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Objective: This work sought to improve the potential use of rice protein by 
examining the antioxidant activity of glycosylated rice protein hydrolysates 
(RPH).

Methods: RPH were produced via the enzymatic breakdown of rice protein 
powder utilizing trypsin. Then, using the Maillard reaction, these hydrolysates 
were glycosylated with three functional monosaccharides to create RPH-
fructose (RPH-F), RPH-xylose (RPH-X), and RPH-arabinose (RPH-A). The 
antioxidant capabilities of glycosylated derivatives were assessed in  vitro by 
measuring Fe2+ chelating ability and their ability to neutralize several radicals, 
including hydroxyl (•OH), superoxide anion (O2•−), 2,2-diphenyl-1-picrylhydrazyl 
radical (DPPH•), and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) radical 
(ABTS•+). A zebrafish in vivo model was utilized to investigate oxidative damage, 
analyzing the distribution of reactive oxygen species (ROS) through fluorescence 
staining and evaluating oxidative stress by quantifying malondialdehyde (MDA) 
levels and the activity of antioxidant enzymes such as catalase (CAT) and total 
superoxide dismutase (T-SOD). Following glycosylation, DPPH• clearance by 
RPH-X increased by 12.75% (6 mg/mL), and ROS inhibition by RPH-A in the 
zebrafish model reached 84.78%.

Conclusion: Glycosylation enhanced the antioxidant capabilities of rice protein 
hydrolysate, indicating its potential as a functional dietary component with 
antioxidant efficacy.
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1 Introduction

Oxidative stress primarily arises from an imbalance between oxidative and antioxidant 
mechanisms in the body. This imbalance leads to oxidation and the excessive production of 
ROS, including superoxide anions and hydroxyl radicals (1). These ROS damage cellular 
macromolecules, accelerating the aging process and leading to functional decreases in cells 
and tissues, as well as impairing physiological health (2). Therefore, the elimination of excess 
reactive oxygen species and the suppression of oxidative reactions are crucial goals in the 
creation of antioxidant products.
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Altering glycosylation in diverse ways may modify bioactive 
peptides’ structure and physicochemical properties, enhancing their 
biological activity. Three principal ways are utilized for glycosylation: 
enzymatic approach, non-covalent linkage, and Maillard reaction-based 
method. Transglutaminase (TGase) is the most often utilized enzyme in 
glycosylation processes. Song et al. used the TGase method to glycosylate 
soybean isolate protein (SPI) digest and found that the method 
significantly improved the in  vitro antioxidant capacity of SPI (3). 
Nonetheless, its intricate manufacture and preparation method and low 
biocatalyst stability restrict its applicability (4). Non-covalent linkage 
methods entail the covalent bonding to particular amino groups of 
proteins or peptides, while weaker physical interactions facilitate the 
attachment of peptides to polysaccharides (5). Nevertheless, the majority 
of these compounds or derivatives frequently demonstrate instability. 
Zeng et  al. compared various common glycosylation methods and 
reviewed the progress of glycosylation of casein as an example, making 
predictions on the limitations and future directions (6). The Maillard 
reaction is a non-enzymatic glycosylation process involving the 
condensation of carbonyl and ammonium groups between free amino 
groups of proteins and carbonyl groups of reducing sugars (7). This 
process significantly enhances the antioxidant capabilities of oxidized 
peptides and offers advantages such as simplicity (8), low toxicity, and 
high efficiency, rendering it a preferred glycosylation method (9).

Functional monosaccharides are monosaccharides exhibiting 
particular biological functions (e.g., antioxidant, anti-inflammatory). 
This work involved the glycosylation of RPH with arabinose, xylose, and 
fructose. Previous studies have indicated that these monosaccharides 
may enhance protein products’ antioxidant and functional attributes. 
Arabinose glycosylation effectively decreased fat oxidation (10). Wang 
et al. found that the antioxidant capacity of whey protein and xylose 
glycosylation products was significantly increased (11). Fructose 
glycosylation diminished the sensitivity of wheat gluten proteins (12). 
This study utilized the glycosylation of rice protein hydrolysate with 
certain functional monosaccharides to elucidate their connection with 
antioxidant capabilities. While the antioxidant improvement of RPH by 
modifications like xylose has been documented, the structural 
interactions among various monosaccharides (e.g., xylose, fructose, and 
arabinose) and their synergistic mechanisms both in vitro and in vivo 
remain unclear.

This work involved the production of three different glycosylation 
products of RPH using the Maillard reaction and assessed the effect of 
glycosylation modification on external antioxidant ability. A zebrafish 
model was created to evaluate the in vivo antioxidant properties, with 
reactive oxygen species distribution identified via fluorescent staining. 
This study establishes a theoretical and technical framework for the 
processing and production of functional glycosylated RPH, thereby 
enhancing the industrial applicability and economic worth of rice 
protein. Moreover, as a sustainable and eco-friendly initiative, it 
diminishes trial-and-error expenses and curtails resource wastage, 
enhancing ecologically responsible research methodologies.

