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Background: Neurobehavioral developmental disorder (NDD) significantly 
impact children’s long-term wellbeing and contribute to global disease burden. 
While prenatal micronutrient supplementation has shown promise in improving 
fetal neurodevelopment, its association with offspring’s neurobehavioral 
outcomes remains controversial, and the potential effect of early childhood 
probiotic intake on this association is still underexplored. This study aimed to 
evaluate the association between prenatal micronutrient supplementation 
and neurobehavioral development in preschool children, and to explore and 
quantify the effect of early childhood probiotic intake on this association.

Methods: We included 15,636 mother–child dyads in Shenzhen, China, in 2022. 
Mothers provided information on prenatal micronutrient supplementation 
(calcium, folic acid, iron, and multivitamins) and early childhood probiotic intake 
through a structured questionnaire. Neurobehavioral development was assessed 
using the Ages and Stages Questionnaire (ASQ-3). Logistic regression was used 
to examine the association between prenatal micronutrient supplementation 
and NDD across crude, adjusted, and full-inclusion models. The effect of early 
childhood probiotic intake on the association between prenatal micronutrient 
supplementation and NDD was evaluated through four-way decomposition 
analysis and quantified using counterfactual attribution under three scenarios.

Results: Among the participants, 11.7% were identified with NDD. Prenatal 
multivitamin supplementation was significantly associated with a reduced 
risk of NDD (OR = 0.73, 95% CI = 0.66–0.81). Early childhood probiotic intake 
was associated with an enhanced protective effect (Total EOR = −0.33, 95% 
CI = −0.54 to −0.12), with 48% of the effect attributable to interactions. Early 
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childhood probiotic intake could prevent an additional 73 NDD cases (a 59% 
increase), particularly benefiting the gross motor, fine motor and personal-
social domains.

Conclusion: Prenatal multivitamin supplementation has a protective effect 
against NDD in preschool children, and early childhood probiotic intake is 
associated with an enhancement of this protective effect. These findings 
underscore the potential effect of early-life dietary supplements for NDD 
prevention. Further studies are recommended to confirm these effects and 
explore underlying mechanisms.

KEYWORDS

neurobehavioral development, micronutrient supplementation, probiotic intake, 
preschool children, four-way decomposition, counterfactual attribution

1 Introduction

Neurobehavioral development refers to the development of the 
brain and nervous system in behavioral, cognitive, and emotional 
regulation, playing a crucial role in children’s academic success, 
mental wellbeing, professional prospects, and overall quality of life 
(1). Despite its importance, neurobehavioral development disorders 
remain prevalent worldwide, characterized by key functions disorders 
like perception, motor skills, and language (2, 3). The 2019 World 
Health Organization (WHO) report estimated that approximately 
58  million children (7%) globally experienced developmental 
disorders, with neurobehavioral disorders accounting for more than 
half of these cases (4). In China, the reported prevalence of such 
disorders ranges from 3.2 to 13.9%, with the personal-social domain 
being the most affected (5–8). Severe cases may manifest as 
conditions such as autism spectrum disorder (ASD) and attention 
deficit hyperactivity disorder (ADHD), both of which are increasing 
in prevalence (9–11). These conditions impose significant challenges 
on affected individuals, their families, and society. For example, ASD 
is responsible for more than 691.5 disability-adjusted life years 
(DALYs) per 100,000 individual globally, ranking it among the top 10 
neurological disorders (12). Families of children with ASD face 
approximately $3,020  in additional annual healthcare costs and 
substantial losses in parental productivity (13). The annual social cost 
for all ASD patients may reach $41.8 billion, accounting for 
approximately 3.76% of China’s total healthcare expenditure in 2020 
(14). Therefore, early identification of influencing factors is essential 
to prevent severe neurobehavioral developmental disorders and 
mitigate long-term socioeconomic burdens.

Early life, including the prenatal period and early childhood, is a 
critical window for neurobehavioral development, during which 
preventive interventions can be most effective in reducing the risk and 
severity of these disorders (15, 16). Prenatal nutrition, particularly 
micronutrients, is essential in fetal neural development with long-term 
health implications (17). However, micronutrient deficiencies remain 
widespread among pregnant women globally, including in China (18–
20). While some evidence suggests that prenatal iron supplementation 
may enhance neurobehavioral outcomes (21, 22), other studies have 
failed to confirm this effect (23). Similarly, randomized controlled 
trials (RCTs) on prenatal vitamin D supplementation have reported 
inconsistent results, with some showing improved motor development 
(24), and others finding no significant benefits (25, 26). For prenatal 
iodine supplementation, although certain studies suggest cognitive 

benefits (27, 28), a systematic review of RCTs found no impact on 
neurobehavioral outcomes (29). These discrepancies may be attributed 
to heterogeneity in study design, including confounding biases and 
non-standardized neurobehavioral assessments (25, 26). Therefore, 
further research using large sample sizes, rigorous control of 
confounders, and standardized assessment methods is necessary to 
clarify these associations.

