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Background: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a 
prevalent and progressive liver disorder closely linked to obesity and metabolic 
dysregulation. Traditional anthropometric measures such as body mass index 
(BMI) are limited in their ability to capture fat distribution and associated risk. 
This study aimed to develop and validate machine learning (ML) models for 
predicting MAFLD using detailed body composition metrics and to explore 
the relative contributions of adipose tissue features through explainable ML 
techniques.

Methods: Data from the 2017–2018 National Health and Nutrition Examination 
Survey (NHANES) were used to construct predictive models based on 
anthropometric, demographic, lifestyle, and clinical variables. Six ML algorithms 
were implemented: decision tree (DT), support vector machine (SVM), 
generalized linear model (GLM), gradient boosting machine (GBM), random 
forest (RF), and XGBoost. The Boruta algorithm was used for feature selection, 
and model performance was evaluated using cross-validation and a validation 
set. SHapley Additive exPlanations (SHAP) were employed to interpret feature 
contributions.

Results: Among the six models, the GBM algorithm exhibited the best 
performance, achieving area under the receiver operating characteristic curve 
(AUC) values of 0.875 (training) and 0.879 (validation), with minimal fluctuations 
in sensitivity and specificity. SHAP analysis identified visceral adipose tissue 
(VAT), BMI, and subcutaneous adipose tissue (SAT) as the most influential 
predictors. VAT had the highest SHAP value, underscoring its central role in 
MAFLD pathogenesis.

Conclusion: This study demonstrates the effectiveness of integrating body 
composition features with machine learning techniques for MAFLD risk 
prediction. The GBM model offers robust predictive accuracy and interpretability, 
with potential applications in clinical decision-making and public health 
screening strategies. SHAP analysis provides meaningful insights into the relative 
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importance of adiposity measures, reinforcing the value of fat distribution 
metrics beyond conventional obesity indices.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is a chronic and 
progressive liver disorder that develops in genetically susceptible 
individuals in the context of nutritional excess and insulin resistance 
(IR). The disease spectrum ranges from simple steatosis (nonalcoholic 
fatty liver, NAFL) to nonalcoholic steatohepatitis (NASH), and may 
progress to advanced stages such as fibrosis and cirrhosis (1). With the 
discovery of a strong relationship between NAFLD and metabolic risk 
factors, it has been renamed in recent years as metabolic dysfunction-
associated fatty liver disease (MAFLD) and metabolism-associated 
steatosis liver disease (MASLD). MASLD is defined as hepatic steatosis 
accompanied by cardiometabolic abnormalities, in the absence of 
other causes of steatosis or excessive alcohol consumption (≥30 g/day 
for men and ≥20 g/day for women) (2). By contrast, the 2020 
diagnostic criteria for MAFLD (3–6), focus more on metabolic 
abnormalities than alcohol intake (7). Recent meta-analyses have 
estimated the global prevalence of MAFLD to be as high as 38.77%, 
which significantly exceeds the prevalence reported under the 
previous NAFLD criteria (8–10).

MAFLD is strongly associated with an increased risk of 
atherosclerotic cardiovascular disease (CVD), chronic kidney disease 
(CKD), hepatic decompensation, and hepatocellular carcinoma 
(HCC) (11, 12). Emerging evidence suggests that the “liver–spleen 
axis” plays a critical role in the pathogenesis and progression of 
MAFLD. Splenomegaly has been positively correlated with central 
obesity and the severity of hepatic steatosis (13, 14). Animal studies 
have shown that high-fat diets induce splenic sinusoidal dilation and 
lipid accumulation in mice, whereas splenectomy significantly 
increases hepatic immune cell infiltration and the expression of 
proinflammatory cytokines such as IL-6 and TNF-α (15, 16). These 
findings suggest that the spleen may play a protective role in metabolic 
regulation by maintaining immune homeostasis and attenuating 
excessive inflammatory responses. Moreover, MAFLD is strongly 
associated with obesity-related chronic inflammation (17). 
Dysfunctional adipose tissue promotes the release of free fatty acids 
(FFAs), which exacerbate hepatic steatosis by inducing inflammation 
and promoting the development of IR (18).

