which may ultimately result in 
cellular energy metabolism disorders and apoptosis. Overall, 
mitochondrial biogenesis is suppressed during the progression of 
MLKD (Figure 3).

Mitochondrial dynamics: fusion and fission

Mitochondrial fusion is the process where individual 
mitochondria within a cell merge through the fusion of their 
membranes and contents. In contrast, mitochondrial fission refers to 
the division of one mitochondrion into multiple smaller units (14). 
Mitochondrial fusion is regulated by key proteins such as mitofusin 1 
(MFN1) and mitofusin 2 (MFN2) on the outer mitochondrial 
membrane, which promote the connection and fusion of adjacent 

mitochondria, and optic atrophy 1 (OPA1) on the inner mitochondrial 
membrane, which controls inner membrane fusion (82). 
Mitochondrial fission is primarily regulated by dynamin-related 
protein 1 (DRP1) and mitochondrial fission protein 1 (Fis1). DRP1, a 
GTPase, forms spiral-like structures at the regions of mitochondrial 
constriction (15). Through mitochondrial fusion and fission, cells 
dynamically regulate the morphology and distribution of 
mitochondria to adapt to changing metabolic demands.

In patients with MASH, liver biopsies have shown a reduction in 
MFN2 levels (83). A HFD leads to a reduction in the levels of MFN1, 
MFN2, and OPA1. Concurrently, the expression of DRP1 is 
upregulated (84–86). FFA can increase the expression of Drp1 and 
Fis1 while reducing the expression of OPA1 and Mfn2 (87). The role 
of lipids in mitochondrial dysfunction associated with CKD has also 
received research support. Studies indicate that a HFD reduces the 
expression of MFN2 and OPA1 in the kidneys while increasing DRP1 
expression (84, 88). Ko et al. (89) reported that in hypertensive kidney 
disease (HKD) rats, the expression of DRP1 was upregulated, whereas 
the expression of Mfn2 was downregulated. Acyl-CoA:lysocardiolipin 
acyltransferase-1 (ALCAT1) that regulates cardiolipin biosynthesis in 
mitochondrial. In a diabetic kidney disease (DKD) mouse model, the 
expression of MFN2 and OPA1 are diminished, whereas those of Drp1 
and Fis1 are increased. Overexpression of ALCAT1 can enhance 
MFN2 and OPA1 expression while reducing Drp1 levels, which 
further mitigates the decline in estimated glomerular filtration rate 
(eGFR), thereby improving mitochondrial dynamics (90).

Disruption in the balance of mitochondrial fusion and fission 
impairs mitochondrial dynamics, leading to dysregulation of 
cellular homeostasis and mitochondrial function. As previously 
noted, key regulatory factors of mitochondrial fission and fusion 
include MFN, OPA1, DRP1, and Fis1. Alterations in the levels or 
function of these essential proteins disrupt the equilibrium between 
mitochondrial fission and fusion, leading to impaired mitochondrial 
structure and function, which in turn triggers inflammatory 
responses through various pathways (91, 92). Furthermore, 
mitochondrial dynamics are closely associated with cell death, 
particularly apoptosis, as some proteins linked to mitochondrial 
dynamics (e.g., Drp1 and Mfn2) directly regulate apoptotic 
processes (93, 94). The imbalance in mitochondrial dynamics, 
characterized by enhanced fission and suppressed fusion, leads to 
increased mitochondrial fragmentation, elevated permeability of 
the outer mitochondrial membrane, cytochrome leakage, and 
activation of caspases, ultimately inducing apoptosis (95) 
(Figure 3).

Mitophagy

Mitophagy, a specialized autophagic process, selectively targets 
and removes damaged or dysfunctional mitochondria to prevent the 
accumulation of harmful components (15). It encompasses ubiquitin-
dependent pathways, including phosphatase and tensin homolog 
(PTEN)-induced putative kinase 1 (PINK1) and Parkin. Additionally, 
there are ubiquitin-independent pathways involving receptors such as 
Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), 
FUN14 domain-containing protein 1 (FUNDC1), and cardiolipin (96, 
97). Dysregulation of mitophagy leads to the accumulation of 
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damaged mitochondria, further exacerbating mitochondrial 
dysfunction and contributing to the pathogenesis of 
MLKD. Disruptions in mitochondrial dynamics, such as imbalances 
in mitochondrial fusion and fission, can also affect mitophagy (98). 
These pathways ultimately form autophagolysosomes, facilitating the 
removal of damaged mitochondria (99).