Gut microbiota establishment and neural development share the 
same critical time window in early life (30). Increasing evidence 
suggests that gut microbiota influences neurobehavioral development 
via the gut-brain axis, involving mechanisms such as neurotransmitter 
regulation, immune modulation, production of neuroactive metabolites 
(e.g., short-chain fatty acids), and stress response regulation (31–34). 
Probiotics, which are live, nonpathogenic microorganisms that promote 
gastrointestinal microbial balance, have been proposed as a potential 
intervention to enhance neurobehavioral development by modulating 
gut microbiota (35, 36). Some reviews have reported therapeutic effects 
of childhood probiotic intake on ASD and ADHD (37–39), while an 
RCT has investigated its potential in preventing ADHD (40). However, 
some studies have failed to demonstrate significant benefits of 
childhood probiotic intake for ASD (41). Moreover, existing research 
has primarily focused on overt neurobehavioral disorders such as ASD 
and ADHD, whereas evidence remains limited regarding its effects 
during the early or subclinical stages of neurobehavioral development.

Research shows that prenatal micronutrient supplementation can 
benefit offspring gut microbiota, while childhood probiotic intake 
similarly improve gut microbiota composition in children, suggesting 
a potential interaction between the two in shaping neurobehavioral 
development via the gut–brain axis (42). Additionally, maternal self-
administration of over-the-counter medications during pregnancy may 
influence the provision of probiotics and other nutritional supplements 
to their children (43). This indicates that prenatal micronutrient 
supplementation may also influence childhood probiotic intake, 
thereby potentially affecting neurobehavioral development. Figure 1 
illustrates a conceptual framework of the hypothesized associations 
among prenatal micronutrient supplementation, early childhood 
probiotic intake, and neurobehavioral development.

However, existing studies have primarily focused on dietary 
supplements during a single developmental window—either the 
prenatal or early childhood. Although some studies have examined 
the combined effects of prenatal micronutrient supplementation and 
probiotic intake on maternal and infant outcomes (44–46), the 
relatively stable maternal microbiota and its indirect influence on the 
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fetus suggest that pregnancy may not be the optimal time for probiotic 
intake (47). Similarly, while other studies have explored the effects of 
childhood probiotic intake and micronutrient supplementation (48, 
49), initiating micronutrient supplementation during childhood may 
have limited effects, as neurodevelopment begins in utero and largely 
depends on maternal nutrient stores (22, 50). Nonetheless, evidence 
remains limited regarding the effect of childhood probiotic intake on 
the association between prenatal micronutrient supplementation and 
neurobehavioral development in children.

Therefore, our study aimed to evaluate the association between 
prenatal micronutrient supplementation and neurobehavioral 
development in preschool children, and to explore and quantify the 
effect of early childhood probiotic intake on this association.

2 Methods

2.1 Participants

The study recruited participants from the 2022 survey of children 
aged 3–7 years, conducted in 235 kindergartens in Longhua District, 

Shenzhen, China, with follow-up assessment of neurobehavioral 
development conducted in 2023. A total of 36,220 mother–child dyads 
were initially enrolled, and 15,636 participants were included after 
excluding cases with missing follow-up data on neurobehavioral 
development (n = 12,129), no recorded prenatal micronutrient 
supplementation (n = 6,624), and incomplete childhood probiotic 
intake records (n = 1,831), as shown in Figure 2. Ethical approval was 
obtained from the Ethics Committee of the School of Public Health, 
Sun Yat-sen University, and informed consent was provided by the 
mothers of all participating children.

2.2 Data acquirement

Data was collected through a self-administered online structured 
questionnaire, which was completed by children’s mothers under the 
supervision of childcare practitioners and kindergarten teachers. The 
questionnaire was developed by a multidisciplinary panel of 
epidemiologists, obstetricians, and pediatricians, and its clarity and 
readability were confirmed through a pilot test. It contained 
demographic characteristics, maternal condition during pregnancy 

FIGURE 1

Conceptual framework of the hypothesized associations among prenatal micronutrient supplementation, early childhood probiotic intake, and 
neurobehavioral development. Created with BioRender.com.
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(e.g., micronutrient supplementation, pregnancy complications, 
health behaviors), parental lifestyle and health status (e.g., smoking, 
drinking, diseases), neonatal birth characteristics (e.g., birth weight, 
preterm birth, delivery mode), lifestyle and health condition at ages 
0–3 years (e.g., probiotic intake, feeding pattern, nutritional 
condition), and children’s health status at ages 3–7 years (e.g., 
neurobehavioral development, diseases, family function). Further 
details and coding are provided in Supplementary Table 1.

2.2.1 Prenatal micronutrient supplementation 
and early childhood probiotic intake

Prenatal micronutrient supplementation (calcium, folic acid, iron, 
and multivitamins) was assessed through maternal self-reported 
responses to four separate questions: “Did you take calcium/folic acid/
iron/multivitamins during your pregnancy?” Participants answering 
‘YES’ were assigned to the corresponding supplementation group, 
while all others served as the reference group.

Early childhood probiotic intake was defined based on a ‘YES’ 
response to the question: “Did your child take probiotics between the 
ages of 0–3 years?” Here, probiotics were specified as a single product 
form (capsules or sachets) not combined with other foods 
or supplements.

2.2.2 Outcome
The neurobehavioral development in preschool children 

(3–7 years old) was assessed by the Age and Developmental Progress 
Questionnaire-Third Edition (ASQ-3), a well-validated and widely 
used tool in multiple countries, including China, demonstrating good 

internal consistency (Cronbach’s α = 0.8) (51–53). Designed for 
children aged 1 to 66 months, the ASQ-3 assesses five key domains: 
communication, gross motor, fine motor, problem-solving, and 
personal-social status. Assessment results are classified into three 
groups: (1) scores above the threshold (>mean minus 1 standard 
deviation [SD]), indicating age-appropriate development; (2) scores 
close to the threshold (mean minus 2 SD to mean minus 1 SD), 
requiring further monitoring; and (3) scores below the threshold 
(≤mean minus 2 SD), indicating developmental disorder. In our 
study, the presence of neurobehavioral developmental disorder 
(NDD) was identified when at least one domain scored below the 
threshold, while others with all domains above or close to the 
threshold were classified as neurobehavioral developmental 
normality (NDN).

