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Health benefits of anthocyanins 
against age-related diseases
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Anthocyanins, a class of polyphenol flavonoids widely present in various fruits and 
vegetables, have attracted significant attention due to their potent anti-inflammatory, 
antioxidant, and anti-aging properties. Recent studies indicate that anthocyanins 
may play important roles in extending life and preventing or treating age-related 
diseases. This review systematically summarizes the chemical characteristics of 
anthocyanins and their potential roles in age-related diseases, including lifespan 
extension, neurodegenerative diseases, skeletal diseases, cardiovascular diseases, 
cancer, and metabolic syndrome. Furthermore, we explore the effects of anthocyanins 
on age-related diseases and their potential mechanisms of action to establish a 
theoretical foundation for future clinical applications.
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1 Introduction

Aging is a natural process where the ability of organisms to adapt both physically and 
mentally to their environment gradually decreases, ultimately resulting in death. Aging drives 
the development of various diseases related to old age. Common age-related diseases include 
cardiovascular disease (CVD) (1), neurodegenerative disease (2), cancer (3), metabolic 
syndrome (4) and bone diseases (5). These conditions can diminish the quality of life for older 
adults and impose a significant economic burden on families and society. Thus, creating new 
and effective anti-aging strategies to reduce or delay age-related diseases and improve the 
quality of life for older adults is a crucial public health challenge that must be addressed. Strong 
evidence from both animal and human studies shows a clear but complex link between 
nutrition and aging (6–8). In recent years, numerous studies have investigated the anti-aging 
effects of nutritional strategies, such as antioxidant nutrient supplementation, which helps 
reduce health risks and promote healthy aging.

Vegetables and fruits, abundant in polyphenolic compounds, have been shown to 
effectively extend lifespan and reduce the risk of age-related diseases (9, 10). Anthocyanins 
(ACNs), a class of water-soluble plant pigments classified as flavonoids, are abundantly found 
in numerous fruits and vegetables such as blueberries, blackberries, red grapes, and purple 
cabbage. ACNs provide vibrant coloration to plants and exhibit various biological properties, 
such as anti-inflammatory, antioxidant, and antitumor activities. Moreover, the molecular 
structure of anthocyanins, which includes conjugated cyclic systems and hydroxyl substituents-
especially catechol moieties-confers potent antioxidant capacity (11). Recent clinical and 
experimental studies show that anthocyanins can extend lifespan and help prevent or alleviate 
various age-related diseases, including neurodegenerative diseases, cardiovascular disorders, 
metabolic syndrome, bone diseases, and cancer. Therefore, understanding the therapeutic 
effects and underlying mechanisms of anthocyanins in age-related diseases has significant 
scientific and clinical implications.
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2 Chemical properties of anthocyanins

Anthocyanins are important natural pigments found in plants, 
classified as flavonoids. They have a unique structure known as a 
benzopyran skeleton, which consists of a benzene ring attached to a 
pyran ring. The structure of anthocyanins greatly affects their stability, 
solubility, and bioavailability, which in turn influences their use in 
food, pharmaceuticals, and nutraceuticals. Currently, over 650 
different anthocyanin compounds have been identified in plants. 
These compounds can be categorized into six main aglycone variants 
based on their substituent patterns: Pelargonidin (Pg), Cyanidin (Cy), 
Delphinidin (Dp), Peonidin (Pn), Malvidin (Mv), and Petunidin (Pt) 
(12). Anthocyanins are mainly found in a variety of fruits, vegetables, 
and some flowers, such as blueberries, blackberries, red grapes, purple 
cabbage, and purple sweet potatoes. The chemical structure of 
anthocyanins contains multiple hydroxyl and carboxyl groups, 
functional moieties that confer potent antioxidant capacity and 
bioactivity. Studies, both in  vivo and in  vitro, have shown that 
anthocyanins have various biological functions, including antioxidant, 
anti-inflammatory, anti-aging, antimicrobial, anti-tumor, 
hypoglycemic, vision-protective, and immunomodulatory effects 
(13–15). In addition, more and more studies have shown that 
anthocyanins have important roles in prolonging life span and the 
prevention or treatment of aging-related diseases, including 
cardiovascular diseases (16), neurodegenerative diseases (17), 
metabolic diseases (18), skeletal diseases (19), cancer (20) and 
eye-related diseases (21).