In clinical practice, BMI is widely used to assess general obesity 
due to its simplicity (19, 20). However, BMI cannot differentiate 
between fat mass and lean mass, nor does it account for the spatial 
distribution of adipose tissue (21, 22). Studies have demonstrated that 
obesity-related metabolic disturbances are closely associated with fat 
distribution patterns, particularly the accumulation of visceral adipose 
tissue (VAT) (23–26). Total abdominal fat area (TAFA) has been 
identified as an independent risk factor, exhibiting stronger 
associations with CVD, metabolic disorders, and all-cause mortality 
than BMI (26–29). TAFA is composed of both subcutaneous adipose 
tissue (SAT) and VAT. SAT can expand physiologically to buffer 
against ectopic lipid deposition; however, its compensatory capacity 
may be  constrained by genetic predisposition or impaired 

adipogenesis. Persistent caloric excess results in pathological 
accumulation of VAT (30, 31). VAT is regarded as a hallmark of 
metabolically unhealthy obesity and is independently associated with 
a wide range of metabolic disturbances (32–34). Its abnormal 
expansion is indicative of ectopic lipid deposition (35, 36). The 
visceral-to-subcutaneous fat ratio (VSR), a novel adiposity metric, has 
been strongly associated with elevated levels of proinflammatory 
cytokines and the progression of hepatic steatosis (37).

As a subfield of artificial intelligence, machine learning (ML) 
excels at identifying complex nonlinear relationships within high-
dimensional datasets and has shown considerable advantages in 
disease screening and risk assessment (38, 39). Unlike traditional 
statistical methods, ML does not require assumptions about variable 
distributions and is well-suited to capturing intricate interactions and 
nonlinear associations. Although ML has been increasingly applied in 
the diagnosis of liver diseases (22, 40, 41), its utility in exploring 
associations between multidimensional obesity indices and MAFLD 
remains underinvestigated. In this study, we leveraged data from the 
National Health and Nutrition Examination Survey (NHANES) to 
identify obesity-related indices strongly associated with MAFLD using 
ML techniques. Furthermore, we  employed SHapley Additive 
exPlanations (SHAP) to interpret the contribution of individual 
features and to develop an interpretable predictive model.

Methods

Participants

The National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative program jointly conducted 
by the Centers for Disease Control and Prevention (CDC) and the 
National Center for Health Statistics (NCHS). The study protocol was 
approved by the NCHS Research Ethics Review Board, and written 
informed consent was obtained from all participants. In this study, 
data from the 2017–2018 NHANES cycle were analyzed. The initial 
cohort consisted of 9,254 participants. Individuals were sequentially 
excluded based on the following criteria: (1) lack of hepatic steatosis 
assessment (n = 3,306); (2) missing obesity-related measurements 
(n = 2,570); (3) age < 20 years (n = 904); and (4) incomplete covariate 
data (n = 467). A total of 2,007 participants were ultimately included 
in the final analysis. The screening and selection process is presented 
in Figure 1.

Definition of MAFLD

MAFLD was diagnosed according to the international expert 
consensus criteria established in 2020 (7). Hepatic steatosis was 
assessed using the controlled attenuation parameter (CAP) measured 
by the FibroScan® 502 V2 Touch device, with a CAP value 
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≥274 dB/m considered indicative of hepatic steatosis (42). In 
addition, diagnosis required the presence of at least one of the 
following three conditions:

 1. Overweight or obesity: defined as a BMI ≥ 25 kg/m2 for 
Caucasian individuals or ≥23 kg/m2 for Asian individuals.

 2. Type 2 diabetes mellitus (T2DM): diagnosed based on any of 
the following criteria: (a) fasting plasma glucose 
(FPG) ≥ 7.0 mmol/L; (b) glycated hemoglobin (HbA1c) ≥ 6.5%; 
(c) a clinical diagnosis of diabetes by a qualified physician.

 3. Metabolic dysregulation: defined as the presence of at least two 
of the following seven criteria:

 (1) Waist circumference ≥102 cm in men or ≥88 cm in women 
(or ≥90 cm in Asian men or ≥80 cm in Asian women).

 (2) Blood pressure ≥130/85 mmHg or current use of 
antihypertensive medication.

