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Background: Emerging evidence suggests metabolic syndrome (MetS) 
exacerbates sarcopenia progression and compromises nutritional interventions, 
yet its dual role as both etiological driver and therapeutic effect modifier 
remains uncharacterized. This study investigated MetS-related sarcopenia 
pathophysiology and assessed its impact on nutritional therapy efficacy in 
advanced gastric cancer.
Patients and methods: We conducted a dual-phase investigation combining 
Mendelian randomization (MR) analysis of European-ancestry GWAS data 
(n = 654,783) with retrospective evaluation of 65 sarcopenic gastric cancer 
patients receiving chemotherapy and enteral nutrition. MR evaluated causal 
relationships between individual components of MetS and sarcopenia 
phenotypes, while clinical analyses compared outcomes by MetS status (IDF/
AHA criteria).
Results: MR analysis of MetS components identified paradoxical causal effects: 
waist circumference increased appendicular lean mass (OR = 1.480, p < 0.001) 
but impaired walking speed (OR = 0.864, p < 0.001). In the clinical cohort, 
MetS patients exhibited accelerated nutritional decline with 2.6-fold greater 
weight loss (−1.70 vs. − 0.66 kg, p = 0.01), attenuated muscle preservation 
(48.1% vs. 73.7% SMI improvement, p = 0.066), and reduced median PFS (75.0 
vs. 84.5 days, p = 0.061). Protein trajectories revealed MetS-specific catabolic 
patterns, particularly transferrin depletion (Δ = -0.26 vs. − 0.05 g/L, p = 0.0004).
Conclusion: The integration of genetic and clinical findings shows that 
MetS components causally contribute to sarcopenia pathogenesis, and that 
the composite MetS phenotype confers nutritional therapy resistance. This 
establishes MetS’s dual role as a driver of disease and a modifier of treatment 
efficacy.
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1 Introduction

Sarcopenia, broadly characterized by the progressive loss of 
skeletal muscle mass and functional deterioration, is a prevalent 
comorbidity in cancer patients, affecting 30–60% of individuals across 
tumor types (1). It is strongly associated with increased chemotherapy 
toxicity, reduced treatment tolerance, and poorer survival outcomes 
(2, 3). While malnutrition has long been recognized as a key driver of 
sarcopenia, emerging evidence highlights metabolic dysregulation—
particularly MetS, a cluster of conditions including central obesity, 
hypertension, and dyslipidemia—as an independent risk factor (4–6). 
According to the Asian-specific criteria established by the 
International Diabetes Federation (IDF) and the Asian Pacific Society 
of Cardiology (APSC), metabolic syndrome is defined by central 
obesity with ethnicity-adjusted waist circumference thresholds 
(≥90 cm for Asian men or ≥80 cm for Asian women), plus at least two 
of the following: elevated triglycerides, reduced HDL cholesterol, 
hypertension, or impaired fasting glucose (7, 8). These metabolic 
abnormalities share pathophysiological pathways with sarcopenia, 
such as chronic inflammation, mitochondrial dysfunction, and insulin 
resistance, creating a vicious cycle that exacerbates muscle 
catabolism (9).

Despite advances in understanding these interactions, critical gaps 
persist. While observational studies consistently associate MetS 
components with muscle loss (e.g., waist circumference, hypertension) 
and muscle loss (10, 11), the causal nature of this relationship remains 
uncertain due to inherent limitations of traditional epidemiological 
approaches (12). Furthermore, although enteral nutrition (EN) is 
widely recommended for cancer-related sarcopenia (13), its efficacy 
in patients with concurrent metabolic dysfunction requires 
clarification  - particularly in gastric cancer where sarcopenia 
prevalence reaches 50% and significantly impacts the 350,000 annual 
new cases in China. While EN benefits early postoperative patients 
(14), its role in advanced disease, especially regarding potential 
mitigation of MetS-exacerbated muscle catabolism through 
inflammatory and insulin resistance pathways, remains 
poorly characterized.