2 Materials and methods

2.1 Experimental materials

Rice protein powder, with a crude protein content of 80%, was 
obtained from Xinyang Mufan Biotechnology Co. Trypsin, derived 

from bovine pancreas (1:250), was supplied by Beijing Bailing Wei 
Technology Co. Fructose, xylose, and arabinose (98%) were 
purchased from Shanghai McLean Biochemical Technology Co. 
Ferrozine (97%) and 1,10-phenanthroline (o-diazaphene, 99%) 
were acquired from Shanghai Macklin Biochemical Technology Co. 
and Sinopharm Chemical Reagent Co., respectively. DPPH• (97%) 
was sourced from Teichai (Shanghai) Chemical Industry 
Development Co., and ABTS•+ (98%) came from Shanghai Aladdin 
Biochemical Technology Co. Glutathione (GSH, 99%) and ROS 
Measurement Kits (chemiluminescence method), along with 
T-SOD kits, were provided by Beijing Bailing Wei Technology Co. 
and Nanjing Jianjian Bioengineering Institute, respectively. The 
bicinchoninic acid (BCA) kit, CAT kit, and MDA kit were supplied 
by Beijing Solepol Technology Co. Other chemical reagents, of 
analytical purity, were obtained from Sinopharm Chemical 
Reagent Co.

2.2 Instruments and equipment

An electronic balance (model AX224ZH) was used from 
OHAUS Instruments (Changzhou) Co. A medical centrifuge 
(model TG16-WS) was provided by Changsha Hi-Tech Industrial 
Development Zone Xiangyi Centrifuge Instrument Co. The 
magnetic stirring water bath (model HCJ-2E) and the magnetic 
stirrer (model 8S-1) were supplied by Changzhou Enpei Instrument 
Manufacturing Co. and Changzhou Guozhi Instrument 
Manufacturing Co., respectively. The freeze-dryer (model LGJ-25C) 
was from Sihuan Frui Keji Science and Technology Development 
Co. The pH meter was provided by METTLER TOLEDO 
INSTRUMENTS (SHANGHAI) CO. An optical absorption full 
wavelength enzyme labeling instrument (ReadMax 1900) was used 
from Shanghai Sempervision Biotechnology Co. The particle size 
analyzer Dynamic Light Scattering (DLS) was a product of 
Brookhaven Instruments, United  States. The Ultraviolet (UV) 
spectrophotometer (model UV1800) was from Shimadzu 
International Trading (Shanghai) Co. A Fourier Transform Infrared 
Spectrometer (model NicoletiS10) was utilized, provided by 
Shanghai Zequan Instrument Co.

2.3 Preparation of RPH

Modified from previously documented procedures (13, 14), 67 g 
of rice protein powder were dissolved in 1000 mL of deionized water 
to form a 1 g/15 mL solution. The solution was stirred at room 
temperature for 2 h, the pH was adjusted to 8, and then heated in a 
water bath at 50°C for 15 min. Trypsin was added at an enzyme-to-
substrate ratio of 1:100, and the enzymatic reaction was maintained 
at 50°C for 60 min with a stable pH of 8. After the reaction, the 
mixture was heated to 95°C for 15 min to deactivate the enzyme, 
cooled rapidly in an ice bath, and the pH was adjusted to neutral. 
Following centrifugation (3,500 rpm, 10 min), the supernatant was 
lyophilized and reserved. The degree of hydrolysis (DH) was 
determined by the pH-stat method (15), calculating DH according to 
Equation (1).
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1 1 1100% 100%b
tot p tot

hDH B N
h M h  

(1)

In the formula:
B, volume of NaOH consumed (mL); Nb, concentration of NaOH 

(mol/L); α, dissociation degree of α-NH3
+ at pH = 8 and 50°C under 

enzymatic hydrolysis conditions is 0.885; Mp, total protein content in 
the substrate (g); htot, Theoretical millimoles of peptide bonds per 
gram of rice protein (7.40 meq/g).

2.4 Preparation of glycosylated rice protein 
hydrolysates

Following the method described in the literature (16) with slight 
modifications, 2.0 g of sugar and 1.0 g of rice protein digest were 
weighed, dissolved in 200 mL deionized water, stirred thoroughly, and 
the pH was set to 7.0. The mixture was reacted in a magnetic stirrer 
water bath at 80°C for 4 h to produce RPH-F, RPH-X, and 
RPH-A. Subsequently, it was cooled in an ice bath to room 
temperature and the samples were dialyzed at low temperature for 
24 h. The dialysate was freeze-dried for use.

2.5 Structural characterization of 
glycosylation products

2.5.1 Particle size determination
Following the method described in the literature (16, 17) with 

slight modifications. To examine the impact of glycosylation 
modification on the conformation of RPH, the average hydrodynamic 
particle sizes of the samples were assessed using DLS, which operates 
on the principle of Brownian motion, calculating diffusion coefficients 
and inferring size distributions by measuring the fluctuation rate of 
light scattered by the particles in solution. Take 400 μL of dialysate 
from enzymatic and glycosylated samples respectively, dilute 10 times, 
and detect particle size using an analyzer. Equilibrate samples for 
10 min and scan each three times for the average particle size.