 (3) Plasma triglycerides ≥150 mg/dL or treatment with lipid-
lowering agents.

 (4) Plasma high-density lipoprotein (HDL) cholesterol <40 mg/
dL in men or <50 mg/dL in women, or use of lipid-
modifying therapy.

 (5) Prediabetes (FPG 5.6–6.9 mmol/L; 2-h post-load glucose 
7.8–11.0 mmol/L; or HbA1c 5.7–6.4%).

 (6) Homeostasis model assessment of insulin resistance 
(HOMA-IR) ≥ 2.5.

 (7) High-sensitivity C-reactive protein (hs-CRP) > 2 mg/L (7).

Definition of body composition

Anthropometric measurements were conducted by trained 
NHANES personnel at Mobile Examination Centers (MEC) following 
standardized protocols. TAFA(g), VAT(g), and SAT(g) were measured 
using dual-energy X-ray absorptiometry (DXA), with data 
automatically processed by Hologic APEX software. The VSR was 
calculated as the ratio of VAT to SAT. BMI was assessed by trained 
staff using calibrated instruments to measure height and weight, and 
was calculated using the formula: weight (kg) / height2 (m2).

Covariates

Data extracted from the NHANES database included the 
following covariates:(1) Demographic characteristics: age, gender 
(male or female), educational attainment (less than 9th grade; 
9th–11th grade; high school graduate or GED equivalent; some 
college or associate degree; college graduate or above), race(Mexican 
American; other Hispanic; non-Hispanic White; non-Hispanic Black; 
other race, including multiracial), marital status (married; widowed; 
divorced; separated; never married; living with a partner), and family 
income–poverty ratio (PIR). (2) Lifestyle factors: Alcohol 
consumption was defined as the intake of more than two standard 
drinks per day over the past 12 months. Smoking status was defined 
as having smoked at least 100 cigarettes in a lifetime. (3) Laboratory 
and clinical measures: These included HbA1c, FPG, HDL, and 
low-density lipoprotein (LDL). Hypertension was defined as having a 
systolic blood pressure ≥140 mmHg and/or diastolic blood pressure 
≥90 mmHg based on three separate readings, or a clinical diagnosis 
of hypertension. Diabetes mellitus was defined as HbA1c > 6.5% or 
FPG > 7.0 mmol/L.

Statistical analysis

All statistical analyses were performed using R software (version 
4.3.2) and EmpowerStats. Baseline characteristics were summarized 
according to MAFLD status. Continuous variables were expressed as 
mean ± standard deviation (SD), while categorical variables were 
presented as counts with corresponding percentages. Data 
visualization was conducted using the ggplot2 package, generating bar 
plots for categorical variables and histograms for continuous variables. 
A Pearson correlation matrix was constructed to illustrate inter-
variable correlations. To assess multicollinearity, the variance inflation 
factor (VIF) was calculated through iterative regression modeling. 
Variables with VIF values exceeding 10 were excluded from 
subsequent analyses. Feature selection was conducted using the 
Boruta algorithm, which utilizes shadow features based on random 
forests to identify the most relevant predictors. A Z-score boxplot was 
used to visualize feature importance, and the top 10 features most 
strongly associated with MAFLD were retained for modeling. Prior to 
model construction, the dataset was randomly partitioned into a 
training set (70%) and a validation set (30%). Six ML models were 
developed using the caret package: decision tree (DT), support vector 

FIGURE 1

Flowchart.
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machine (SVM), generalized linear model (GLM), gradient boosting 
machine (GBM), random forest (RF), and eXtreme Gradient Boosting 
(XGBoost). All models were trained using 10-fold cross-validation on 
the training dataset. Model performance was evaluated based on the 
following metrics: area under the receiver operating characteristic 
curve (AUC), accuracy, sensitivity, specificity, F-beta score, and area 
under the precision-recall curve (AUPRC) metrics. For comparisons 
between models, ANOVA was applied to normally distributed 
performance data, while the Kruskal–Wallis test was used for 
non-normally distributed variables. To further validate model 
generalizability, retraining was conducted on the validation set. Model 
interpretability and performance were assessed using the DALEX 
package, which generated explanatory plots and diagnostic measures. 
Receiver operating characteristic (ROC) curves were constructed to 
assess discriminatory ability. In addition, residual boxplots were 
plotted to visualize residual distributions, while PR curves were 
employed to evaluate the trade-off between precision and recall across 
the models.