3 Anthocyanins and lifespan extension

Extending lifespan is a key objective of anti-aging research and 
serves as a crucial indicator of its effectiveness. One of the mechanisms 
of aging is the excessive accumulation of oxygen radicals, which leads 
to oxidative damage. Studies have shown that anthocyanins have 
antioxidant biological activity and can prolong the life span of 
Drosophila and Caenorhabditis elegans (C. elegans). For example, 
studies indicate that black rice anthocyanins extract (BRAE) can 
extend Drosophila lifespan by 20% while also delaying the loss of 
motor function (22). Additionally, Zuo et al. reported an increase in 
Drosophila lifespan of 14% due to BRAE (23). The proposed 
mechanism indicates that BRAE may enhance the mRNA levels of 
CuZnSOD (SOD1), MnSOD (SOD2), catalase (CAT), and Rpn11 in 
fruit flies, while simultaneously downregulating the mRNA level of 
methuselah (Mth). This modulation strengthens the antioxidant 
system and contributes to lifespan extension in fruit flies (23). 
Honeysuckle (Lonicera pallasii) extract is an excellent source of 
anthocyanins. Studies have shown that 100 μM honeysuckle extract, 
by activating the silent information regulator 6 (Sirt 6)/Lelch-like 
ECH-associated protein 1 (Keap 1)/nuclear factor-erythroid 2-related 
factor 2 (Nrf2) signaling pathway, can increase the lifespan of 
Drosophila melanogaster by 8%. The integrity of the intestinal barrier 
increased by 4%; inhibition of Sirt-6 expression blocked the effect of 
honeysuckle extract on lifespan extension in Drosophila melanogaster 
(24). Furthermore, purple sweet potato extract (PSPE) is not only rich 
in anthocyanins but also exhibits greater stability compared to 
anthocyanins found in other plants, such as blueberries and 
cranberries. Studies have shown that PSPE activates the autophagy 

pathway by increasing the activity of antioxidant enzymes and 
inhibiting the mammalian target of rapamycin (mTOR) pathway, 
improving intestinal homeostasis and mitigating intestinal barrier 
dysfunction, thus extending the lifespan of Drosophila (25, 26).

Moreover, anthocyanins can also effectively improve the lifespan 
of C. elegans. Studies show that PSPE improves the antioxidant 
enzyme activity in C. elegans and reduces malondialdehyde, reactive 
oxygen species (ROS), and lipofuscin accumulation. This leads to a 
26.7% increase in their lifespan. In contrast, fermented PSPA extends 
their lifespan by 37.5% (27). The primary component of red cabbage 
anthocyanins, cyanidin-3-diglycoside-5-glucoside (CY3D5G), 
exhibits antioxidant activity. The study demonstrated that the 
derivatives of red cabbage CY3D5G (RCJ) significantly increased the 
survival rate and average lifespan of C. elegans under oxidative and 
heat stress, with improvements of 171.63, 31.64, and 28.16%, 
respectively. The life-prolonging effect of RCJ may be related to the 
heat shock transcription factor pathway, deacetylase signaling pathway 
and calmodulin kinase II pathway (28). Alternatively, Chen et  al. 
showed that anthocyanin-rich purple wheat has a lifespan-extending 
effect, partially dependent on the activation of DAF-16/FOXO 
transcription factors (29). Similarly, the nutrients from mulberry 
anthocyanin extract (MAE) can effectively prolong the longevity of 
paraquat-damaged C. elegans by inhibiting mitogen-activated protein 
kinase (MAPK)/Nrf2 signaling in vitro (30). Moreover, other natural 
compounds such as wheat bran, Dendrobium officinale flower, 
extracts of Tsai Tai, purple pitanga fruit, lycium barbarum extracts 
have been shown to effectively extend the life span, but the specific 
mechanism needs to be further explored (31–35). In summary, these 
studies underscore the crucial role of anthocyanins in promoting 
healthy aging. Anthocyanins play a key role in delaying aging and 
improving lifespan by activating autophagy, inhibiting oxidative stress, 
and improving intestinal homeostasis, providing new perspectives for 
future aging research (Table 1).

4 Role of anthocyanin in age-related 
diseases

4.1 Anthocyanins and neurodegenerative 
diseases

Aging is the primary risk factor for neurodegenerative diseases, 
particularly Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and 
Amyotrophic Lateral Sclerosis (ALS), all of which become more 
prevalent with age (36). Recent studies have shown that anthocyanins 
and anthocyanin-rich extracts can alleviate the cognitive deficits 
associated with PD, AD, and ALS.

4.1.1 Anthocyanins and Alzheimer’s disease
Alzheimer’s disease (AD) is a common and severe 

neurodegenerative disorder related to aging, marked by cognitive 
decline and synaptic dysfunction. Currently, about 50 million people 
aged 65 and older have Alzheimer’s disease (AD) worldwide, and this 
number is expected to triple by 2050 (37). Human studies have shown 
that consuming 200 milliliters of cherry juice daily for 12 weeks 
significantly enhances language fluency, short-term memory, and 
long-term memory in older adults aged 70 and above with mild to 
moderate dementia (38). Supplementation with anthocyanin-rich 
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blueberry concentrate (30 mL/day for 12 weeks) may not only 
improve brain perfusion and activation in brain areas associated with 
cognitive function in healthy older adults (39), but also enhance 
neural activation in patients with mild cognitive impairment and 

strength neural responses during working memory challenges in older 
adults with cognitive decline (40). Animal studies have also shown 
that anthocyanin-rich blackcurrant extract (3% anthocyanin for 
9 weeks) also improves long-term recognition memory and 

TABLE 1 Summary of anthocyanins sources and its anti-aging ability in different models.