Mitophagy is essential for regulating mitochondrial biogenesis 
and facilitating lipid β-oxidation within mitochondria (100). 
Conversely, impaired autophagy of damaged mitochondria fails to 
sustain an adequate number of healthy mitochondria, thereby 
contributing to hepatic steatosis and the progression of MASLD (101, 
102). In experimental models of MASLD induced by a high-fat/high-
calorie diet, the expression of PINK1 and Parkin is decreased, resulting 
in reduced mitophagy efficiency, exacerbating liver injury and 
ultimately progressing to MASH (37, 103). Insufficient FUNDC1-
dependent mitophagy can drive the transition to HFD-induced 
MASLD (104). Data from Li R et al. indicated that liver injury induced 
by a HFD was linked to reduced Sirt3 expression, followed by 

inactivation of the ERK-CREB signaling and suppression of mitophagy 
driven by BNIP3, leading to mitochondrial-dependent cell death in 
hepatocytes (105).

Similarly, studies demonstrated that a HFD caused downregulation 
of PINK1 and Parkin expression in murine kidneys (106), resulting in 
impaired mitophagy, promoting mitochondrial injury in TECs, 
reducing MMP, and inducing apoptosis (107). In STZ-induced 
diabetic animal models, mitophagy-associated proteins from both 
ubiquitin-independent and non-independent pathways, such as 
FUNDC1, BNIP3 and PINK1 are reduced (98, 108). In a rat model of 
HKD established via 5/6 nephrectomy combined with DOCA-salt 
treatment (25 mg/kg, subcutaneous injection, twice weekly), the 
expression of PINK1/Parkin was upregulated (89).

The decreased stimulation of these pathways impairs the selective 
degradation of impaired mitochondria. Furthermore, the 
accumulation of dysfunctional mitochondria can result in elevated 
ROS production and intensified cellular stress, promoting persistent 
inflammation. Mitochondrial injury can trigger the release of mtDNA 

FIGURE 3

Shared pathogenic mechanisms of mitochondrial biogenesis, dynamics and mitophagy in MASLD and CKD. Mitochondrial biogenesis is a complex 
process through which cells generate new mitochondria to meet their energy demands and maintain cellular homeostasis. Mitochondrial transcription 
factor A (TFAM) serves as a pivotal regulatory factor in the transcription and replication of mitochondrial DNA (mtDNA). The expression of TFAM is 
regulated by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). Inhibition of PGC-1α and sirtuin 3 (SIRT3) impedes mitochondrial 
biogenesis, resulting in a reduction of mitochondrial quantity and impaired functionality during the progression of MLKD. Mitochondrial fusion refers to 
the process by which individual mitochondria within a cell merge through the fusion of their membranes and contents. In contrast, mitochondrial 
fission involves a single mitochondrion dividing into two or more smaller mitochondria. Key proteins involved in mitochondrial fusion include mitofusin 
1 (MFN1), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1). Mitochondrial fission is primarily regulated by dynamin-related protein 1 (DRP1) and 
mitochondrial fission protein 1 (Fis1). Decreased expression of MFN1, MFN2, and OPA1 in the liver and kidney, combined with the upregulation of DRP1 
and Fis1 in MLKD, results in the inhibition of mitochondrial fusion and an increase in mitochondrial fission. Mitophagy is a specialized form of 
autophagy that specifically targets damaged or dysfunctional mitochondria to remove them and prevent the accumulation of harmful components. 
This process plays a crucial role in maintaining mitochondrial quality control and cellular homeostasis. Mitophagy encompasses ubiquitin-dependent 
pathways, including those involving phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and Parkin. Additionally, there are 
ubiquitin-independent pathways that involve receptors such as Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3) and FUN14 domain-
containing protein 1 (FUNDC1). A reduction in mitophagy-related proteins from both ubiquitin-dependent and independent pathways, including PINK1, 
Parkin, BNIP3, and FUNDC1, results in decreased mitophagy efficiency, exacerbating liver and kidney injury in MLKD. Created with MedPeer (medpeer.
cn).
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into the cytoplasm, which the immune mechanism recognizes as 
injury-associated molecular patterns (DAMPs). This recognition 
further promotes inflammatory pathways and amplifies the 
inflammatory response (109) (Figure 3).