Finally, the best-performing model was selected based on the 
AUC as the primary evaluation metric, supplemented by additional 
performance indicators. To enhance model interpretability, SHAP 
analysis was subsequently employed to quantify the contribution of 
each feature within the optimal model.

Results

Baseline characteristics

A total of 2,007 participants were included in the final analysis, of 
whom 1,004 were diagnosed with MAFLD. Compared to participants 
without MAFLD, those with MAFLD were significantly older, had a 
higher proportion of males, and were more likely to be of Mexican 
American or non-Hispanic White ethnicity. In terms of marital status, 
the majority of MAFLD participants were married. With respect to 
obesity-related indices, the MAFLD group exhibited significantly 
higher levels of BMI, SAT, VAT, VSR, and TAFA. Furthermore, the 
prevalence of hypertension and diabetes mellitus was substantially 
higher among participants with MAFLD compared to those without 
the condition (Table 1).

Development and validation of predictive 
models

The distributions of all candidate variables were visualized 
(Figures 2, 3), and inter-variable correlations were examined using 
Pearson correlation coefficients (Figure  4). Multicollinearity was 
assessed by calculating the VIF; variables exhibiting high 
multicollinearity—TAFA—were excluded from further analysis. 
Subsequently, the remaining variables were subjected to feature 
selection using the Boruta algorithm. This method identified the 
top 10 features most strongly associated with MAFLD: VAT, BMI, 
SAT, VSR, hypertension, diabetes mellitus, age, gender, PIR, and 
marital status. These features were retained for subsequent ML model 
development (Figure 5).

Model training was conducted in two stages. First, 10-fold cross-
validation was applied to the training set to evaluate internal model 

performance. Subsequently, the validation set was used to assess 
external performance and identify the optimal model through 
comparative analysis. Table 2 and Figure 6 summarized the prediction 
performance of the six ML models in the training set—DT, SVM, 
GLM, GBM, RF and XGBoost. Key evaluation metrics included the 
AUC, sensitivity, specificity, accuracy, F-beta score, and AUPRC, all 
reported as mean values. Among the six models, the GBM algorithm 
demonstrated the highest discriminative power in the training set, 
achieving the highest AUC (0.875), which was significantly superior 
to the other models (p = 0.005). It also achieved the best AUPRC 
(0.857, p < 0.001), while maintaining a favorable balance between 
sensitivity (0.826) and specificity (0.741). In terms of accuracy (0.784), 
GBM ranked jointly second with RF, following XGBoost. In the 
validation set (Table 3; Figure 7), XGBoost, GLM, and GBM exhibited 
comparable generalization performance. XGBoost achieved the 
highest AUC (0.882) and specificity (0.910), although its sensitivity 
was moderate (0.703), and it required a considerably lower optimal 
decision threshold (0.378) compared to GBM. Both GBM and GLM 
achieved AUC values of 0.879, tying for second place. GLM 
demonstrated the highest specificity (0.890) but the lowest sensitivity 
(0.717), while GBM maintained the most balanced performance with 
a sensitivity of 0.787 and specificity of 0.837. Residual analysis based 
on absolute error values (Figure 8) revealed that the GBM model 
exhibited a relatively narrow residual distribution, indicating greater 
stability and lower variance. Its median residual value was the lowest 
among all models, reflecting smaller average prediction errors and 
higher consistency. In contrast, the residuals of the XGBoost model 
showed greater variability, as indicated by a wider boxplot. We further 
evaluated the models using recall curves (Figure 9). We found that the 
recall curves of the GBM, XGB and RF models perform more 
smoothly. At high recall, GBM and XGB are able to maintain a high 
precision rate, while RF performs relatively stable but slightly inferior 
to the first two. Overall, the GBM model demonstrated superior 
robustness and stability. Its AUC remained consistent between the 
training (0.875) and validation (0.879) sets, and its sensitivity (0.826 
vs. 0.787) and specificity (0.741 vs. 0.837) showed minimal fluctuation, 
indicating reliable and generalizable predictive performance.