To address these gaps, we employed a dual-method approach 
integrating causal inference with clinical validation. Using MR with 
genetic variants as instrumental variables, we established causal effects 
of MetS components on muscle function. Complementing these 
findings, our retrospective cohort study of advanced gastric cancer 
patients with sarcopenia evaluated EN efficacy stratified by MetS 
status. This integrated investigation not only clarifies the causal role of 
metabolic dysregulation in sarcopenia pathogenesis but also provides 
clinically actionable insights into how metabolic status modifies 
nutritional intervention outcomes, informing more personalized 
management strategies for cancer-associated sarcopenia.

2 Materials and methods

2.1 Study design and population

This hybrid investigation employed MR analysis complemented 
by retrospective clinical validation to elucidate the MetS-sarcopenia 
relationship. The MR framework utilized genetic variants as 
instrumental variables (IVs), adhering to three core assumptions: 
IV-exposure association (correlation), IV-confounder independence 
(independence), and exclusion restriction (no direct IV-outcome 
effects) (15). Genetic instruments derived from European-ancestry 
GWAS datasets (CTGLAB/IEU OpenGWAS for MetS components; 
UK Biobank for sarcopenia phenotypes) ensured no sample overlap, 
with analytical framework detailed in Figure 1.

The clinical cohort comprised 65 stage IV gastric adenocarcinoma 
patients (AJCC 8th) with confirmed sarcopenia treated at Zhejiang 
Cancer Hospital (2019–2023), all receiving first-line therapy 
(chemotherapy/immunotherapy/targeted agents) combined with a 
standardized enteral nutrition protocol using Renon®. MetS diagnosis 
required ≥3 criteria: waist circumference ≥90/80 cm (M/F), fasting 
glucose ≥100 mg/dL/antidiabetic treatment, triglycerides ≥150 mg/
dL/lipid therapy, HDL-C < 40/50 mg/dL (M/F), or 
BP ≥ 130/85 mmHg. The protocol (IRB-2024-710) received ethical 
approval with retrospective consent waiver.

FIGURE 1

Design of MR analysis of the causal link between metabolic syndrome and sarcopenia.
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2.2 Mendelian randomization analysis

2.2.1 Data sources description
Genome-wide association study (GWAS) data were obtained from 

publicly available repositories. Exposure data encompassing genetic 
variants associated with MetS and its components were sourced from 
the CTGLAB and IEU OpenGWAS databases, comprising individuals 
of European ancestry. Outcome data for sarcopenia-related 
phenotypes, including hand grip strength (bilateral), appendicular 
lean mass, and walking speed, were derived from the UK Biobank 
resource (European participants). This study design ensured no 
sample overlap between exposure and outcome datasets, thereby 
minimizing potential bias. Comprehensive details regarding dataset 
characteristics are provided in Supplementary Table 1.

2.2.2 Instrumental variable selection
IVs were selected through a rigorous multi-step process. Single 

nucleotide polymorphisms (SNPs) demonstrating significant genome-
wide associations (p < 5 × 10−8) with exposure traits were initially 
identified (16). Linkage disequilibrium was addressed using a 
stringent threshold (r2 < 0.001) within a 10,000 kb clumping window 
(17). Instrument strength was validated by calculating F-statistics, 
with variants exhibiting F < 10 excluded to mitigate weak instrument 
bias (18). Potential confounding was minimized by screening the 
GWAS Catalog database (p < 1 × 10−5) to remove SNPs associated 
with outcome-related traits. The Steiger directionality test was applied 
to confirm correct causal orientation (19), and palindromic SNPs were 
harmonized between exposure and outcome datasets. Final IV 
characteristics are detailed in Supplementary Table 2.

2.2.3 Statistical analysis and data visualization
Causal inference was performed using five complementary MR 

methods: inverse-variance weighted (IVW, primary analysis), 
MR-Egger, weighted median, simple mode, and weighted mode 
approaches (20). Model selection (fixed- vs. random-effects) was 
guided by Cochran’s Q test for heterogeneity (p < 0.05 indicating 
random-effects). Sensitivity analyses included: (1) MR-PRESSO for 
outlier detection and correction (Pdistortion < 0.05 considered 
significant); (2) MR-Egger intercept testing for horizontal pleiotropy; 
and (3) leave-one-out analysis to evaluate individual SNP influence 
(21). Effect estimates were expressed as odds ratios (OR) with 95% 
confidence intervals (CI). All analyses were conducted using R 
(version 4.2.1) with TwoSampleMR and MR-PRESSO packages.