2.2.3 Covariates
Based on previous studies (21, 27, 54–56) and the univariate and 

multivariate analyses results (See Supplementary Table 2), covariates 
included child’s demographic characteristics (age, sex, birth season, 
residence type), maternal demographic characteristics (education, 
household income, age of conception, pre-pregnancy BMI), 
pregnancy and perinatal characteristics (intrauterine growth 
restriction [IUGR], parity, preterm birth [PTB], and birth weight 
[BW]), and childhood family environment (parental depression, 
family functioning, feeding pattern). The average missing data rate 
for these covariates was 3.9% (range: 0–12.9%), with missing data 
addressed using multiple imputations through Predictive Mean 
Matching (PMM) (57).

FIGURE 2

Study profile. ASQ-3, Age and Developmental Progress Questionnaire; CDE, Controlled Direct Effect; INTmed, mediated interaction; INTref, reference 
interaction; NDD, neurobehavioral developmental disorder; PIE, Pure Indirect Effect.
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2.3 Statistical analysis

We compared variables between the NDD and NDN groups using 
one-way ANOVA and t-tests for continuous variables and chi-square 
tests for categorical variables. The main analysis was conducted in 
three stages.

2.3.1 Association between prenatal micronutrient 
supplementation and neurobehavioral 
development in preschool children

We examined the association between maternal micronutrient 
supplementation during pregnancy and neurobehavioral development 
in preschool children using univariate and multivariate logistic 
regression analyses under three different models: the crude model, 
without adjustment for confounders; the adjusted model, adjusted for 
selected confounders; and the full-inclusion model, included all 
micronutrients in the model while adjusting for all confounders to 
address the confounding effects of co-supplementation. To further 
explore the association between prenatal micronutrient 
supplementation and neurobehavioral development under different 
probiotic intake scenarios, we conducted a stratified analysis based on 
probiotic intake in early childhood.

2.3.2 Effect of early childhood probiotic intake on 
association between prenatal micronutrient 
supplementation and neurobehavioral 
development in preschool children

Under the three models, we analyzed the effect of probiotic intake 
on the association between prenatal micronutrient supplementation 
and neurobehavioral development in preschool children through 
four-way decomposition, as proposed by J. VanderWeele (58). This 
method allows for simultaneous analysis of interaction and mediation 
effects, which is widely used in epidemiologic studies (59–61). The 
core is to decompose the total effect into four components: (1) 
controlled direct effect (CDE): the effect of prenatal micronutrient 
supplementation on neurobehavioral development independent of 
childhood probiotic intake, (2) reference interaction (INTref): the effect 
of prenatal micronutrient supplementation on neurobehavioral 
development only through its interaction with childhood probiotic 
intake, (3) pure indirect effect (PIE): the effect of prenatal 
micronutrient supplementation on neurobehavioral development 
both through an interaction with and mediation by childhood 
probiotic intake, and (4) mediated interaction (INTmed): the effect of 
prenatal micronutrient supplementation on neurobehavioral 
development only through the mediation by childhood probiotic 
intake. Estimates of the four components were obtained through 
regression analyses that included the exposure, mediator, and their 
interaction terms, with results presented as excess odds ratio (EOR) 
and proportion attributable (PA).

2.3.3 Preventable NDD by prenatal micronutrient 
supplementation and early childhood probiotic 
intake

After identifying the effect of probiotic intake, we quantified the 
number of preventable NDD attributable to prenatal micronutrient 
supplementation and early childhood probiotic intake using 
counterfactual attribution (62), which can be  used to quantify 
interaction or mediation effects (63). We assumed three scenarios: 

(1) Counterfactual scenario (V1): no probiotic intake, (2) Realistic 
scenario (V2): probiotic intake in the realistic proportion of the 
survey population, and (3) Ideal scenario (V3): probiotic intake in 
all populations. Under each scenario, we  estimated the effect of 
prenatal micronutrient supplementation and early childhood 
probiotic intake on NDD across three models to calculate the 
number of preventable NDD cases. The difference in preventable 
cases between the realistic and counterfactual scenarios (V2–V1) 
represented the additional preventable NDD due to current 
childhood probiotic intake proportion, while the difference between 
the ideal and counterfactual scenarios (V3–V1) represents the 
potential preventable NDD if probiotics were consumed by 
all populations.

Statistical analyses above were performed via R version 4.2.3. Two 
sided p-values <0.05 were considered significant.

3 Results

3.1 Participants’ characteristics

Table  1 presents the background characteristics of the study 
participants, including prenatal micronutrient supplementation and 
childhood probiotic intake, with a comparison between NDD and NDN 
groups. Folic acid (88.2%) was the most widely consumed, followed by 
calcium (75.8%), while iron (46.0%) and multivitamin supplementation 
(44.4%) were relatively less common in pregnant women. A total of 
80.2% of children reported taking probiotics in early childhood.