2.5.2 Determination of grafting degree
Following the method described in the literature (16, 18) with 

slight modifications. The decrease in free amino acid (FAA) levels, 
indicative of the glycosylation process, was quantified using 
O-Phthalaldehyde (OPA). For the analysis, 200 μL aliquots of 
solutions (RPH-F, RPH-X, RPH-A) were transferred to test tubes. 
Each sample was combined with 4 mL of OPA reagent and incubated 
at 35°C for 2 min within a water bath. Subsequently, absorbance at 
340 nm was recorded. A control sample of 200 μL RPH was subjected 
to the same experimental conditions. The degree of grafting (DG) 
indicates the decrease of free amino groups in glycosylation reactions, 
with higher DG values indicating enhanced covalent binding 
effectiveness of sugar molecules to proteins. This work employed the 
OPA method to ascertain DG, with the objective of identifying the 
best monosaccharide type (e.g., xylose DG = 16.38%) for further 
functional examination.

To prepare the OPA reagent, weigh 40 mg of OPA and dissolve it 
in 1 mL of methanol. Subsequently, add 2.50 mL of a 20% SDS 

solution, 25 mL of a 0.10 mol/L borax solution, and 100 μL of 
β-mercaptoethanol in that order. Finally, dilute the mixture to a total 
volume of 50 mL with distilled water.

The degree of grafting (DG) was calculated using Equation (2).

 

( )−
= ×0 1

0
100%

A A
DG

A  
(2)

In the formula:
A0, Absorbance value of the blank sample at 340 nm; A1, 

Absorbance value of the sample at 340 nm.

2.5.3 Fourier transform infrared absorption 
spectra

Following a method adjusted from (19, 20), four freeze-dried 
samples (RPH, RPH-F, RPH-X, RPH-A) were mixed and ground with 
potassium bromide powder at a specific mass ratio. The mixture was 
pressed into a uniform, transparent flake and analyzed using a Fourier 
Transform Infrared (FTIR) Spectrometer, scanning from 4,000 cm−1- 
400 cm−1 at a resolution of 2 cm−1.

2.5.4 Ultraviolet spectroscopy
Using the method described in reference (16) with minor 

modifications, RPH, RPH-F, RPH-X, and RPH-A were each dispersed 
in a phosphate buffer solution (pH 7.0, 50 mmol/L) at a concentration 
of 0.50 mg/mL. Absorbance scans were performed using a UV–visible 
spectrophotometer across the wavelength range of 200–600 nm.

2.6 In vitro antioxidant activity assay

2.6.1 Fe2+ chelating capacity
Adapting the method from literature (21) with slight 

modifications, 0.5 mL of sample solutions (mass concentrations: 6, 3, 
1.5, 0.75, and 0.375 mg/mL) were taken into 5 mL centrifugal tubes. 
Then, 3.20 mL of distilled water and 0.10 mL of 2 mmol/L FeCl2 
solution were added successively, shaken well, and left for 3 min. Next, 
2 mL of 5 mmol/L phenanthroline solution was added, and the 
reaction occurred at 25°C for 10 min. Absorbance was measured at 
562 nm with an enzyme counter. Deionized water served as the blank 
control and glutathione as the positive control in three parallel 
experiments. The Fe2+ chelating capacity of the samples was calculated 
according to Equation (3).

 

( )−
= ×0

0
100%sA A

P
A  

(3)

In the formula:
P, Fe2+ chelating capacity; A0, Absorbance of the blank group 

measured at 562 nm; AS, Absorbance of the experimental group 
measured at 562 nm.

2.6.2 Hydroxyl radical scavenging capacity
Referring to the method in the literature (22) with slight 

modifications, the reagents were added according to the combinations 
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in the (Table 1), where the concentrations of the sample solution to 
be tested were 6, 3, 1.5, 0.75, and 0.375 mg/mL in that order.

The solutions were thoroughly mixed, and reactions were 
conducted for 60 min at 37°C in a water bath. Absorbance at 536 nm 
was measured, with the procedure repeated in triplicate. The 
scavenging activity of the samples against hydroxyl radicals was 
quantified according to Equation (4).

 

−
= ×

−
2 1

0 1
100%A AP

A A  
(4)

In the formula:
P, hydroxyl radical scavenging rate; A0, absorbance measured in 

the blank group; A1, Absorbance measured for the control; A2, 
absorbance measured by the experimental group.

2.6.3 Superoxide anion radical scavenging 
capacity

Following modifications from literature (22), 1.0 mL of sample 
solutions was placed into a 10 mL centrifuge tube. Each tube received 
3.00 mL of 50 mmol/L Tris–HCl buffer (pH 8.2), reacted at 25°C for 
20 min, followed by the addition of 3.00 mL of 7 mmol/L pyrogallol 
solution, and reacted for another 5 min. The reaction was terminated 
with 1 mL of concentrated HCl, and absorbance was measured at 
325 nm. This procedure was repeated in triplicate, and the superoxide 
anion radical scavenging rate was determined according to 
Equation (5).

 

( )− −
= ×0 1 2

0
100%

A A A
P

A  
(5)

In the formula:
P, superoxide anion radical scavenging rate; A0, absorbance at 

325 nm of deionized water instead of sample solution; A1, absorbance 
of the sample solution at 325 nm; A2, absorbance at 325 nm of the 
sample solution without pyrogallol added.