SHAP interpretation of the optimal 
machine learning model

SHAP analysis was employed to interpret the contributions of 
individual features to MAFLD prediction within the optimal machine 
learning model (Figure 10). The SHAP summary plot revealed that 
VAT, BMI, and SAT were the most influential predictors, with mean 
absolute SHAP values of 0.187, 0.120, and 0.058, respectively. 
Although the VSR demonstrated a lower SHAP value (0.036), it 
remained among the top  10 most important features. To further 
elucidate the relationships between individual features and model 
output, SHAP dependence plots were constructed (Figure 11). These 
plots showed that increasing VAT and BMI values were associated 
with rising SHAP values, indicating a higher predicted probability of 
MAFLD. Among them, VAT exerted the strongest marginal effect. 
Although SAT contributed less than VAT and BMI, it was still a 
meaningful predictor. In contrast, the impact of VSR on model 
predictions was relatively modest, suggesting a more limited role in 
classification performance.
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TABLE 1 Baseline population table.

Variable Non MAFLD MAFLD p-value

N 1,003 1,004

Age (years) 37.368 ± 11.557 42.744 ± 11.034 <0.001

Gender (%) 0.017

  Male 479 (47.757%) 533 (53.088%)

  Female 524 (52.243%) 471 (46.912%)

Race (%) 0.002

  Mexican American 112 (11.167%) 171 (17.032%)

  Other Hispanic 87 (8.674%) 80 (7.968%)

  Non-Hispanic White 319 (31.805%) 328 (32.669%)

  Non-Hispanic Black 233 (23.230%) 195 (19.422%)

  Other Race -Including Multi-Racial 252 (25.125%) 230 (22.908%)

Education (%) 0.021

  Less than 9th grade 39 (3.888%) 57 (5.677%)

  9–11th grade 112 (11.167%) 105 (10.458%)

  High school graduate/GED or 

equivalent
231 (23.031%) 222 (22.112%)

  Some college or AA degree 329 (32.802%) 377 (37.550%)

  College graduate or above 292 (29.113%) 243 (24.203%)

Marital status (%) <0.001

  Married 446 (44.467%) 534 (53.187%)

  Widowed 12 (1.196%) 18 (1.793%)

  Divorced 73 (7.278%) 100 (9.960%)

  Separated 28 (2.792%) 46 (4.582%)

  Never married 312 (31.107%) 194 (19.323%)

  Living with partner 132 (13.161%) 112 (11.155%)

PIR 2.586 ± 1.658 2.595 ± 1.636 0.774

BMI(kg/m2) 25.335 ± 4.891 32.546 ± 6.508 <0.001

SAT(g) 1237.871 ± 657.954 2032.317 ± 783.027 <0.001

TAFA(g) 1573.288 ± 773.010 2671.213 ± 887.613 <0.001

VAT(g) 335.418 ± 184.246 638.896 ± 249.973 <0.001

VSR 0.324 ± 0.196 0.348 ± 0.157 <0.001

Hypertension (%) <0.001

  Non Hypertension 846 (84.347%) 581 (57.869%)

  Hypertension 157 (15.653%) 423 (42.131%)

Diabetes (%) <0.001

  Non diabetes 959 (95.613%) 827 (82.371%)

  Diabetes 44 (4.387%) 177 (17.629%)

Smoking status (%) 0.240

  Non-smoking 631 (62.911%) 606 (60.359%)

  Smoking 372 (37.089%) 398 (39.641%)

Alcohol drinking (%) 0.933

  Non-drinking 710 (70.788%) 709 (70.618%)

  Drinking 293 (29.212%) 295 (29.382%)

PIR, Household Income-Poverty Ratio; BMI, Body mass index; VAT, Visceral adipose tissue; VAT, Visceral adipose tissue; VAT, Visceral adipose tissue; SAT, Subcutaneous adipose tissue; VSR, 
Visceral-to-subcutaneous fat mass ratio; TAFA, Total abdominal fat mass.
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Discussion

In this study, we  leveraged interpretable ML approaches to 
explore the association between body composition metrics and 
MAFLD using data from the 2017–2018 NHANES. Among the six 
ML algorithms evaluated, the GBM model demonstrated the most 
favorable overall performance. It achieved the highest AUC (0.879) 
in the validation set, closely mirroring its performance in the 
training set (AUC = 0.875). Additionally, the model exhibited 
minimal fluctuations in sensitivity and specificity across both 
datasets, underscoring its robustness, generalizability, and 
predictive reliability.