2.3 Clinical cohort methods

2.3.1 Study population
Eligible participants were required to meet four core criteria: 

(1) histologically confirmed stage IV gastric adenocarcinoma 
(AJCC 8th edition) with available pathology reports from 
diagnostic biopsies; (2) objectively diagnosed sarcopenia defined 
by L3-CT skeletal muscle index thresholds (≤40.8 cm2/m2 for 
males, ≤34.9 cm2/m2 for females) measured on baseline CT scans 
(22); (3) availability of ≥2 contrast-enhanced abdominal CT 
examinations performed at standardized 3-month intervals 
(±2 weeks) to ensure longitudinal muscle mass assessment; and (4) 
complete baseline metabolic syndrome profiling including centrally 

measured waist circumference, fasting glucose, lipid panel 
(triglycerides, HDL-C), and triplicate blood pressure recordings. 
All patients had received prior first-line systemic therapy 
(chemotherapy, immunotherapy, or targeted agents) by NCCN 
guidelines. Exclusion criteria addressed confounding through strict 
protocols: patients under 18 years, enteral nutrition interruption >7 
consecutive days (medication administration records verified), 
recent use (≤6 months) of glucose-modifying agents (GLP-1 
agonists, insulin sensitizers), decompensated hepatic/renal 
dysfunction (Child-Pugh C, eGFR <30 mL/min/1.73m2), active 
infections requiring antimicrobials, untreated endocrine disorders 
(TSH < 0.1 or >10 mIU/L), concurrent malignancies, or incomplete 
data (missing CT scans, metabolic parameters, or progression-free 
survival records).

2.3.2 Nutritional intervention protocol
Enteral nutrition support was standardized for all participants 

using a commercially available, high-protein, peptide-based formula 
(Renon, Hangzhou Renon Pharmaceutical Co., Ltd., China). 
Administration was via nasoenteral tube, gastrostomy, or oral intake, 
with a target daily energy intake of 25–30 kcal/kg and protein intake 
of 1.5–2.0 g/kg (based on ideal body weight). The intervention began 
within 48 h of the first cycle of first-line systemic therapy and was 
continued throughout the treatment period or until nutritional status 
improved (defined as PG-SGA score ≤ 3). Adherence was monitored 
using electronic medical records and nursing charts. For most 
patients, the intervention lasted 3–4 months, aligning with imaging 
intervals and allowing sufficient time to evaluate physiological effects.

2.3.3 Data collection and outcomes
Data acquisition followed a standardized protocol executed by 

two independent researchers blinded to clinical outcomes, involving 
systematic extraction from electronic medical records and PACS 
imaging archives. Baseline demographic parameters (age, sex, body 
mass index, waist circumference) and tumor characteristics 
(histological subtype, differentiation grade, TNM stage, metastatic 
patterns) were meticulously recorded. Metabolic syndrome profiling 
incorporated centrally measured waist circumference (midpoint 
between iliac crest and rib cage), fasting biochemical assays (glucose, 
triglycerides, HDL-C via enzymatic colorimetric methods), and 
triplicate blood pressure readings (seated position, Omron HEM-7320 
sphygmomanometer) averaged for analysis. Serial nutritional 
assessments included serum total protein (biuret method), albumin 
(bromocresol green), prealbumin (immunoturbidimetry), and 
transferrin (nephelometry) measured on Roche Cobas® platforms.