2.6.4 DPPH• scavenging rate
Following the method described in the literature (16, 23) with 

slight modifications. In the experimental system, 3.0 mL of DPPH• 
solution was added with 1.0 mL of the sample solution for the 
experimental group, while anhydrous ethanol substituted the DPPH• 
solution in the control group, and the sample solvent replaced the 
sample in the blank group. The concentrations of the sample solution 
under investigation were 6, 3, 1.5, 0.75, and 0.375 mg/mL, respectively. 
Sample solutions were formulated with differing concentrations. The 
components were properly mixed and permitted to react for 60 min 
in darkness prior to measuring the absorbance at 517 nm. Deionized 
water functioned as the zero calibration standard, while glutathione 
served as the positive control. The method was repeated thrice, and 
the scavenging efficacy against DPPH• was determined using 
Equation (6).

 

 −
= − × 
 
1 100%s c

b

A AP
A  

(6)

In the formula:
P, DPPH• scavenging rate; As, absorbance measured by the 

experimental group; Ac, absorbance measured for the control; Ab, 
absorbance measured in the blank group.

2.6.5 ABTS•+ scavenging rate
Following the method described in the literature (16, 24) with 

slight modifications. In the experimental group, 3.6 mL of ABTS•+ 
solution was combined with 0.4 mL of sample solution. The control 
group substituted the samples with solvent, with the concentrations of 
the test solution being 6, 3, 1.5, 0.75, and 0.375 mg/mL, respectively, 
mixed thoroughly, and allowed to react for 5 min in darkness. 
Absorbance was subsequently quantified at 734 nm, utilizing 
deionized water for zero calibration and glutathione as the positive 
control. The method was conducted in triplicate, and the scavenging 
activity against ABTS•+ was determined using Equation (7).

 

 −
= × 
 

100%b s

b

A AP
A  

(7)

In the formula:
P, ABTS•+ scavenging rate; Ab, absorbance measured in the blank 

group; As, absorbance measured by the experimental group.

2.7 In vivo antioxidant activity assay

2.7.1 Zebrafish culture and collection of zygotic 
embryos

Wild-type AB strain zebrafish were employed in this study. 
Feeding of zebrafish was conducted separately by sex in the breeding 
tank, with one spoonful of shelled Toyon shrimp eggs provided 
bi-daily at 09:00 and 17:00. The temperature was regulated at 
28°C ± 0.5°C, and a light–dark cycle of 14 h of light and 10 h of 
darkness was maintained. Zebrafish embryos were obtained by the 
natural mating spawning technique. At 18:30 on the eve of breeding, 
male and female zebrafish were positioned in a 1:1 ratio on either side 

TABLE 1 Addition of hydroxyl radical regent (mL).

Solution 
name

Experimental 
group

Control Blank 
group

o-Diazophene 

solution 

(1.5 mmol/L)

1.0 1.0 1.0

Phosphate buffer 

solution (pH 7.4)
2.0 2.0 2.0

Distilled water – 1.0 1.0

Ferrous sulfate 

solution 

(1.5 mmol/L)

1.0 1.0 1.0

0.02% hydrogen 

peroxide solution
1.0 1.0 –

Distilled water – – 1.0

Sample solution 

to be measured
1.0 – –
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of the breeding tank, divided by a baffle, and maintained in darkness 
overnight. At 08:30 the following day, the barriers were dismantled 
and the lighting system was activated to facilitate zebrafish mating and 
spawning. Zebrafish embryos were gathered and maintained in an 
incubator at 28.5°C.

2.7.2 Assessment of the provided dosage
Juvenile fish (3 day post fertilization, dpf) were placed randomly 

in 6-well plates (4 mL solution volume/well, 30 fish/well). The test 
group was treated with RPH-A solutions at concentrations of 50.0, 
100.0, 200.0, 400.0, and 800.0 μg/mL. Model and normal control 
groups were established. Except for the normal group, all others were 
exposed to 300 μM hydrogen peroxide (H2O2) to induce oxidative 
damage in zebrafish. After 24 h, the number of deceased fish in each 
group was recorded. The highest RPH-A concentration without 
causing fish death or morphological abnormalities was determined as 
the maximum toxic concentration (MTC).

2.7.3 In vivo ROS detection and antioxidant 
evaluation in zebrafish

Slightly modified with reference to (25). Juvenile zebrafish (3 dpf) 
were divided randomly into four groups: Control (blank control 
group), Model (300 μM H2O2), RPH group (200 μg/mL RPH + 300 μM 
H2O2), and RPH-A group (200 μg/mL RPH-A + 300 μM H2O2), with 
three replicates in each group. Samples were incubated with a 40 μg/
mL fluorescent probe for 20 min for ROS labeling, followed by 
photography using an in  vivo fluorescence microscope to assess 
fluorescence intensity.

2.7.4 Determination of peroxidase activity in 
zebrafish

Juvenile zebrafish (3 dpf, normal development) were divided 
randomly into four groups: Control (blank control group), Model 
(300 μM H2O2), GSH group (20 μg/mL glutathione + 300 μM H2O2), 
and RPH-A group (200 μg/mL RPH-A + 300 μM H2O2), with three 
replicates for each. The treatments were conducted over 4 days using 
the protocols provided with the MDA, CAT, and T-SOD kits. The 
MDA concentration, CAT activity, and T-SOD activity were measured 
separately using a UV spectrophotometer.

2.8 Statistical analysis

Data were analyzed using SPSS software, with results presented as 
“mean ± standard deviation (SD).” A one-way analysis of variance 
(ANOVA) was utilized to assess differences among groups, 
considering p < 0.05 as statistically significant.