Mechanisms linking liver damage in MASLD 
to CKD development

While mitochondrial dysfunction has been implicated, other 
critical factors such as the activation of the renin-angiotensin-
aldosterone system (RAAS), alterations in the gut microbiota, 
inflammation, and genetic predisposition likely also contribute. In 
MASLD, the liver, being the primary site for angiotensinogen 
synthesis, experiences increased production and release of 
angiotensinogen into the bloodstream due to its inflammatory and 
oxidative stress states. Angiotensinogen is subsequently converted to 
angiotensin I  by renin and further to the potent vasoconstrictor 
angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin 
II exacerbates liver injury by increasing intrahepatic resistance and 
elevates blood pressure through systemic vasoconstriction, emerging 
as a key risk factor for CKD development. Long-term excessive 
activation of the renin-angiotensin-aldosterone system (RAAS) 
induces renal ischemia, impairs renal filtration and electrolyte balance 
regulation, increases glomerular filtration membrane permeability, 
leading to proteinuria, and ultimately results in glomerulosclerosis 
and fibrosis, further weakening kidney function (110). Moreover, the 
vicious cycle initiated by RAAS activation in MASLD, driven by 
worsening liver injury and intensified RAAS activation, exacerbates 
renal ischemia and injury. The kidneys’ compromised ability to 
regulate fluid balance and blood pressure further stimulates RAAS 
activation, accelerating the progression of both diseases (111).

Intestinal microbiota imbalance is a hallmark pathological feature 
of both MASLD and CKD, significantly contributing to the 
pathogenesis of these conditions. In individuals with MASLD and 
CKD, the gut microbiota is characterized by reduced bacterial richness 
and diversity. Specifically, beneficial bacteria such as Lactobacillus and 
Bifidobacterium are diminished, while potentially pathogenic taxa like 
Enterobacteriaceae and Enterococcus are markedly enriched (8). This 
dysbiosis is closely associated with the disruption of intestinal 
epithelial tight junctions, leading to increased intestinal permeability. 
Consequently, lipopolysaccharide (LPS) from the gut can translocate 
into the systemic circulation. LPS, a potent immune activator, triggers 
signaling pathways involving NF-κB and TLR2 and TLR4. This 
activation exacerbates inflammation in the liver and kidneys, thereby 
accelerating the progression of hepatic fibrosis and renal fibrosis. 
Moreover, intestinal microbiota imbalance is also closely associated 
with the production and metabolic changes of various intestinal 
metabolites, which play a significant role in the development of 
MASLD and CKD (112).

Genetic factors significantly influence the development and 
progression of MASLD and CKD, with various genetic polymorphisms 
and mutations potentially linking these two conditions. For instance, 
the I148M SNP in the PNPLA3 gene is strongly associated with 
increased hepatic fat accumulation and liver injury, predisposing 
carriers to severe liver disease. Research revealed that PNPLA3 mRNA 
and protein are expressed not only in the liver but also in the kidneys, 

particularly in renal tubular cells and podocytes (113). Podocyte 
activation during injury can drive renal fibrosis and glomerulosclerosis. 
The PNPLA3 GG variant may exacerbate injury and promote ectopic 
lipid accumulation under conditions of lipid excess, potentially 
leading to lipid nephrotoxicity by influencing podocyte 
activation (114).