Muscle mass quantification utilized SliceOmatic® v5.0 
(TomoVision) under rigorous quality control: axial L3-level CT 
images were analyzed with standardized window settings (width 400 
HU, level 40 HU), muscle attenuation thresholds (−29 to +150 HU), 
and semi-automated segmentation validated by dual radiologists 
(interclass correlation coefficient >0.90) (23). Primary endpoints 
encompassed body weight trajectories (kg), skeletal muscle index delta 
(ΔSMI = post-intervention - baseline), and longitudinal nutritional 
parameter trends. Secondary outcomes evaluated progression-free 
survival (PFS), defined as the time from treatment initiation to 
radiologically confirmed progression (RECIST 1.1) or death. PFS 
assessments were adjudicated by treating physicians based on 
integrated radiological and clinical evaluations.
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2.3.4 Statistical analysis
Continuous variables were analyzed using parametric or 

nonparametric methods based on distributional assumptions. 
Longitudinal outcomes were modeled via linear mixed-effects 
regressions with time, metabolic syndrome (MetS) status, and their 
interaction as fixed effects. These models were adjusted for 
pre-specified potential confounders identified a priori based on 
clinical relevance, including age, sex, and baseline body mass index 
(BMI). Participant-specific intercepts were included as random 
effects, with Kenward-Roger degrees of freedom estimation. 
Categorical variables were assessed using χ2/Fisher’s exact tests 
(effect sizes: Cramér’s V). Survival endpoints (e.g., progression-
free survival) were analyzed by Kaplan–Meier/log-rank tests and 
Cox proportional hazards models. The Benjamini-Hochberg 
procedure controlled the false discovery rate (FDR ≤ 5%). 
Statistical analyses were conducted in SPSS 26.0 and GraphPad 
Prism 9.0.

3 Results

3.1 Mendelian randomization analysis of 
metabolic syndrome components

The MR analysis results for exposures and their effects on left-
hand grip strength, right-hand grip strength, and appendicular lean 
mass are shown. A p-value < 0.05 indicates a significant causal 
relationship. IVW analysis showed that a significant causal relationship 
was observed for waist circumference, which was positively associated 
with left-hand grip strength (OR = 1.076 (1.018 to 1.136) p < 0.05). 
Similarly, waist circumference showed a significant positive correlation 
with right-hand grip strength (OR = 1.068 (1.014 to 1.126), p < 0.05). 
In the analysis of appendicular lean mass, waist circumference showed 
a significant positive correlation (OR = 1.480 (1.283 to 1.707), 
p < 0.05). However, despite demonstrating a positive correlation, 
metabolic syndrome exhibited horizontal pleiotropy (pleio_P < 0.05) 
and was consequently excluded from subsequent analysis. The 
outcomes of these analyses are shown in Table 1.

The MR results for the exposure factors and usual walking speed 
are presented in Table 2. A p-value < 0.05 indicates a significant causal 
relationship. Hypertension showed a significant negative correlation 
with usual walking speed (OR = 0.985 (0.976 to 0.993), p < 0.05). 
Waist circumference was also exhibited a significant negative 
correlation with walking speed (OR = 0.864 (0.832 to 0.898), p < 0.05). 
Furthermore, metabolic syndrome exhibited a significant negative 
correlation with walking speed (OR = 0.809 (0.790 to 0.829), p < 0.05).

3.2 Impact on physical function

In the analysis of sarcopenia-related outcomes, MR analysis 
revealed that individual components of MetS were significantly 
negatively associated with walking speed. These findings indicate that 
genetic predisposition to higher waist circumference and hypertension 
may lead to a decrease in walking speed, thereby identifying them as 
potential causal risk factors for impaired physical function.

For the outcomes of appendicular lean mass and grip strength, a 
divergent causal pattern was observed. Waist circumference showed a 
significant positive causal relationship with both left-hand grip 
strength, right-hand grip strength, and appendicular lean mass. The 
coexistence of these opposing causal effects—whereby genetic 
predisposition to higher waist circumference increases muscle mass 
and strength but decreases walking speed—highlights a critical 
dissociation between muscle quantity and physical function.

This apparent paradox underscores the complexity of the 
relationship between adiposity and musculoskeletal health. The 
significant associations for walking speed are visually depicted in 
scatter plots derived from five MR methods (Figure 2), while leave-
one-out sensitivity analyses confirmed the robustness of all causal 
estimates (Figure 3).

3.3 Clinical cohort characteristics

The study included 65 patients with metastatic gastric cancer 
(TNM stage IV, M1) and sarcopenia, stratified by MetS status (MetS: 

TABLE 1  Mendelian randomization results for the exposure and outcome (left-hand grip strength, right-hand grip strength, and appendicular lean 
mass).