The overall average ASQ-3 score of the 15,636 children was 
277 ± 26.4, with domain-specific scores ranging from 51.7 ± 10.2 in 
the fine motor domain to 57.6 ± 5.4 in the communication domain. A 
total of 11.7% of the children were identified as NDD, with the highest 
prevalence in the gross motor domain (8.88%) and the lowest in the 
problem-solving domain (0.70%), as shown in Table 2.

3.2 Association between prenatal 
micronutrient supplementation and 
neurobehavioral development in preschool 
children

In the crude model, prenatal calcium (OR = 0.84, 95% CI = 0.76–
0.94), folic acid (OR = 0.83, 95% CI = 0.72–0.96) and multivitamin 
(OR = 0.73, 95% CI = 0.66–0.81) supplementation was associated with 
a decreased risk of NDD, whereas no significant association was 
observed for iron. In the adjusted and full-inclusion models, only 
prenatal multivitamin supplementation remained associated with a 
reduced risk of NDD (Adjusted Model: OR = 0.86, 95% CI = 0.78–0.96; 
Full-inclusion Model: OR = 0.85, 95% CI = 0.75–0.95) 
(Supplementary Table 3; Figure 3). In the full-inclusion model, prenatal 
iron supplementation was even found to be significantly associated with 
an increased risk of NDD (OR = 1.14, 95% CI = 1.01–1.28). Across 
these 5 domains, after controlling for confounders, prenatal calcium 
and folic acid supplementation were significantly associated with NDD 
in the communication and gross motor domains, folic acid and 
multivitamin supplementation were associated with NDD in the 
personal-social domain, whereas no significant associations were found 
in the fine motor and problem-solving domains (Supplementary Table 4).
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TABLE 1 Background characteristics of study participants in the 2022 children’s survey.

Characteristic Overalla (n = 15,636) Outcome p-valueb

NDDa (n = 13,804) NDNa (n = 1,832)

Child’s age 4.6 ± 0.6 4.6 ± 0.6 4.6 ± 0.5 <0.001

Child’s sex <0.001

  Male 8,346 (53.4%) 7,219 (52.3%) 1,127 (61.5%)

  Female 7,290 (46.6%) 6,585 (47.7%) 705 (38.5%)

Birth season <0.001

  Spring 4,225 (27.0%) 3,746 (27.1%) 479 (26.1%)

  Summer 4,482 (28.7%) 3,845 (27.9%) 637 (34.8%)

  Autumn 2,945 (18.8%) 2,618 (19.0%) 327 (17.8%)

  Winter 3,984 (25.5%) 3,595 (26.0%) 389 (21.2%)

Residence type <0.001

  Shenzhen residents 9,415 (60.2%) 8,507 (61.6%) 908 (49.6%)

  Non-Shenzhen residents 6,221 (39.8%) 5,297 (38.4%) 924 (50.4%)

Maternal education <0.001

  Less than high school 1,614 (10.3%) 1,262 (9.14%) 352 (19.2%)

  High school and higher 14,022 (89.7%) 12,542 (90.9%) 1,480 (80.8%)

Household income <0.001

  <RMB 20,000 7,314 (46.8%) 6,262 (45.4%) 1,052 (57.4%)

  ≥RMB 20,000 8,322 (53.2%) 7,542 (54.6%) 780 (42.6%)

Maternal conception age 34.0 ± 5.5 34.0 ± 5.5 33.7 ± 5.7 0.028

Pre-pregnancy BMI <0.001

  BMI < 18.5 2,890 (18.5%) 2,550 (18.5%) 340 (18.6%)

  18.5 ≤ BMI < 24 10,571 (67.6%) 9,392 (68.0%) 1,179 (64.4%)

  BMI ≥ 24 2,175 (13.9%) 1,862 (13.5%) 313 (17.1%)

Intrauterine growth retardation <0.001

  No 15,497 (99.1%) 13,697 (99.2%) 1,800 (98.3%)

  Yes 139 (0.9%) 107 (0.8%) 32 (1.7%)

Parity 0.21

  Nulliparous 8,810 (56.3%) 7,752 (56.2%) 1,058 (57.8%)

  Multiparous 6,826 (43.7%) 6,052 (43.8%) 774 (42.2%)

Preterm birth <0.001

  No 14,517 (92.8%) 12,851 (93.1%) 1,666 (90.9%)

  Yes 1,119 (7.2%) 953 (7.0%) 166 (9.1%)

Child’s birth weight 3.1 ± 0.6 3.1 ± 0.6 3.0 ± 0.7 <0.001

Parental depression <0.001

  No 13,652 (87.3%) 12,140 (87.9%) 1,512 (82.5%)

  Yes 1,984 (12.7%) 1,664 (12.1%) 320 (17.5%)

Family function <0.001

  Normal 9,697 (62.0%) 8,772 (63.5%) 925 (50.5%)

  Dysfunction 5,939 (38.0%) 5,032 (36.5%) 907 (49.5%)

Feeding pattern <0.001

  Breastfeeding 8,803 (56.3%) 7,815 (56.6%) 988 (53.9%)

  Formula feeding 1,665 (10.6%) 1,415 (10.3%) 250 (13.6%)

  Mixed feeding 5,168 (33.1%) 4,574 (33.1%) 594 (32.4%)

(Continued)

https://doi.org/10.3389/fnut.2025.1614820
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ding et al. 10.3389/fnut.2025.1614820