Therapeutic strategies targeting 
mitochondria in MLKD

Given the significant overlap in pathogenesis between MLKD, 
treatment for one condition is likely to be effective for the other. As 
research on the association mechanism between MLKD progresses, 
some scholars have proposed the cardiac-kidney-liver (CKL) 
syndrome (115) or a framework referred to as the cardiovascular-
renal-hepatic-metabolic (CRHM) syndrome (116). This management 
approach for heart, liver, and kidney functions by cardiology, 
endocrinology, nephrology, and hepatology is transitioning toward a 
more integrated model. This review focuses on the enhancement of 
oxidative stress mitigation, metabolic reprogramming, and 
mitochondrial homeostasis facilitated by antioxidants, sodium-
glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 
(GLP-1) receptor agonists, PPAR-γ agonists, and mesenchymal stem 
cells (MSCs), along with their therapeutic roles in the management 
of MLKD.

Antioxidants

In patients with MLKD, elevated levels of ROS and decreased 
plasma antioxidant activity are observed in both the liver and kidneys. 
ROS-induced oxidative stress is recognized as one of the essential 
mechanisms underlying the onset and progression of MLKD, and 
multiple studies have emphasized the beneficial effects of antioxidants 
in treatment. Mitochondrial-targeted drugs, such as mitoTEMPO, 
elamipretide (SS-31) and mito-quinone (Mito-Q), have demonstrated 
potential therapeutic benefits in various diseases associated with 
mitochondrial dysfunction, including MLKD (117, 118).

Mito-Q

Mito-Q is synthesized by covalently linking ubiquinone, an 
intrinsic electron carrier from the ETC, with the lipophilic molecule 
triphenylphosphine (TPP). Within cells, Mito-Q achieves high 
concentrations, approximately 100 times those found in the cytosol 
(117). As an antioxidant targeting mitochondria, Mito-Q acts a critical 
role in mitigating oxidative stress in mitochondria, stimulating 
mitochondrial biogenesis, and facilitating mitophagy. These processes 
are mediated through AMPK and its downstream signaling pathways, 
including mTOR, NF-κB, Nrf2, and SIRT1, ultimately contributing to 
the alleviation of symptoms associated with metabolic syndrome, such 
as obesity and insulin resistance (119).

Mito-Q has been shown to exert protective effects in rats fed a 
HFD, leading to reductions in body weight, hepatic steatosis, blood 
lipid levels, and insulin levels (120, 121). This effect correlates with 

https://doi.org/10.3389/fnut.2025.1613640
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Bai et al. 10.3389/fnut.2025.1613640

Frontiers in Nutrition 11 frontiersin.org

elevated levels of mitochondrial cardiolipin content, thereby 
enhancing the activity of complexes II, III, and V (121). Furthermore, 
a phase II clinical trial targeting chronic hepatitis C revealed that 
Mito-Q can reduce hepatic transaminase levels, indicating its 
protective role against necrotizing liver inflammation (122). In kidney, 
Mito-Q reverses the changes in podocyte mitochondrial morphology 
and function induced by angiotensin II stimulation, including 
decreased MMP, excessive production of ROS, and ATP deficiency 
(123). In a recent pilot randomized controlled trial, Kirkman DL et al. 
revealed that Mito-Q enhanced macrovascular endothelial function, 
arterial hemodynamics, and microvascular function, partly by 
decreasing NADPH oxidase-mediated vascular dysfunction in CKD 
patients (118).

MitoTEMPO

MitoTEMPO is a mitochondrial-targeted antioxidant comprising 
the piperidine nitroxide (TEMPO) and TPP. TEMPO functions as a 
SOD mimic, capable of scavenging superoxide anions and alkyl 
radicals (117). In HFD-induced mice, MitoTEMPO improves liver 
lipid accumulation, alleviates inflammatory responses, and 
downregulates fibrosis-related gene expression (124). Moreover, 
MitoTEMPO inhibits ROS production, increases intrahepatic CD4+ 
T lymphocyte counts, and delays the development of hepatocellular 
carcinoma (HCC) induced by MASLD (125). Additionally, in human 
podocytes (HPC), MitoTEMPO stabilizes the MMP, while also 
mitigating the activation of the NLRP3 inflammasome through the 
PINK1/Parkin-mediated autophagy pathway, thereby improving 
podocyte injury (126). Finally, mitoTEMPO significantly decreases 
markers of mitochondrial dysfunction, and levels of pro-fibrotic 
factors in mice with CKD, thereby enhancing renal function and 
mitigating renal fibrosis (127).