Using SHAP, we  quantified the relative contributions of each 
selected feature to the model’s predictions. VAT, BMI, and SAT 
emerged as the most influential predictors, highlighting the central 
role of abdominal fat distribution in MAFLD pathogenesis. To the best 
of our knowledge, this is the first study to systematically assess the 
predictive value of detailed body composition metrics for MAFLD 
using machine learning techniques. The proposed model incorporates 
readily obtainable demographic, lifestyle, and clinical variables, 
enhancing both its predictive accuracy and its potential utility in 
routine clinical practice and population-level screening.

Our model identified VAT, BMI, and SAT as the most important 
predictors of MAFLD, aligning with existing evidence on the 

FIGURE 2

Characteristics of the distribution of categorical variables.

FIGURE 3

Characteristics of the distribution of continuous variables.
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differential roles of adipose tissue depots in disease pathogenesis. 
Although BMI remains a widely used clinical measure of general 
obesity (19, 20), it fails to distinguish between lean mass and fat mass, 
and does not capture inter-individual differences in fat distribution 
(21). Emerging evidence suggests that the distribution of adipose 
tissue—particularly the accumulation of visceral fat—is more strongly 
associated with metabolic dysfunction and fatty liver disease than total 
fat mass alone (23–26). Notably, excess visceral adiposity has also been 
observed in individuals with normal BMI, a phenotype often referred 
to as “metabolically obese normal weight” or lean MAFLD. These 
individuals frequently exhibit greater insulin resistance and more 
advanced hepatic fibrosis (43), underscoring the critical role of VAT 
in disease progression, independent of overall body size.

Accordingly, the identification of VAT as the most important 
predictor in our model is biologically plausible. Visceral adipose tissue 
is metabolically active and, when excessively accumulated, increases 
the flux of FFAs into the portal circulation (44), thereby promoting 

hepatic lipid deposition and inducing insulin resistance (45, 46). 
Additionally, VAT secretes proinflammatory cytokines such as tumor 
necrosis factor-α (TNF-α), interleukin-6 (IL-6), and leptin, which 
activate hepatic Kupffer cells and hepatic stellate cells, contributing to 
hepatic inflammation and fibrogenesis (47–53). In contrast, SAT 
functions as a metabolic buffer or “lipid reservoir.” Under conditions 
of energy surplus, SAT preferentially expands through adipocyte 
hyperplasia to safely store excess lipids and mitigate ectopic fat 
deposition (44, 54). However, when the storage capacity of SAT is 
exceeded—due to genetic, epigenetic, or adipogenic constraints—
surplus lipids may overflow into visceral compartments, including the 
liver (24, 30, 31, 36). Therefore, the identification of SAT as an 
important predictive feature underscores a critical pathophysiological 
concept: while total adiposity contributes to metabolic burden, it is the 
limited expandability of SAT and the consequent visceral fat 
accumulation that drives the development and progression of 
MAFLD. Collectively, these findings provide mechanistic validation 
for the high predictive value of obesity-related indices in our model 
and illustrate the advantage of machine learning approaches in 
capturing the complex, interdependent relationships among metabolic 
risk factors.

In this study, we implemented six classical ML algorithms—DT, 
SVM, GLM, GBM, RF, and XGBoost—to construct predictive models 
for MAFLD. This multi-model approach offers a comprehensive 
framework for risk stratification by capturing diverse patterns of 
feature–outcome relationships. Each algorithm is grounded in distinct 
theoretical principles and exhibits unique methodological advantages. 
DT constructs a hierarchical decision structure via recursive binary 
splits, effectively modeling nonlinear feature interactions. While 
highly interpretable, DTs are prone to overfitting and sensitive to data 
noise, necessitating pruning techniques to improve generalizability. 
GLM, commonly applied as logistic regression, assumes linear 
relationships between predictors and outcomes. It provides 
interpretable coefficients and serves as a robust baseline model, 
particularly under conditions of limited sample size or when feature 
effects are approximately linear. SVM identifies the optimal separating 
hyperplane with maximum margin between classes and can 
incorporate nonlinear kernels to capture complex decision boundaries. 
It is well-suited for high-dimensional and small-sample settings, 

FIGURE 4

Evaluation of feature relevance.