Frontiers in Nutrition 07 frontiersin.org

When the analysis was stratified by probiotic intake, we found that 
prenatal micronutrient supplementation was not significantly associated 
with NDD without childhood probiotic intake. However, with childhood 
probiotic intake, the association between prenatal micronutrient 

supplementation and NDD followed the same pattern as in the whole 
sample, with multivitamin supplementation associated with a decreased 
risk of NDD across all three models (Crude model: OR = 0.71, 95% 
CI = 0.63–0.79; Adjusted Model: OR = 0.84, 95% CI = 0.75–0.94; Full-
inclusion Model: OR = 0.83, 95% CI = 0.74–0.94). Although no significant 
differences were observed between the probiotic and non-probiotic intake 
subgroups, most ORs were lower in the probiotic intake subgroup, with 
many associations showing statistical significance within this subgroup 
only (Figure 4). According to the stratified analysis in the five domains, 
compared to the non-probiotic intake subgroup, prenatal folic acid and 
multivitamin supplementation were significantly associated with reduced 
risks in the gross motor and personal-social domains in the probiotic 
intake group. In the communication, fine motor and problem-solving 
domains, though lower ORs were observed, none showed statistical 
significance in the probiotic intake group (Supplementary Table 5).

3.3 Effect of early childhood probiotic 
intake on association between prenatal 
micronutrient supplementation and 
neurobehavioral development in preschool 
children

In the crude model, the results showed that childhood probiotic 
intake was significantly associated with an enhanced protective effect of 
prenatal multivitamin supplementation on NDD (Total EOR = −0.33, 
95% CI = −0.54 to−0.12 vs. CDE EOR = −0.22, 95% CI = −0.46 to 
0.03). Most of this protective effect from childhood probiotic intake was 
driven by the INTref (EOR = −0.16, 95% CI = −0.49 to 0.16), accounting 
for 48% of the total effect. The significant mediating effect of probiotic 
intake was also observed (EOR = 0.10, 95% CI = 0.03–0.16). The INTmed 
followed (EOR = −0.05, 95% CI = −0.16 to 0.05), suggesting the 
presence of both interaction and mediation of childhood probiotic 

TABLE 1 (Continued)

Characteristic Overalla (n = 15,636) Outcome p-valueb

NDDa (n = 13,804) NDNa (n = 1,832)

Prenatal calcium supplementation 0.003

  No 3,781 (24.2%) 3,286 (23.8%) 495 (27.0%)

  Yes 11,855 (75.8%) 10,518 (76.2%) 1,337 (73.0%)

Prenatal folic acid supplementation 0.013

  No 1,846 (11.8%) 1,597 (11.6%) 249 (13.6%)

  Yes 13,790 (88.2%) 12,207 (88.4%) 1,583 (86.4%)

Prenatal iron supplementation 0.11

  No 8,451 (54.0%) 7,428 (53.8%) 1,023 (55.8%)

  Yes 7,185 (46.0%) 6,376 (46.2%) 809 (44.2%)

Prenatal multivitamin supplementation <0.001

  No 8,690 (55.6%) 7,549 (54.7%) 1,141 (62.3%)

  Yes 6,946 (44.4%) 6,255 (45.3%) 691 (37.7%)

Childhood probiotic intake 0.010

  No 3,098 (19.8%) 2,777 (20.1%) 321 (17.5%)

  Yes 12,538 (80.2%) 11,027 (79.9%) 1,511 (82.5%)

aData are presented as Mean ± SD or N (%).
bp-value was based on one-way analysis of means and Pearson’s Chi-squared test where appropriate.

TABLE 2 Neurobehavioral development across five domains in the 2022 
children’s survey.

Domains Description (n = 15,636)

Score, 
Mean ± SD

Prevalence, n (%)

Communication 57.6 ± 5.4

  Normal 15,457 (98.9%)

  Disorder 179 (1.1%)

Gross motor 54.2 ± 8.6

  Normal 14,248 (91.1%)

  Disorder 1,388 (8.9%)

Fine motor 51.7 ± 10.2

  Normal 15,214 (97.3%)

  Disorder 422 (2.7%)

Problem solving 57.2 ± 5.7

  Normal 15,526 (99.3%)

  Disorder 110 (0.7%)

Personal-social 56.8 ± 5.6

  Normal 15,281 (97.7%)

  Disorder 355 (2.3%)

Total 277.5 ± 26.4

  Normal 13,804 (88.3%)

  Disorder 1,832 (11.7%)
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intake. No significant enhanced protective effects by childhood 
probiotic intake were observed in relation to prenatal supplementation 
of calcium, folic acid or iron (Figure 5; Table 3). Across the five domains, 
childhood probiotic intake was significantly associated with an 
enhanced protective effect of prenatal multivitamin supplementation on 
disorders in gross motor development (Total EOR = −0.31, 95% 
CI = −0.56 to −0.07) and personal-social development (Total 
EOR = −0.50, 95% CI = −0.97 to −0.03). The effect of prenatal folic acid 
supplementation on disorders of personal-social development was also 
significantly increased by childhood probiotic intake (Total 
EOR = −0.51, 95% CI = −0.88 to −0.14) (Supplementary Table 6).