Exposure: The risk factor or exposure of interest; Outcome: The outcome or result being studied; Method: The analytical approach or method used; nsnp: The number of instrumental variables 
used in the analysis; pval: p-value, indicating statistical significance; OR: Odds ratio, with the 95% confidence interval for the odds ratio in parentheses; pleio_P: p-value for the pleiotropy test, 
assessing horizontal pleiotropic effects.
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n = 27; non-MetS: n = 38) according to IDF/AHA criteria (Table 3). 
Baseline characteristics showed no significant differences in age 
(60.1 ± 10.3 vs. 62.2 ± 7.8 years, p = 0.257), sex distribution (50.0% vs. 
59.3% female, p = 0.627), or tumor differentiation (34.2% vs. 51.9% 
G1, p = 0.362). MetS patients had significantly higher waist 
circumference (88.2 ± 5.2 vs. 85.8 ± 4.8 cm, p = 0.048), fasting glucose 
(111.8 ± 18.5 vs. 101.2 ± 20.8 mg/dL, p = 0.006), systolic blood 
pressure (135.6 ± 10.0 vs. 129.6 ± 8.4 mmHg, p = 0.006), and lower 
HDL-C (47.4 ± 9.3 vs. 52.9 ± 10.0 mg/dL, p = 0.036), with borderline 
elevated triglycerides (154.3 ± 20.1 vs. 141.6 ± 27.8 mg/dL, p = 0.059). 
All patients had metastatic disease (T3:64.6%, T4:35.4%; N2:6.2%, 
N3:21.5%), with comparable T-stage (65.8% vs. 63.0% T3, p > 0.999) 
and N-stage (26.3% vs. 14.8% N3, p = 0.528) between groups. 
Histopathology showed predominantly adenocarcinoma (90.8%), 
with signet ring cell carcinoma equally distributed (9.2%, p > 0.999).

3.4 Nutritional intervention outcomes

The baseline clinical characteristics and distribution of post-
treatment parameters across study groups are detailed in 
Supplementary Table  3. Therapeutic efficacy analysis revealed 
significant MetS-dependent divergence in body composition and 
nutritional biomarkers (Figure 4; Table 4). Linear mixed models 
demonstrated universal weight reduction across all patients (time 
effect: F = 28.4, p < 0.001), with MetS patients exhibiting 2.6-fold 
greater weight loss (−1.70 kg vs. − 0.66 kg; MetS×time interaction 
F = 7.03, p = 0.01). Skeletal muscle responses showed differential 
preservation patterns: non-MetS patients gained 0.91 cm2/m2 in 
SMI (p = 0.004) versus MetS stagnation (Δ = +0.02 cm2/m2, 
p = 0.967), with borderline time-by-MetS interaction (F = 3.63, 
p = 0.061). Categorical analysis confirmed disproportionate 

deterioration in MetS group (85% weight loss vs. 42% non-MetS; 
χ2 = 8.39, p = 0.015), paralleled by divergent SMI trajectories 
(73.8% non-MetS improvement vs. 48.1% MetS; χ2 = 3.39, 
p = 0.066).

Protein trajectories exhibited distinct metabolic modulation 
(Figures 4C–F): While non-MetS patients demonstrated marginal 
increases in total protein (Δ = +1.20 g/L, p = 0.071) and prealbumin 
(Δ = +5.29 mg/L, p = 0.082), MetS counterparts showed 
paradoxical declines (Δ = -0.84 g/L, p = 0.282; Δ = -2.74 mg/L, 
p = 0.443), with significant interaction effects for total protein 
(F = 4.05, p = 0.049) and borderline prealbumin interaction 
(F = 2.98, p = 0.089). Albumin trajectories mirrored this pattern 
(non-MetS Δ = +1.12 g/dL, p = 0.087 vs. MetS Δ = -0.82 g/dL, 
p = 0.287; interaction F = 3.78, p = 0.056). Strikingly, transferrin 
displayed MetS-specific depletion (Δ = -0.26 g/L, p = 0.0004) 
contrasting with non-MetS stability (Δ = -0.05 g/L, p = 0.437), 
demonstrating the strongest metabolic interaction (F = 5.48, 
p = 0.022).