SS-31

Peptides targeting mitochondria, like Szeto-Schiller peptide 31 
(SS-31), also known as elamipretide, are antioxidant peptides that 
selectively accumulate in the inner mitochondrial membrane (128, 
129). Mechanistic studies demonstrate that SS-31 functions as a 
mitochondrial-targeted scavenger of mtROS, effectively mitigating 
oxidative stress while protecting cardiolipin from oxidative damage 
(90, 130, 131). In a mouse model of T2DM, SS-31 effectively prevents 
hepatic mitochondrial dysfunction by enhancing H₂O₂ metabolism, 
reducing lipid peroxidation and boosting ATP synthesis (132). 
Moreover, research by Hao et  al. affirmed that SS-31 exhibited 
significant protective effects in mouse models of DKD by limiting 
cardiolipin oxidation and protecting podocytes (90). Szeto-schiller 
peptide 20 (SS-20) also demonstrates significant renal protective 
effects by reducing mtROS production and inflammatory 
responses (133).

SGLT2 inhibitors

Recent research on the interaction between MLKD has brought 
SGLT2 inhibitors into the spotlight as a promising therapeutic option. 

Honda et al. (134) demonstrated that ipragliflozin upregulates genes 
associated with fatty acid β-oxidation and lipid export in the liver, 
thereby accelerating hepatic lipid metabolism and decreasing liver 
lipid content in MASH mice, which alleviated liver steatosis. 
Dapagliflozin can reverse the decline in mtDNA copy number in the 
livers of diabetic mice while increasing the levels of Mfn2, Drp1and 
PGC1α. This process normalizes mitochondrial respiration control in 
hepatocytes, reduces lipid peroxidation, and prevents the activation of 
the MPTP (135). In human proximal tubular cells (HK-2), Zaibi N 
et al. measured ROS production in the cytoplasm and mitochondria 
under both normal and oxidative stress conditions with fluorescent 
probes. They found that dapagliflozin significantly mitigated the 
increase in ROS within the cytoplasm and mitochondria of proximal 
TECs during oxidative stress conditions and altered Ca2+ dynamics 
(136). Furthermore, dapagliflozin reduced macrophage infiltration in 
the kidneys of db/db mice, resulting in reduced expression of 
inflammatory cytokines and genes associated with oxidative stress, 
including monocyte chemoattractant protein-1 (MCP-1) and 
osteopontin (137).

In the clinical setting, initially introduced for the therapy of 
T2DM, SGLT2 inhibitorshave subsequently exhibited positive 
therapeutic effects in numerous trials targeting liver and kidney 
outcomes. Research have show that SGLT2 inhibitors can markedly 
decrease proteinuria, slow the progression of renal function decline, 
and decrease liver fat content; they also improve serum transaminase 
levels (138–140). A meta-analysis evaluated liver function and 
structure in patients with type 2 diabetes, comparing the effects of 
SGLT2 inhibitors with those of placebo or other oral hypoglycemic 
agents. The findings revealed that SGLT2 inhibitors effectively reduced 
serum levels of alanine transaminase (ALT), aspartate transaminase 
(AST), and γ-glutamyl transpeptidase (141). Furthermore, several 
large-scale cardio-renal outcome studies have demonstrated the renal 
advantages of SGLT2 inhibitors in patients with T2DM (142–146).