3.4 Preventable NDD by prenatal 
micronutrient supplementation and 
childhood probiotic intake

In the crude model where a significant effect of childhood 
probiotic intake was observed on the association between prenatal 

multivitamin supplementation and NDD, we  assumed three 
scenarios: In the scenario assuming no probiotic intake in early 
childhood (counterfactual scenario), among the 15,636 
participants, prenatal multivitamin supplementation alone could 
prevent 123 children from developing NDD. Under current 
childhood probiotic intake proportion (realistic scenario), 73 
additional NDD cases could be  prevented compared to no 
probiotic intake, representing a 59% increase in preventive effect. 
If childhood probiotic intake were increased to a scenario where 
all children consume probiotics (ideal scenario), it could 
potentially prevent 96 more children from developing NDD 
compared to no probiotic intake, representing a 78% increase 
(Figure 6).

The highest number of preventable NDD was in the gross motor 
domain (47 cases in the realistic scenario and 64  in the ideal 
scenario), followed by the personal-social domain (19  in the 
realistic scenario and 24  in the ideal scenario). The highest 
percentage increase in NDD prevention was observed in the fine 
motor domain, with a 92% increase in the realistic scenario and a 

FIGURE 3

Associations between prenatal micronutrient supplementation and NDD in crude, adjusted and full-inclusion models. OR, odds ratio; CI, confidence 
interval; P, p-value.

FIGURE 4

Stratified analysis of the associations between prenatal micronutrient supplementation and NDD by childhood probiotic intake. OR, odds ratio; CI, 
confidence interval; P, p-value; Pint, p-value for the interaction between prenatal micronutrient supplementation and childhood probiotic intake.
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117% increase in the ideal scenario, followed by the personal-social 
domain (80% in the realistic and 100% in the ideal scenario) 
(Table 4). The number of preventable NDD across the five domains 
under different models is detailed in Supplementary Table 7. Most 
prenatal micronutrient supplementation with childhood probiotic 
intake showed varied increases in NDD prevention in both realistic 
and ideal scenarios.

4 Discussion

Our study revealed that 11.7% of preschool children were identified 
with NDD in the 2022 children’s survey. We  found that prenatal 
multivitamin supplementation was significantly associated with a 
reduced risk of NDD across the crude, adjusted and full-inclusion 
models. When exploring the effect of probiotic intake in early 
childhood, our results indicated that childhood probiotic intake was 
associated with an enhanced protective effect of prenatal multivitamin 
supplementation against NDD in the crude model (Total EOR = −0.33, 
95% CI = −0.54 to 0.12), with 48% of the effect attributable to 
interactions. Quantifying this enhanced protective effect, our study 
demonstrated that childhood probiotic intake contributed to the 
prevention of 73 (a 59% increase) additional NDD cases, with the 
potential to prevent 96 additional NDD cases (a 78% increase) if 
childhood probiotic intake were consumed by all populations.

Previous research have found that prenatal single vitamin 
supplementation, such as vitamins D and B12, are associated with a 
lower risk of NDD in children (25, 64–66), while multivitamins also 
significantly promote neurobehavioral development in children (67, 
68), which is consistent with the results of this study. Vitamins are 
essential for fetal brain development, serving as cofactors in 
neurotransmitter synthesis and enzymatic metabolism processes 
(69). For instance, vitamin B12 is crucial for fatty acid metabolism 
necessary for myelin sheath production, while vitamin B6 functions 
as a coenzyme in the synthesis of various amino acid 
neurotransmitters, both of which can influence neurobehavioral 
development (70, 71). Retinoids, derived from vitamin A, contribute 
to neuronal differentiation and influence functions like memory and 
sleep (72). Some evidence suggests that multivitamin 
supplementation exert broader effects on neurobehavioral 
development because they allow multiple biological pathways for 
effects (71). However, other studies indicated that multivitamin 
supplementation not always more effective than single vitamins for 
cognitive function (73). Further research is warranted to clarify the 
comparative benefits of multivitamin supplementation versus single-
vitamin supplementation in neurobehavioral development. Despite 
the known benefits of vitamins, our study found that fewer than half 
of pregnant women took multivitamins, as reported in other surveys, 
highlighting a need to improve multivitamin supplementation 
practices (66).

FIGURE 5

Four-way decomposition diagram of the effect of childhood probiotic intake on the association between prenatal micronutrient supplementation and 
NDD in the crude model. (A) Calcium supplementation; (B) Folic acid supplementation; (C) Iron supplementation; (D) Multivitamin supplementation. 
CDE, controlled direct effect; CI, confidence interval; EOR, excess odds ratio; INTmed, mediated interaction; INTref, reference interaction; OR, odds ratio; 
PIE, pure indirect effect. Created with BioRender.com.
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Folic acid, widely recognized as an important substance in 
neural tube development, is supplemented at a higher prevalence, 
possibly because of its inclusion in the WHO’s list of essential 
medicines for pregnant women (74–76). Similar to our findings, 
studies have shown that prenatal folic acid supplementation is 
positively associated with children’s neurobehavioral development 
(77, 78). However, some reports suggest that excessive folic acid 
intake may increase the risk of ASD and food allergies, indicating 
a U-shaped association (79, 80). This underscores the importance 
of determining precise supplementation levels, especially given 
that nearly all prenatal foods already contain increased levels of 
folic acid (66). Iron and calcium, involved in neurotransmitter 
function, energy metabolism, and myelination, may also influence 
neurobehavioral development (81, 82). However, our study did not 
find a significant association between prenatal calcium 
supplementation and neurobehavioral outcomes, and even 
identified iron supplementation as a risk factor. Similar conclusions 
have been drawn in other population studies (83, 84). Variability 
in study populations, research design, exposure timing and 
neurobehavioral assessment tools may account for these results 
(84, 85).