3.5 Progression-free survival (PFS)

All enrolled patients experienced disease progression or death 
(PFS event rate 100%). The non-MetS group exhibited a median PFS 
of 84.5 days (95% CI: 76–92), compared to 75.0 days (95% CI: 68–82) 
in MetS patients, representing a clinically relevant 9.5-day survival 
disadvantage for MetS patients. Kaplan–Meier analysis (Figure  5) 
demonstrated progressive separation of survival curves, with log-rank 
testing non-significant trend (χ2 = 3.52, p = 0.061). This 12.7% 
reduction in median PFS suggests accelerated disease progression in 
MetS patients despite standardized chemotherapy and 
nutritional intervention.

TABLE 2  Mendelian randomization results for the exposure and outcome (usual walking pace).

FIGURE 2

Scatter plot of the causality of MetS on sarcopenia. (A) Scatter plot of the causality of metabolic syndrome on usual walking pace. (B) Scatter plot of 
the causality of waist circumference on usual walking pace. (C) Scatter plot of the causality of hypertension on usual walking pace.
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4 Discussion

This integrated investigation employing MR and clinical cohort 
analyses provides novel insights into the dual role of MetS as both an 
etiological driver and therapeutic effect modifier in sarcopenia 
pathogenesis. Our MR analysis, focused on individual components of 
MetS, revealed a defining paradox: genetic predisposition to higher 

waist circumference exerted dual causal effects, increasing appendicular 
lean mass and grip strength yet simultaneously decreasing walking 
speed. A similar detrimental causal effect was observed for 
hypertension on walking speed. Our clinical findings further 
demonstrated that MetS is associated with preserved muscle mass but 
attenuated therapeutic benefits. These observations challenge 
conventional sarcopenia paradigms and underscore the complex 
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FIGURE 3

Leave-one-out of the effect of MetS on sarcopenia. (A) Leave-one-out of the effect of metabolic syndrome on usual walking pace. (B) Leave-one-out 
of the effect of waist circumference on usual walking pace. (C) Leave-one-out of the effect of hypertension on usual walking pace.
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interplay between metabolic dysregulation and muscle biology. A key 
consideration is the difference in populations between the genetic 
(European-ancestry GWAS) and clinical (Chinese cohort) analyses. 
While this precludes direct generalization, the biological pathways 
implicated are fundamental across populations. Thus, the clinical 
findings demonstrate that the pathophysiological process, for which 
MR provides causal evidence at the component level, is operational and 
impactful as a syndromic entity in a distinct, high-risk patient setting.

The sarcopenic obesity paradox provides the key conceptual 
framework for reconciling these seemingly discordant results. The 
detrimental impact of MetS components on walking speed aligns with 
established mechanisms linking insulin resistance and chronic 
inflammation to muscle quality decline. Specifically, the robust 
association between hypertension and functional impairment 
(OR = 0.985) suggests vascular mechanisms may underpin sarcopenia 
pathogenesis, where endothelial dysfunction and capillary rarefaction 
compromise muscle perfusion—a hypothesis supported by recent 
demonstrations of impaired nitric oxide bioavailability in MetS-related 
myopathy (24). The paradoxical increase in appendicular lean mass 
(OR = 1.480), rather than being an outlier, is a hallmark of this paradox, 
where greater absolute muscle mass may not confer functional benefit 
due to often concomitant impairments in muscle quality. This finding 
likely reflects adipose-muscle crosstalk, where visceral fat-derived 

follistatin-like 1 (FSTL1) antagonizes myostatin activity to promote 
muscle hypertrophy, albeit at the cost of inducing insulin resistance 
(25). This metabolic trade-off creates a “pseudo-sarcopenic” phenotype 
where quantitative muscle mass metrics mask functional deficits, 
necessitating revised diagnostic criteria incorporating 
dynamometric assessments.