GLP-1 receptor agonists

GLP-1 receptor agonists (GLP-1RAs) are increasingly recognized 
as novel therapeutic agents for the treatment of type 2 diabetes. Their 
significant effects on metabolic regulation, weight management, and 
cardiovascular and renal protection have led to a growing focus on 
GLP-1RAs in the context of MLKD. Investigations have revealed that 
liraglutide reduces oxidative stress by increasing SOD levels. This 
includes decreasing serum malondialdehyde levels, MCP-1 expression, 
and NF-kB levels, while also inhibiting endogenous inflammatory 
responses (147, 148). Additionally, liraglutide enhances heme 
oxygenase-1 concentration in human serum, indicating a possible 
improvement in antioxidant capacity (149). Furthermore, semaglutide 
elevates serum and hepatic SOD levels in HFD-induced MASH mice, 
thus preventing hepatic lipid accumulation, exhibiting anti-
inflammatory effects, and improving mitochondrial architecture by 
reducing mitochondrial swelling and promoting more ordered cristae 
(150). In the kidneys, exenatide reverses the downregulation of 
Sirt1 in FFA-induced TECs and prevents the increase in ROS. This 
intervention prevents declines in MMP and attenuates mitochondrial 
apoptosis (151).

In the early stages of MASLD treatment, GLP-1RAs as well as 
glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 dual 
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receptor agonists are commonly utilized (152). Although the specific 
benefits of these agents for liver fibrosis remain unclear, they indirectly 
enhance liver health by promoting weight loss, thus reducing hepatic 
fat and inflammation (153). The CGH-LiNASH study confirmed that 
liraglutide effectively reduces the weight of obese adult patients with 
MASLD and improves liver steatosis and hepatocyte apoptosis (154). 
In relation to kidney health, GLP-1RAs have been demonstrated to 
slow the progression of diabetic kidney disease, as evidenced by the 
LEADER study (155). The research investigated the impact of 
liraglutide on 23% of CKD patients, revealing a reduction in the risk 
of renal failure by approximately 25%, alongside decreased serum 
creatinine levels, reduced mortality risk due to kidney disease, and 
lower incidence of macroalbuminuria (155). Other GLP-1RAs, such 
as semaglutide, dulaglutide, efpeglenatide, lixisenatide, and the dual 
receptor agonist tirzepatide, have also demonstrated similar effects on 
macroalbuminuria (156).

PPAR-γ agonists

PPAR-γ is a nuclear receptor that regulates lipid metabolism and 
glucose homeostasis. Thiazolidinediones (TZDs), which are 
categorized as PPAR-γ agonists, have been explored for their potential 
use in managing MLKD. As discussed earlier, TZDs, including 
pioglitazone, have the capacity to stimulate mitochondrial biogenesis 
and improve mitochondrial function (157). Their mechanism of 
action involves the induction of PGC-1α, a key transcriptional 
coactivator that regulates mitochondrial biogenesis, oxidative 
phosphorylation, and fatty acid oxidation (158). They have 
demonstrated significant therapeutic potential in MLKD, and future 
research will further explore their clinical applicability in different 
disease states.

A systematic review indicated that pioglitazone treatment 
improved individual histological scores for MASH compared to 
placebo and increased the remission rate for MASH (159). 
Pioglitazone (45 mg/day for 72 weeks) was superior to placebo in 
improving fibrosis scores in MASH patients, particularly those with 
T2DM. In the context of DKD, a retrospective cohort study involving 
742 patients revealed that pioglitazone did not significantly reduce the 
risk of composite renal endpoint events, although a non-significant 
reduction in proteinuria was noted (160). Further investigation is 
essential to thoroughly elucidate the therapeutic potential and clinical 
significance of pioglitazone in individuals with CKD.

Mesenchymal stem cells

MSCs are multipotent progenitor cells capable of self-renewal and 
differentiation. The versatility in sourcing of MSCs provides a strong 
basis for applications in cell-based therapy and regenerative medicine 
(161). Owing to their self-renewal, differentiation potential, 
regenerative, and immunomodulatory properties, MSCs have 
garnered attention as a promising therapeutic approach for the 
management of hepatic and renal disorders.