3 Results and discussion

3.1 Degree of hydrolysis of enzymes

The hydrolysis degree of rice protein via trypsin in this experiment 
was 5.98%. According to the optimization experiments of Yang et al. 
(26), the hydrolysis degree of rice protein by trypsin hydrolysis can 
reach 54.0% under optimum conditions. A strong correlation exists 
between the extent of hydrolysis of enzymatic hydrolysate and factors 

such as substrate concentration, starting pH, enzyme quantity, 
reaction temperature, and hydrolysis time. Moreover, Ma et al. (27) 
discovered that excessive hydrolysis compromises the structure of 
enhanced rice protein, resulting in diminished heat resistance. 
Additionally, varying degrees of hydrolysis through different 
restriction enzymes also influenced the in vitro antioxidant activity of 
RPH (28).

3.2 Particle size determination

Glycosylation increased the average particle size of all products: 
specifically, RPH-F was enlarged by over 3.5 times relative to RPH, 
RPH-X by over 1.6 times, and RPH-A by up to 1.2 times compared to 
RPH (Figure 1). These changes suggest that modified RPHs adopt a 
looser structural organization. Ma et al. noted that the addition of 
monosaccharide molecules alters the conformation of protein, leading 
to an increase in particle size (29). Variations in particle size among 
glycosylated products might stem from the differing accessibility of 
functional sugars to various protein sites (30). The larger the molecular 
weight of the sugar, the greater the obstruction to protein compactness. 
Given fructose’s larger molecular weight, RPH-F exhibited the greatest 
increase in particle size under identical glycosylation condition. 
Xylose and arabinose exhibit variations in their glycosylation sites on 
proteins; arabinose preferentially binds to the hydroxyl or amine 
groups of proteins, while xylose may be associated through distinct 
glycosidic linkages. This may lead to RPH-X forming more expansive, 
less compact structures during glycosylation, whereas RPH-A 
produces denser formations (31).

3.3 Grafting degree determination

The grafting degree for RPH-X, derived from the reaction between 
rice protein digest and xylose, reached a maximum of 16.38% under 
identical experimental conditions (Figure 2), consistent with previous 
studies (16). The physicochemical and functional characteristics of 

FIGURE 1

Effects of different glycosylation reactions on the average particle 
size of RPH.
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grafted rice protein glycosylation products were comparable. A high 
grafting degree suggests a reduction in FAA content in the glycosylated 
product, indicating that certain amino acids are covalently bonded to 
sugars (32). The binding capacity of RPH to the three sugars was 
ranked as follows: xylose > fructose > arabinose. This hierarchy may 
be attributed to the chemical structures of the sugars and their affinity 
for proteins. The relatively lower grafting efficiency of fructose and 
arabinose could be  due to structural differences that reduce their 
binding capacity (33). The aldehyde group of xylose demonstrates 
higher reactivity compared to the ketone group of arabinose, whereas 
the cyclic structure of arabinose reduces its accessibility to the peptide 
chain, resulting in a difference in grafting degree (RPH-X: 16.38% vs. 
RPH-A: 8.72%) (34). Xylose had the greatest glycosylation efficiency, 
presumably due to the elevated reactivity of its aldehyde group, which 
promotes enhanced interactions with proteins.

3.4 Fourier infrared absorption spectra

FTIR spectroscopy is employed for protein structural analysis, as 
it detects characteristic absorption peaks in the mid-infrared region, 
reflecting changes in the peptide chain structure. The wavelength 
range of 3,500–3,000 cm−1 corresponds to the characteristic 
absorption peak of -OH groups (Figure 3). Compared to RPH, the 
three glycosylation products exhibited enhanced absorption intensity 
(decreased transmittance) and a slight blue shift in the absorption 
peaks at 3500–3000 cm−1. This shift indicates the stretching vibration 
of the -OH group and the formation of new -OH bonds, suggesting 
the occurrence of a glycosylation reaction. Since sugar molecules are 
rich in -OH groups, their attachment to RPH via covalent bonds leads 
to an increased presence of -OH groups.

Moreover, the highly polar nature of -OH groups enable them to 
establish hydrogen bonds, which accounts for the wider absorption 
peaks ranging from 3,650–3,200 cm−1 in the conjugates (35). 
Absorption peaks found between 1,000–1,070 cm−1 typically reflect 
the C-O-C stretching vibrations and the presence of glycan rings 
within sugar molecules (36). At 1050 cm−1, a notable increase in 
absorption peak intensity was evident across all three glycosylated 

products, suggesting that the sugar molecules prompted vibrations in 
the protein side chains as a result of the glycosylation process. In 
addition, each of the three glycosylation products exhibited a distinct 
absorption peak between 1,380–1,410 cm−1. This peak, attributable to 
the -CN stretching vibration, arises from carbonyl-ammonia 
condensation (37) and indicates an augmentation in glycosidic 
bond formation.