Clinical analyses incorporating fixed effects of time, metabolic 
syndrome status, and their interactions revealed significant 
therapeutic response heterogeneity across key parameters. Weight, 
total protein (TP), and transferrin (TRF) demonstrated robust MetS-
dependent differential responses (p interaction<0.05), while skeletal 
muscle index (SMI), prealbumin (PA), and albumin (ALB) showed 
non-significant trends for interactions (0.05 < p interaction<0.10), 
collectively indicating MetS attenuates therapeutic efficacy across 
nutritional and musculoskeletal metrics. The diminished therapeutic 
efficacy in MetS patients was most pronounced in weight dynamics 
(−1.70 kg vs. −0.66 kg loss) and iron metabolism, evidenced by 
MetS-specific transferrin depletion (Δ = −0.26 vs. −0.05 g/L), likely 
mediated through chronic inflammation-driven hepcidin 
overexpression that restricts iron mobilization (26). Concurrent 
declines in hepatic synthetic markers—albumin (Δ = −0.82 g/dL) 
and prealbumin (Δ = −2.74 mg/L)—mirror patterns observed in 
NAFLD progression (27), suggesting MetS exacerbates subclinical 

TABLE 3  Baseline characteristics by MetS status.

Variables Total (N = 65) Non-MetS group 
(N = 38)

MetS group (N = 27) p-value

Age 61.0 ± 9.3 60.1 ± 10.3 62.2 ± 7.8 0.257

Sex 0.627

 � Female 35 (53.8%) 19 (50.0%) 16 (59.3%)

 � Male 30 (46.2%) 19 (50.0%) 11 (40.7%)

Pathology >0.999

 � AD 59 (90.8%) 34 (89.5%) 25 (92.6%)

 � SRCC 6 (9.2%) 4 (10.5%) 2 (7.4%)

Differ 0.362

 � G1 27 (41.5%) 13 (34.2%) 14 (51.9%)

 � G2 15 (23.1%) 10 (26.3%) 5 (18.5%)

 � G3 23 (35.4%) 15 (39.5%) 8 (29.6%)

T >0.999

 � III 42 (64.6%) 25 (65.8%) 17 (63.0%)

 � IV 23 (35.4%) 13 (34.2%) 10 (37.0%)

N 0.528

 � N2 4 (6.2%) 2 (5.3%) 2 (7.4%)

 � N3 14 (21.5%) 10 (26.3%) 4 (14.8%)

 � Nx 47 (72.3%) 26 (68.4%) 21 (77.8%)

MetS status

 � Waist 86.8 ± 5.1 85.8 ± 4.8 88.2 ± 5.2 0.048*

 � FBG 105.6 ± 20.4 101.2 ± 20.8 111.8 ± 18.5 0.006**

 � TG 146.9 ± 25.5 141.6 ± 27.8 154.3 ± 20.1 0.059

 � HDL-C 50.6 ± 10.0 52.9 ± 10.0 47.4 ± 9.3 0.036*

 � SBP 132.1 ± 9.5 129.6 ± 8.4 135.6 ± 10.0 0.006**

Mean ± SD; n (%); Wilcoxon rank sum test; Pearson’s Chi-squared test. *p < 0.05, **p < 0.01.
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liver dysfunction. These proteomic perturbations coalesce into a 
malnutrition-inflammation axis where sustained catabolic signaling, 
potentially via IL-6-mediated JAK/STAT activation (28), overrides 
nutritional anabolism, establishing MetS as both a biological filter 
and amplifier of therapeutic resistance.

Although our clinical cohort could not directly assess physical 
function, the observed MetS-associated resistance to nutritional 
therapy—manifested as attenuated muscle mass preservation and 

profound catabolism—likely represents the physiological counterpart 
to the impairment in walking speed identified by the MR analysis. 
Both findings converge to indicate that MetS predisposes to a more 
severe and treatment-refractory sarcopenia phenotype. This is further 
reflected in the 9.5-day PFS reduction in MetS patients (75.0 vs. 
84.5 days), which extends the clinical implications beyond sarcopenia 
management to cancer therapeutics. We postulate that MetS-induced 
gut barrier dysfunction (29) may alter chemotherapeutic agent 