Our findings further suggest that childhood probiotic intake is 
associated with an enhanced protective effect of prenatal multivitamin 
supplementation against NDD, primarily through their interaction, 
as suggested by previous reviews (86, 87). On the one hand, vitamins 
benefit maternal gut microbiota, with vitamin A and B2 increasing 
microbial diversity and abundance and vitamins A and D maintaining 
intestinal barrier integrity (88–90). Beneficial maternal microbes can 
be transferred to offspring through the birth canal, breast milk, and 
even vertically in utero (42, 91–93). Probiotic intake in early 
childhood may further enhance the colonization and function of 
these inherited beneficial microbiota, improving neurobehavioral 
outcomes through the gut-brain axis (55, 94). On the other hand, gut 
microbiota can synthesize specific vitamins such as vitamin K and the 
B vitamins (95), which can improve cognitive function and reduce 
the risk of NDD in multiple pathways (96, 97). These findings 
reinforce the idea that maternal nutrition during pregnancy interacts 
with offspring gut microbiota to influence neurobehavioral 
development. Additionally, our study also found that probiotics acted 
as a reverse mediator in the relationship between micronutrients and 
NDD, potentially increasing the risk of NDD. One possible 
explanation is that mothers who self-medicate during pregnancy are 

TABLE 3 The effect of childhood probiotic intake on the association between prenatal micronutrient supplementation and NDD using the four-way 
decomposition.

Component Crude model Adjusted model Full-inclusion model

EOR (95%CI) PA (95%CI), % EOR (95%CI) PA (95%CI), % EOR (95%CI) PA (95%CI), %

Calcium supplementation

CDE −0.14 (−0.39, 0.11) 107 (304, −89) −0.01 (−0.27, 0.23) 7 (156, −135) 0.00 (−0.27, 0.27) −3 (163, −165)

INTref −0.06 (−0.36, 0.23) 50 (284, −179) −0.19 (−0.75, 0.40) 111 (437, −232) −0.18 (−0.71, 0.37) 111 (435, −226)

INTmed −0.03 (−0.15, 0.09) 20 (115, −73) −0.04 (−0.16, 0.08) 23 (91, −48) −0.02 (−0.07, 0.04) 10 (41, −22)

PIE 0.10 (0.00, 0.20) −78 (−1, −157) 0.07 (−0.03, 0.16) −40 (19, −96) 0.03 (−0.02, 0.07) −18 (11, −45)

Total −0.13 (−0.29, 0.04) 100 −0.17 (−0.58, 0.24) 100 −0.16 (−0.53, 0.21) 100

Folic acid supplementation

CDE −0.05 (−0.38, 0.26) 30 (218, −150) 0.09 (−0.23, 0.40) −23 (58, −99) 0.14 (−0.21, 0.47) −42 (63, −144)

INTref −0.19 (−0.54, 0.17) 109 (309, −100) −0.52 (−1.22, 0.22) 129 (302, −54) −0.47 (−1.17, 0.24) 144 (359, −73)

INTmed −0.08 (−0.24, 0.08) 48 (137, −45) −0.10 (−0.25, 0.05) 26 (61, −12) −0.02 (−0.08, 0.03) 8 (24, −9)

PIE 0.15 (0.00, 0.29) −86 (−2, −169) 0.13 (−0.02, 0.26) −32 (4, −64) 0.03 (−0.03, 0.09) −9 (9, −28)

Total −0.17 (−0.37, 0.02) 100 −0.40 (−0.89, 0.10) 100 −0.33 (−0.79, 0.13) 100

Iron supplementation

CDE −0.08 (−0.31, 0.15) 298 (1,110, −520) 0.08 (−0.16, 0.33) 446 (−841, 1,754) 0.17 (−0.08, 0.42) 155 (−79, 391)

INTref −0.01 (−0.33, 0.30) 43 (1,176, −1,068) −0.09 (−0.66, 0.48) −478 (−3,486, 2,536) −0.08 (−0.59, 0.44) −72 (−551, 407)

INTmed 0.00 (−0.11, 0.10) 14 (380, −347) −0.02 (−0.12, 0.09) −88 (−650, 473) −0.01 (−0.07, 0.05) −9 (−66, 48)

PIE 0.07 (0.01, 0.14) −255 (−22, −494) 0.04 (−0.03, 0.11) 220 (−134, 560) 0.03 (−0.01, 0.07) 26 (−12, 63)

Total −0.03 (−0.23, 0.17) 100 0.02 (−0.41, 0.45) 100 0.11 (−0.24, 0.45) 100

Multivitamin supplementation

CDE −0.22 (−0.46, 0.03) 65 (137, −9) −0.03 (−0.28, 0.22) 10 (85, −66) −0.04 (−0.30, 0.23) 11 (95, −74)

INTref −0.16 (−0.49, 0.16) 48 (148, −49) −0.30 (−0.91, 0.30) 92 (273, −92) −0.28 (−0.81, 0.26) 89 (261, −83)

INTmed −0.05 (−0.16, 0.05) 15 (48, −16) −0.06 (−0.18, 0.06) 18 (54, −18) −0.04 (−0.13, 0.04) 14 (42, −14)

PIE 0.10 (0.03, 0.16) −29 (−10, −48) 0.07 (0.00, 0.13) −20 (1, −40) 0.05 (−0.01, 0.10) −15 (2, −32)

Total −0.33 (−0.54, −0.12) 100 −0.33 (−0.80, 0.15) 100 −0.31 (−0.68, 0.07) 100

https://doi.org/10.3389/fnut.2025.1614820
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ding et al. 10.3389/fnut.2025.1614820

Frontiers in Nutrition 11 frontiersin.org

more likely to administer probiotics to their children (43), often to 
address gut microbiota imbalances. Such pre-existing gut microbiota 
imbalances in children may adversely affect neurobehavioral 
development through oxidative stress (98).