3.5 Ultraviolet spectroscopy

Aromatic amino acids, such as tyrosine, tryptophan, and 
phenylalanine, present in RPH (38), absorb ultraviolet light at specific 
wavelengths, particularly at 225 nm and 280 nm (Figure  4). The 
glycosylation product showed a slight blue shift in UV absorption, 
peaking at 221 nm. This shift suggests that glycosylation may alter the 
protein’s three-dimensional structure, especially the conformation of 
peptide chains. Likely due to the Maillard reaction, which forms 
covalent bonds between amino acids and sugars, these alterations 
modify molecular interactions. Consequently, structural changes 
expose certain hydrophobic amino acid side chains, increasing their 
interaction with the environment. This exposure might explain the 
enhanced peak in UV absorption (9).

3.6 In vitro antioxidant activity assay

3.6.1 Fe2+ chelating capacity
The Fe2+ chelating ability of both enzymatic hydrolysates and 

glycosylation products increased with rising concentrations, from 
0.375 to 6 mg/mL. A significant rise of 6.23% in Fe2+ chelating capacity 
was noted at a 0.75 mg/mL concentration of RPH-F (Figure  5), 
indicating superior antioxidant activity in RPH-F compared to other 
glycosylated variants. This enhancement is likely due to the unique 
structure of RPH-F formed during glycosylation and the molecular 
structure of xylose, which enhances its Fe2+ binding. The exposure of 
carbonyl groups on amino acid residues, which possess strong 
coordination capabilities, allows for more effective Fe2+ complex 
formation (39). By chelating Fe2+, glycosylated RPH may reduce 
oxidative damage by preventing the generation of free radicals (20). 
Furthermore, glycosylation alters the protein’s spatial conformation, 
exposing more hydrophilic and hydrophobic regions, which improves 
its chelating capability and antioxidant properties.

3.6.2 Hydroxyl radical scavenging capacity
Hydroxyl radicals, capable of causing extensive damage to human 

cells and leading to lipid peroxidation (23), are more effectively 
scavenged by glycosylated products. The scavenging activity of these 
products increased with concentration. Among them, RPH-F showed 
the least effective •OH scavenging capability (Figure 6A). This effect 
is attributable to the glycosylation products acting as chelating agents 
that bind with metal ions such as Fe2+, inhibiting hydroxyl radical 
production and consequently reducing oxidation. The variation in 
antioxidant properties among glycosylated products is linked to the 
type of glycosyl groups and the degree of modification (40). Zhang 
et  al. investigated Maillard reaction products of derived from soy 
protein isolate with L-arabinose and D-galactose, demonstrating that 
glycosylation with L-arabinose resulted in superior antioxidant 

FIGURE 2

Grafting degrees of different glycosylation reaction products.
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activity, primarily due to its higherdegree of glycation and more 
substantial effects on protein conformation (41). Similarly, Xiao et al. 
reported that solid-state fermentation significantly enhanced the free 
radical scavenging capacity of buckwheat by releasing bound phenolic 

compounds through microbial hydrolytic enzymes (42). Although 
native rice protein typically exhibits limited antioxidant activity, its 
simple structure, minimal branching, and high content of reactive 
amino acids such as lysine and arginine, render it particularly suitable 
for non-enzymatic glycosylation, enabling the formation of uniform 
and stable glycosylation products (33).

3.6.3 Superoxide anion radical scavenging 
capacity

Superoxide anion radicals, which can evolve into highly 
reactive hydroxyl radicals (43), were tested for scavenging 
potential. Even at a maximum concentration of 6 mg/mL, the 
scavenging capacity of RPH did not exceed 15% (Figure  6B). 
However, glycosylated samples displayed a significant 
improvement, with RPH-F showing the most notable 
enhancement. This indicates that glycosylation effectively 
enhances the antioxidant properties of RPH. This is consistent 
with the findings of Wang et  al., who demonstrated that 

FIGURE 3

(A) Infrared spectra of RPH and its glycosylated products. (B) Infrared spectral expansion of RPH and its glycosylated products.

FIGURE 4

UV spectra of RPH and its glycosylated products.

FIGURE 5

Fe2+chelating ability of different glycosylation products.
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glycosylation of yak casein with glucose via the Maillard reaction 
significantly enhanced its superoxide anion scavenging capacity, 
and this effect increased proportionally with higher sugar 
concentrations (44). Additionally, Limsuwanmanee et  al. 
reported a similar observation in a Maillard reaction system 
involving aquatic by-products and various monosaccharides, 
finding that glycosylation substantially improved the products’ 
O2•− scavenging activity with smaller monosaccharides (such as 
fructose and glucose) exhibiting more pronounced effects (45). 
As superoxide anion radicals are precursors to highly reactive 
substances, their scavenging capacity closely mirrored the trend 
observed for hydroxyl radicals (Figures  6A,B). Compared to 
RPH, glycosylation enhanced the superoxide anion radical 
scavenging ability, likely due to the polyhydroxyl structure of the 
sugars and the antioxidant-active amino acid residues. These 
modifications allow the glycosylated products to act as effective 
hydrogen donors, neutralizing superoxide anion radicals (28). 
Furthermore, glycosylation modifications have been shown to 
improve the solubility and stability of proteins, the introduction 
of hydrophilic hydroxyl groups from sugars increases surface 
hydrophilicity, thereby enhancing water solubility, enhancing 
their ability to interact with reactive substances (40).