FIGURE 5

Boruta’s algorithm.
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TABLE 3 Six machine learning model metrics for predicting MAFLD in the test set.

Model AUC Best threshold Specificity Sensitivity Accuracy

DT 0.823 0.638 0.837 0.777 0.807

SVM 0.866 0.464 0.874 0.733 0.804

GLM 0.879 0.381 0.890 0.717 0.804

GBM 0.879 0.517 0.837 0.787 0.812

RF 0.875 0.413 0.920 0.727 0.824

XGB 0.882 0.378 0.910 0.703 0.807

DT, Decision Tree; SVM, Support Vector Machine; GLM, Generalized Linear Model; GBM, Gradient Boosting Machine; RF, Random Forest; XGB, XGBoost.

though its model outputs are less intuitive than tree-based 
counterparts. RF and GBM represent ensemble learning strategies. RF 
leverages bagging to generate multiple decision trees trained on 
bootstrapped data subsets and aggregates their predictions via 
majority voting, thereby reducing variance and improving model 
stability. It also yields feature importance rankings, aiding 
interpretability. In contrast, GBM adopts a boosting strategy that 
sequentially minimizes prediction errors by fitting new models to the 

residuals of prior models. This enables the modeling of intricate 
nonlinear relationships but requires careful hyperparameter tuning—
such as tree depth and learning rate—to avoid overfitting. XGBoost, 
an advanced and optimized version of GBM, integrates regularization 
and second-order gradient approximation to enhance training 
efficiency, reduce overfitting, and improve predictive accuracy. It has 
been widely adopted across biomedical classification tasks due to its 
robustness and computational scalability (55).

TABLE 2 Six machine learning model metrics for predicting MAFLD in the training set.

Model AUC Specificity Sensitivity Accuracy F beta AUPRC

DT 0.803 0.697 0.859 0.778 0.795 0.750

SVM 0.867 0.752 0.804 0.778 0.784 0.850

GLM 0.871 0.785 0.758 0.772 0.769 0.850

GBM 0.875 0.741 0.826 0.784 0.792 0.857

RF 0.864 0.728 0.839 0.784 0.795 0.837

XGB 0.871 0.755 0.819 0.787 0.794 0.850

p-value 0.005b 0.003a 0.002a 0.903a 0.342a <0.001b

DT, Decision Tree; SVM, Support Vector Machine; GLM, Generalized Linear Model; GBM, Gradient Boosting Machine; RF, Random Forest; XGB, XGBoost.
aANOVA test.
bKruskal-Wallis.

FIGURE 6

Ten-fold cross validation results.
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The selection of diverse machine learning algorithms for MAFLD 
prediction in this study is supported by both methodological 
rationale and prior empirical evidence. Given that MAFLD arises 
from a complex interplay of obesity, metabolic, and inflammation-
related factors, which may exhibit nonlinear relationships and 
interaction effects, incorporating algorithms capable of capturing 
such complexities is essential. Traditional linear models may fail to 
identify intricate risk patterns that are better revealed by 
nonparametric or ensemble-based approaches. Previous studies have 
demonstrated the applicability and effectiveness of various ML 
models in fatty liver disease prediction. For instance, Qin developed 
decision tree, random forest, XGBoost, and support vector machine 
classifiers using physical examination and biochemical indicators to 
screen for NAFLD. Among these, the SVM model achieved the 
highest performance, with an AUC of approximately 0.85 and an 
accuracy of 80%, outperforming other models across multiple 
evaluation metrics (56). Similarly, Peng compared logistic regression, 
RF, GBM, XGBoost, and SVM models in predicting NAFLD and 
identified XGBoost as the top-performing algorithm, highlighting its 
clinical utility for early risk stratification (57). These findings support 
the validity of adopting multiple ML models in our framework. By 
leveraging the complementary strengths of different algorithms, our 

FIGURE 7

Receiver operating characteristic curve.