In recent years, the application of bone marrow-derived 
mesenchymal stem cells (BM-MSCs) through transplantation has been 
utilized in various mouse models of MASLD. Studies have shown that 

BM-MSCs can effectively mitigate hepatic steatosis, inflammation, and 
fibrosis. They also enhance hepatic glucose and lipid metabolism, boost 
mitochondrial function, and decrease liver injury and apoptosis (162). 
BM-MSCs have the ability to transfer functional mitochondria to 
injured tissues via mechanisms like tunneling nanotubes, extracellular 
vesicles, and cell fusion, which subsequently enhances tissue repair 
(163). In MASLD mouse models, mesenchymal therapy has been 
shown to improve mitochondrial dysfunction through mitochondrial 
transfer, stimulate mitochondrial function and diminish calcium 
accumulation in steatotic hepatocytes, thereby alleviating hepatic 
steatosis (164). In the renal context, BM-MSCs promote the activation 
of endothelial nitric oxide synthase (eNOS) through phosphorylation 
(165), enhance mitochondrial function (166), and decrease the 
production of ROS, markedly suppressing oxidative stress and 
enhancing renal function (167). In DKD mouse models, BM-MSCs 
induce an anti-inflammatory phenotype in renal macrophages through 
mitochondrial transfer, which ameliorates kidney damage. This effect 
depends on PGC-1α-mediated mitochondrial biogenesis and PGC-1α/
TFEB-mediated lysosomal autophagy (168).

In clinical setting, a post-hoc analysis of a prospective clinical trial 
(NCT02302599) demonstrated that umbilical cord-derived MSCs 
(UC-MSCs) achieved a liver fat reversal rate of up to 45.45% in 
patients with T2DM complicated by MASLD after 20 weeks of 
treatment, significantly reducing body mass index (BMI), fasting 
blood glucose levels, triglycerides, and ALT levels (169). Additionally, 
an 18-month single-arm safety follow-up study (NCT02195323) 
indicated that the injection of a single dose of autologous MSCs in 
patients with CKD was safe and well-tolerated, although no 
statistically significant changes in renal function were observed (170). 
A randomized clinical trial by Perico et  al. (NCT02585622) 
demonstrated that, compared to placebo, cell therapy significantly 
slowed the decline of eGFR over 18 months (171). Future studies 
should further investigate the mechanisms of MSCs, optimize 
treatment protocols, and address potential challenges in clinical 
applications to fully harness their therapeutic potential in the 
treatment of MLKD.

While BM-MSCs offer promising therapeutic potential, several 
challenges remain. These include issues related to graft rejection, 
limited cell engraftment, and difficulties in scaling up for clinical use. 
For instance, despite the immunomodulatory properties of MSCs, the 
risk of graft rejection cannot be  entirely ruled out, especially in 
allogeneic settings (172). Additionally, achieving sufficient cell 
engraftment and long-term survival of transplanted cells remains a 
significant challenge, which can limit the therapeutic efficacy of MSCs 
(173). These challenges highlight the need for continued research and 
development to optimize MSC-based therapies.

Conclusion and future perspectives

An increasing amount of both experimental and clinical evidence 
indicates that the shared pathogenic pathways of mitochondrial 
dysfunction in MLKD have been extensively established. The intricate 
interplay among oxidative stress, mitochondrial biogenesis, dynamics, 
and mitophagy in both the liver and kidney is crucial for the 
progression of MLKD, and these processes are tightly interconnected. 
Several therapeutic agents, such as antioxidants, SGLT-2 inhibitors, 
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GLP-1RAs, PPAR-γ agonists, and MSCs, have shown promise in 
treating MLKD by modulating mitochondrial function. It is 
mentioned that the therapeutic benefits of these agents are not solely 
attributable to these mechanisms. Antioxidants and SGLT-2 inhibitors 
have been shown to reduce oxidative stress and inflammation (174), 
while GLP-1RAs and PPAR-γ agonists have demonstrated immune-
modulatory properties (175). MSCs also exhibit anti-inflammatory 
effects through cytokine modulation and immune cell regulation 
(176). These additional mechanisms underscore the multifaceted 
nature of these agents’ therapeutic benefits and highlight their 
potential for addressing complex pathophysiological processes 
in MLKD.

Additionally, the mechanisms underlying MASLD-induced kidney 
injury and the liver-kidney crosstalk remain underexplored. Elucidating 
the molecular signaling pathways, cellular interactions, and shared 
inflammatory mechanisms between the liver and kidneys will be crucial 
for advancing our understanding of the association between the liver 
and kidneys. Further research is needed to elucidate these mechanisms 
and develop potential new therapies for MASLD-associated CKD.
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