3.6.4 DPPH• scavenging capacity
DPPH• is a stable nitrogen-centered radical, absorbing maximally 

at 517 nm. The purple ethanol solution of DPPH•, and its 
concentration, relate linearly to absorbance. The antioxidant capacity 
of a substance can thus be determined by measuring its ability to 
scavenge DPPH• at 517 nm (46). Both RPH and glycosylation 
products showed increased scavenging activity as the concentration 
increased, with glycosylation products demonstrating higher DPPH• 
scavenging rates than the hydrolysates. In this study, we observed a 
12.75% increase in the DPPH• scavenging rate of RPH-X (Figure 6C), 
aligning with the trend of enhanced DPPH• activity reported by Chen 
et al. in fermented soybeans (47). Wang et al. reported that yak casein 
glycosylated via the Maillard reaction exhibited significantly greater 
DPPH• scavenging capacity compared to its native form, with efficacy 
strongly correlated with the extent of glycation (44). Similarly, Dai 
et al. demonstrated that enzymatic hydrolysis of wheat gluten with 
subsequent Maillard glycosylation significantly enhanced its DPPH• 
scavenging ability, achieving up to 71.71% clearance under optimal 
conditions (48). Compared with proteins such as casein and gluten, 
rice protein inherently possesses relatively low antioxidant activity, 
possibly due to its compact structure and limited hydrophobic group 
exposure. However, the protein’s favorable chemical reactivity allows 

FIGURE 6

(A) •OH radical scavenging rate of different glycosylation products. (B) Superoxide anion radical scavenging rate of different glycosylation products. 
(C) Scavenging rate of DPPH• by different glycosylation products. (D) Scavenging rate of ABTS•+ by different glycosylation products.
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substantial improvement of antioxidant properties through glycation. 
Previous studies have demonstrated that the Maillard reaction 
markedly enhances DPPH• scavenging capacity by increasing protein 
hydrophilicity, revealing reactive functional sites, and introducing 
hydrogen-donating groups (33).

3.6.5 ABTS•+ scavenging capacity
ABTS is oxidized to form ABTS•+, imparting a stable blue-green 

color with maximum absorption at 734 nm. Antioxidant components 
react with ABTS•+, leading to discoloration of the reaction system, and 
the scavenging capacity is calculated (16). The ABTS•+ scavenging 
capacity of glycosylated rice proteolytic digests progressively increased 
with increasing concentration within a specific range. Furthermore, 
the ABTS•+ scavenging capacity of glycosylated rice protein digests 
exceeded 50%. At a concentration of 3 mg/mL, the scavenging rates of 
RPH-X, RPH-A, and RPH-F were 60.7, 61.2, and 63.5%, respectively, 
(Figure  6D). The sequence of ABTS•+ scavenging potency was 
RPH-F > RPH-A > RPH-X. This enhanced activity of RPH and its 
derivatives might be due to the formation of more potent free radical-
scavenging compounds during glycosylation, potentially similar to 
black essence-like structures (39). Chen et al. found that solid-state 
fermentation significantly increased the contents of total phenolics, 
total flavonoids, and aglycone isoflavones in soybeans, thereby 
enhancing their scavenging abilities against free radicals such as 
ABTS•+ and DPPH• (49). These findings further highlight the crucial 
role of structural modification in improving free radical scavenging 
capacity. Additionally, the ABTS•+ scavenging rate showed a positive 
correlation with sample concentration, a pattern consistent with the 
other antioxidant activity-concentration relationships observed.

3.7 Evaluation of in vivo antioxidant effect

3.7.1 Examination of administered dose
As the tolerated concentration of RPH-A in zebrafish is unknown, 

a preliminary experiment was conducted. For each concentration 
gradient, 90 zebrafish were selected with three parallel groups 
established for each concentration. This gradient was used to 
determine the maximum tolerated concentration (MTC) of the 
enzyme hydrolysates in zebrafish, providing essential reference data 
for evaluating their antioxidant efficacy.

As indicated in Table 2 under the experimental conditions, when 
zebrafish were exposed to RPH-A at concentrations below 200.0 μg/
mL, both the experimental and control groups exhibited no deaths or 
morphological abnormalities. However, as the concentration of 
RPH-A increased, a gradual increase in zebrafish mortality was 
observed, suggesting that the toxicity of RPH-A is positively 
correlated with its concentration. The MTC of RPH-A for zebrafish 
was established at 200.0 μg/mL, consistent with previous 
findings (50).

3.7.2 Detection of ROS and evaluation of 
antioxidant effects in zebrafish

Hydrogen peroxide, a known oxidant, can significantly elevate 
ROS levels when organisms are exposed to external stressors, 
exceeding their natural antioxidant defenses and causing oxidative 
stress. This imbalance may result in considerable cellular damage (51). 
A common method for detecting ROS in zebrafish involves the use of 
fluorescent probes, such as dichlorodihydrofluorescein diacetate 
(DCFH-DA), which crosses cell membranes and is oxidized to 
fluorescent compounds upon ROS exposure. The antioxidant effect of 
RPH-A in zebrafish is assessed by measuring fluorescence intensity. 
The fluorescence intensity results, after continuous exposure for 96 h, 
are presented below:

Fluorescence intensity is presented in ImageJ as a pixel value, 
grayscale value, or optical density value. A pixel is the basic unit of an 
image, and its numerical value represents the intensity.