FIGURE 8

Residual analysis plot.
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approach enhances discriminative performance while maintaining 
robustness and interpretability—crucial attributes for translation into 
real-world clinical or public health applications.

This study possesses several notable strengths. First, our 
predictive model demonstrated satisfactory discriminative 

performance in identifying individuals with MAFLD, indicating 
that body composition parameters can be effectively integrated 
into future clinical risk assessment frameworks. This finding 
supports the development of refined, obesity-based predictive 
strategies that extend beyond traditional anthropometric 
measures. Second, by incorporating multiple indices of body 
composition, our analysis underscores the critical role of fat 
distribution—rather than total adiposity alone—in the 
pathogenesis of MAFLD. This reinforces the clinical and public 
health imperative to shift the focus from general obesity metrics 
such as BMI toward a more nuanced evaluation of adipose tissue 
distribution. Such an approach may improve the accuracy of 
MAFLD screening and raise awareness of obesity-related 
phenotypic heterogeneity in disease development. Third, the 
GBM model exhibited strong translational potential. Its capacity 
for individualized risk estimation facilitates early identification of 
high-risk populations and the implementation of targeted 
preventive interventions aimed at mitigating progression to 
advanced liver disease. In resource-constrained healthcare 
environments, the model may assist in optimizing clinical 
resource allocation—for instance, by prioritizing high-risk 
individuals for advanced imaging modalities such as magnetic 
resonance imaging (MRI), thereby improving cost-effectiveness. 
Moreover, interpretability tools such as SHAP-derived feature 
importance can enhance clinician–patient communication by 
visualizing individual risk drivers. This may help increase patients’ 
understanding of their personal risk profiles and motivate 
adherence to lifestyle modifications, further bridging the gap 
between predictive analytics and actionable interventions in 
routine care.

FIGURE 10

Swarm diagram.

FIGURE 9

Recall curve.
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Nevertheless, it is imperative to acknowledge the limitations 
inherent in the study. Firstly, histological evidence from liver 
biopsies is required for a definitive diagnosis of MAFLD. However, 
large population studies are difficult to perform invasively. Despite 
the utilization of FibroScan® transient elastography as an alternative 
in this study (a technique which has been demonstrated to possess 
clinical validity), the potential for the introduction of diagnostic bias 
remains a concern. Secondly, despite the Oral Glucose Tolerance 
Test (OGTT) representing a pivotal criterion for the diagnosis of 
diabetes, the absence of data pertaining to this indicator in the 2017–
2018 NHANES cycle may have resulted in the under-recognition of 
cases of diabetes. Furthermore, as the data were derived from the 
NHANES cross-sectional survey in a single country, there are 
limitations in terms of sample representativeness and the 
applicability of the model to other populations. The model was 
trained and validated exclusively on an internal dataset, with no 
external validation performed using an independent cohort. This 
may be problematic due to potential differences in characteristics 
between populations of different races or regions, which could 
compromise the generalization ability of the model. Further 
assessment is required to ascertain the model’s generalization 
capability. It is important to note that the cross-sectional design of 
this study precluded the determination of whether the observed 
associations were causal or not. It is therefore essential that future 
longitudinal studies are conducted in order to more accurately assess 
the causal associations between obesity indicators and the 
development of MAFLD. The SHAP method is predicated on the 

assumption of independence of characteristics in interpreting the 
model. Despite the exclusion of highly correlated variables, residual 
correlations may still affect the interpretation of results.

Conclusion

In this study, we developed predictive models for MAFLD 
using six machine learning algorithms: DT, SVM, GLM, GBM, RF, 
and XGBoost. Among these, the GBM model demonstrated the 
most favorable overall performance, achieving high discriminative 
accuracy and stability across both training and validation datasets. 
Furthermore, SHAP analysis provided interpretable insights 
into feature contributions, with VAT emerging as the most 
important predictor of MAFLD risk. These findings underscore 
the utility of integrating advanced machine learning techniques 
with detailed body composition metrics to improve early risk 
stratification and guide targeted interventions in clinical and 
public health contexts.
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