Quantifying the enhanced protective effect of childhood probiotic 
intake on NDD, we found the effect was particularly present in gross 
motor, fine motor and personal-social developmental disorders. The 
reason may be that the influence of gut microbiota on the brain is 
mainly concentrated in the limbic system and motor cortex, which are 
related to emotion and motor coordination, while its effects on the 
prefrontal cortex and hippocampus, which are associated with 
problem-solving, are more indirect (99, 100). This result also echoes 

the protective effects of probiotic intake against Parkinson’s disease, 
which is associated with fine motor disorders, and ASD, which is 
associated with emotional–social dysfunction (101, 102). In addition, 
we also observed that early childhood probiotic intake significantly 
increased the number of gross motor developmental disorders 
prevented by prenatal multivitamin supplementation, which happened 
to be the most prevalent type of NDD in our study. This suggests that 
early childhood probiotic intake can specifically target the prevention 
of neurobehavioral developmental domains that most 
need improvement.

This study makes several significant contributions. First, it 
innovatively introduces early childhood probiotic intake as a key 

FIGURE 6

Preventable NDD by prenatal multivitamin supplementation and childhood probiotic intake in the crude model. Counterfactual scenario: without 
probiotic intake; Realistic scenario: with probiotic intake in the realistic proportion of the survey population; Ideal scenario: with probiotic intake in all 
populations. NDD, neurobehavioral developmental disorder.

TABLE 4 Number of preventable NDD by prenatal multivitamin supplementation and childhood probiotic intake in counterfactual, realistic, and ideal 
scenario in the crude model.

Domains Counterfactual 
scenario

Realistic scenario Ideal scenario

Preventable 
NDD (V1)

Preventable 
NDD (V2)

Additional 
preventable 

NDD 
(V2–V1)

Additional 
preventable 
percentage, 

%

Preventable 
NDD (V3)

Potential 
preventable 

NDD 
(V3–V1)

Potential 
preventable 
percentage, 

%

Communication 25 26 2 7 27 3 11

Gross motor 109 156 47 43 173 64 59

Fine motor 17 32 15 92 36 20 117

Problem solving 13 14 0 3 13 0 −2

Personal-Social 24 44 19 80 49 24 100

Total 123 196 73 59 219 96 78
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variable to explore its effect on the association between prenatal 
micronutrient supplementation and neurobehavioral development in 
children, addressing the limitations of previous studies focused on 
single time windows. Second, the study employs advanced statistical 
techniques, including four-way decomposition and counterfactual 
mediation analysis, to systematically evaluate the potential effect of 
probiotic intake from different perspectives. Finally, the study is 
based on a large-scale children’s survey, enhancing the reliability and 
generalizability of the findings.

Nevertheless, the study has several limitations. First, as all 
participants were recruited from Shenzhen, China, our findings may 
not be generalizable to other populations. Second, data collection 
relied on retrospective questionnaires, which may introduce recall 
bias. Additionally, ASQ-3 assessments, based on maternal reports, 
may be  subject to reporting bias compared to clinical diagnoses. 
Moreover, prenatal micronutrient supplementation and childhood 
probiotic intake were recorded as binary variables, lacking detailed 
dosage information and probiotic strain data. Although we adjusted 
for several factors that may reflect maternal health consciousness on 
dietary supplement use, the potential for self-selection bias remains. 
Lastly, although we controlled for confounders, the cross-sectional 
study design limits causal inference.

Therefore, future studies should focus on determining specific 
supplementation dosages to establish a dose–response relationship, 
providing clearer supplementation guidelines. Higher-evidence 
studies, such as RCTs, are needed to confirm the causal relationship 
between prenatal micronutrient supplementation, childhood probiotic 
intake, and NDD. In addition, molecular-level research is essential to 
elucidate the biological mechanisms underlying these effects and to 
explore the complex pathways influencing different 
neurobehavioral domains.

5 Conclusion

In summary, our study found that prenatal multivitamin 
supplementation has a protective effect against NDD in preschool 
children. Early childhood probiotic intake is associated with an 
enhancement of this protective effect, primarily driven by interaction 
with prenatal multivitamin supplementation. Early childhood 
probiotic intake could prevent up to 60% more NDD cases, with a 
78% potential increase if childhood probiotic intake were consumed 
by all populations, particularly in the gross motor, fine motor and 
personal-social domains. These findings highlight the importance of 
early-life dietary supplements in NDD prevention, particularly the 
enhanced protective effect of childhood probiotic intake in 
combination with prenatal multivitamin supplementation. Despite 
the promising results, future prospective studies with detailed data 
are needed to confirm this enhanced effect of childhood probiotic 
intake and their underlying mechanisms.
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