As depicted in Figure 7 and Table 3 fluorescence intensity in the 
head, heart, and trunk regions of zebrafish larvae in the model group 
was significantly higher, confirming successful establishment of the 
oxidative damage model and elevated ROS levels in the zebrafish. 
These observations align with findings from Luo et  al. (52). The 
fluorescence intensities in the RPH-A and RPH groups were lower, 
indicating that both RPH and its glycosylated form, RPH-A, effectively 
reduced ROS levels in zebrafish. The enhanced bioactivity observed 
might result from glycation-induced structural modifications that 
alter cell membrane permeability (53), thereby facilitating deeper 
tissue penetration. Moreover, glycation-induced conformational 
stabilization protects critical antioxidant amino acid residues (e.g., Tyr 
and Trp) from degradation or oxidation, consequently improving 
their stability and durability (54).

TABLE 2 Experimental result of maximum detectable concentration of zebrafish (n = 30).

Groups RPH-A sample 
concentration/(μg/mL)

Zebrafish mortality Zebrafish mortality 
rate/%

Phenotype

Normal control group – 0 0 No apparent abnormality

Model Control group – 0 0 No apparent abnormality

Test group

50.0 0 0
Similar status to Modeled 

controls

100.0 0 0
Similar status to Modeled 

controls

200.0 0 0
Similar status to Modeled 

controls

400.0 5 17 –

800.0 30 100 –
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FIGURE 8

Zebrafish body MDA levels and peroxidase activity. (A) MDA levels. (B) CAT activity. (C) T-SOD activity. The * sign indicates a significant difference, 
*p < 0.05 The # sign represents a significant difference in the model control group, # (p < 0.05), ## (p < 0.01), ### (p < 0.001), ns indicates no 
significant difference (p > 0.05).

3.8 Effects of RPH-A on peroxidase activity 
in zebrafish

MDA levels, indicative of lipid peroxidation and thus oxidative 
stress, were significantly elevated in the model group (Figure  8A; 
p < 0.01), validating the model’s effectiveness (55). Conversely, MDA 
concentrations were lower in the GSH-treated group, underscoring its 
protective role against lipid peroxidation.

CAT, prevalent in animals, plants, microbes, and cultured cells, is 
the predominant H2O2 scavenging enzyme and plays a crucial part in 
the reactive oxygen species scavenging mechanism. In the model 
group, CAT activity was significantly decreased (p < 0.001), suggesting 

an impairment of the antioxidant defense mechanism. Conversely, in 
the RPH-A treated group, CAT activity was notably higher (p < 0.05; 
Figure 8B), indicating that RPH-A plays a role in enhancing antioxidant 
defenses. Additionally, CAT levels in the GSH-treated group exceeded 
those in the model group, supporting findings from earlier studies (56).

T-SOD is a metalloenzyme prevalent in living organisms. It serves 
as a crucial oxygen radical scavenger that catalyzes the 
disproportionation of superoxide anion to produce H2O2 and O2 (50). 
T-SOD functions as both a superoxide anion scavenging enzyme and 
a principal H2O2-producing enzyme, significantly contributing to the 
biological antioxidant system. Regarding T-SOD activity, it was 
substantially reduced in the model group (p < 0.001). However, 

FIGURE 7

Typical diagrams of fluorescence intensity in zebrafish.

TABLE 3 Evaluation experiment results on the antioxidant efficacy of glycosylated enzymatic hydrolysates.

Groups Fluorescence intensity (pixels, 
mean±SE)

Relative fluorescence 
intensity

Antioxidant effect/%

Control 581,453 ± 13684.66 0.015 –

Model 36,507,700 ± 1447285.79 1.000 –

RPH 25,229,703 ± 1476000.38*** 0.691 31.39***

RPH-A 6,045,490 ± 432304**** 0.170 84.78****

Comparison with model control group, ***p < 0.001, ****p < 0.0001.
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T-SOD activity was elevated in the RPH-A treated group (p < 0.05), 
demonstrating RPH-A’s protective role in zebrafish, as illustrated in 
Figure 8C. Comparatively, T-SOD levels in the model group and the 
GSH-treated group showed no significant differences (p > 0.05) (57).

4 Conclusion

This study employed a combined enzymatic hydrolysis and 
glycosylation modification approach to enhance the antioxidant 
capacity of RPH, which were subsequently evaluated through in vitro 
and in vivo assays. Glycosylation significantly enhanced the ability to 
scavenge free radicals; at a concentration of 6 mg/mL, the DPPH 
radical scavenging rate of RPH-X was 12.75% greater than that of 
unglycosylated RPH. Moreover, glycosylated hydrolysates exhibited 
robust ROS scavenging activity, with an in vivo antioxidant efficacy 
reaching 84.78%. Additionally, glycosylated hydrolysates markedly 
elevated the activities of antioxidant enzymes, such as CAT and 
T-SOD. These findings suggest that glycosylated RPH exhibit 
substantial antioxidant potential in both in vitro and in vivo contexts, 
indicating promising applications in the development of functional 
foods and nutritional supplements. While the study confirmed the 
antioxidant activity of glycosylation products using the zebrafish 
model, zebrafish, as a lower vertebrate, possess a physiological 
environment that markedly differs from that of humans, potentially 
limiting their ability to accurately replicate the intricate metabolic 
pathways or prolonged antioxidant effects observed in humans. Future 
research should aim to validate these findings using mammalian models.
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