FIGURE 4

Time-dependent changes and group differences in nutrition-related parameters between MetS and non-MetS groups. (A) Weight: interaction effect of 
time and group. (B) Skeletal muscle index (SMI): interaction effect of time and group. (C) Total Protein (TP): interaction effect of time and group. 
(D) Albumin (ALB): interaction effect of time and group. (E) Prealbumin (PA): interaction effect of time and group. (F) Transferrin (TRF): Interaction Effect 
of Time and Group. Longitudinal changes in nutritionrelated parameters are compared between MetS (yellow) and non-MetS (blue) groups. Statistical 
significance was assessed via repeated-measures ANOVA, reporting F-values (F-statistic for interaction effects) and p-values for Time, Group, and Time 
× Group interactions. *p < 0.05, **p < 0.01, ***p < 0.001, error bars represent standard deviation.
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bioavailability, while elevated free fatty acids compete with albumin-
bound chemotherapeutic agents (e.g., taxanes, irinotecan) for protein 
binding (30)—mechanisms requiring validation through 
pharmacokinetic studies. The differential toxicity profiles observed 
suggest metabolic status should inform risk stratification in 
treatment protocols.

The integrative pathophysiological model presented in Figure 6 
provides a framework for understanding how MetS creates a 
biological context that exacerbates sarcopenia and confers resistance 
to nutritional therapy, ultimately impacting cancer outcomes.

Several limitations warrant consideration. First, the European 
ancestry of MR data limits the generalizability of the genetic findings 
to diverse populations. Second, the clinical cohort’s modest sample size, 
particularly in the MetS subgroup (n = 27), reduces statistical power 
and increases the risk of Type II errors. As a result, the observed 
non-significant trends (e.g., in SMI and PFS]) should be interpreted as 

hypothesis-generating rather than conclusive findings. Third, the 
narrow patient population (advanced metastatic gastric cancer with 
sarcopenia) limits external validity to other cancer types or stages. 
Fourth, the retrospective design necessitated reliance on CT-based 
sarcopenia criteria, which precluded assessment of muscle function 
and direct validation of the MR-based functional outcomes.

Future investigation should prioritize multi-ethnic MR analyses to 
disentangle genetic vs. environmental MetS effects and incorporate 
objective functional assessments like gait speed into sarcopenia 
diagnostics. Furthermore, future studies should incorporate 
assessments of metabolic dysfunction-associated steatotic liver disease 
(MASLD), utilizing promising biomarkers such as plasma 
homocysteine and the atherogenic index of plasma to elucidate its 
shared mechanisms with sarcopenia (31, 32). Mechanistic studies 
exploring adipose-derived exosomes’ role in muscle metabolism could 
clarify the obesity paradox. Clinically, trials combining GLP-1 agonists 

TABLE 4  Weight and skeletal muscle index (SMI) trajectories by metabolic syndrome status.

Variables Non-MetS group (N = 38) MetS group (N = 27) p-value

Weight change categories 0.015**

 � Increase (>2%) 4 (10.5%) 1 (3.7%)

 � Stable (±2%) 26 (68.4%) 11 (40.7%)

 � Decrease (>2%) 8 (21.1%) 15 (55.6%)

SMI trajectory groups 0.066

 � Up 28 (73.7%) 13 (48.1%)

 � Down 10 (26.3%) 14 (51.9%)

n (%); Pearson’s Chi-squared test. *p < 0.05, **p < 0.01.

FIGURE 5

PFS in gastric cancer (GC) patients stratified by metabolic syndrome (MetS) status.
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with high-protein nutritional support may counter MetS-related 
anabolic resistance, leveraging their dual metabolic and anti-
inflammatory properties.

In conclusion, this study repositions MetS as both a catalyst 
and amplifier of sarcopenia pathophysiology. The findings mandate 
a paradigm shift in sarcopenia management—from generic 
nutritional support to precision strategies addressing individual 
metabolic profiles. While enteral nutrition remains foundational, 
its efficacy appears contingent on metabolic health status, 
underscoring the imperative for combinatorial approaches 
targeting insulin signaling, inflammation, and mitochondrial 
function in high-risk MetS populations.
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