Anthocyanins Experiment model Dose of application Key findings

Black rice anthocyanin extract 

(22)
D. melanogaster 5 mg/mL

↑Mean lifespan;

↑Climbing ability.

Black rice anthocyanin extract 

(23)
D. melanogaster 30 mg/mL

↑Mean lifespan;

↑Antioxidant capacity;

↑The mRNA of antioxidant enzyme (SOD1, SOD2, CAT and Rpn11);

↓The mRNA of Mth.

Honeysuckle (Lonicera pallasii) 

extract (24)
D. melanogaster 100 μM

↑Median and maximum lifespan;

↑Integrity of the intestinal barrier;

Activate Sirt6/Keap1/Nrf2 signaling pathway.

Purple sweet potato extract (25) D. melanogaster 0.5 mg/mL and 2.0 mg/mL

↑Mean lifespan;

↑Antioxidant capacity;

↓The mRNA of mTOR;

↑The mRNA of autophagy (Atg1, Atg5, Atg8a and Atg8b);

Improves intestinal homeostasis.

Purple sweet potato extract (26) D. melanogaster 2.0 mg/mL and 5.0 mg/mL

↑Mean and maximum lifespan;

↑Antioxidant capacity;

Activates the autophagy;

Improves intestinal homeostasis.

Purple sweet potato extract and 

fermented purple sweet potato 

extract (27)

C. elegans 80 μg/mL

↑Mean lifespan;

↓The intracellular ROS;

↑The mRNA of longevity-related genes (daf-16, hsp-16.2, sir-2.1, skn-1, 

and sod-3).

Red cabbage juice (28) C. elegans 1, 2, 3 and 5%

↑Mean lifespan;

↑The survival rate in oxidative and thermal stress;

↑The mRNA (hsp-16.1, hsp-16.2);

↓The mRNA osr-1.

Purple wheat extract (29) C. elegans 10, 50 and 100 μg/mL
↑Mean lifespan;

↑The nuclear localization of DAF-16/FOXO.

Morus alba L. extract (30) C. elegans 100 μg/mL

↑The mean life in oxidative stress;

↓The level of MDA and lipofuscin;

↑The DAF-16/FOXO, SKN/Nrf2 and PMK-1/p38 pathways

Dendrobium officinale L. freeze-

dried extract (31)
C. elegans 150 μL

↑Mean lifespan;

↑The survival rate in oxidative and thermal stress.

Wheat bran extract (32) D. melanogaster 0.1 g/mL

↑Mean lifespan;

The survival rate in oxidative stress was not affected;

↓Female survival rate in starvation

↑Female survival rate in thermal stress;

Brassica chinensis (Tsai Tai) 

extract (33)
C. elegans 2 mg/mL

↑Mean lifespan;

↑The survival rate in oxidative stress;

↓The intracellular ROS.

Eugenia uniflora L. extract (34) C. elegans 5–500 μg/mL

↑The survival rate in oxidative and thermal stress;

↓The intracellular ROS;

↑The nuclear localization of DAF-16.

Lycium barbarum berry extract 

(35)
C. elegans 5 mg/mL

The mean lifespan depending on sir-2.1 pathway;

↑Sir-2.1 activity.

↑, increase or enhance; ↓, reduce or inhibit; ROS, reactive oxygen species; SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; CAT, catalase; Mth, methuselah; Sirt6, Sirtuin6; 
Keap1, Kelch-1ike ECH- associated protein; Nrf2, Nuclear factor erythroid 2-related factor 2; FOXO, Forkhead box O; p38, p38 mitogen-activated protein kinase.
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normalized anxiety levels in senescence-accelerated mouse prone 8 
(SAMP 8) mice (41). Additionally, mulberry extract (0.18 and 0.9% 
mulberry extract for 12 weeks) reduces brain β-amyloid levels and 
improves learning and memory in SAMP 8 mice (42). These studies 
indicate that anthocyanins can effectively address age-related cognitive 
decline and may serve as a promising compound for preventing and 
treating Alzheimer’s disease.

The brain is particularly vulnerable to oxidative stress, as previous 
studies indicate that reactive oxygen species (ROS) levels are 
significantly elevated in the brains of Alzheimer’s disease (AD) 
patients and animal models (43). Mechanistic studies on the 
neuroprotective effects of anthocyanins indicate that Korean black 
bean anthocyanin (12 mg/kg/day for 30 days) regulates the 
phosphorylated phosphatidylinositol 3-kinase (p-PI3K)/protein 
kinase B (Akt)/glycogen synthase kinase 3β (GSK3β) pathway, thereby 
reducing ROS levels and oxidative stress in the brains of APP/PS1 
transgenic mice, which improves cognitive function in these AD 
models. In vitro experiments have also shown that anthocyanins 
mitigate neurotoxicity induced by amyloid β oligomers (AβO) 
through the PI3K/Akt/Nrf2 signaling pathway (44). In addition, 
anthocyanins-containing PEG-AuNPs (12 μg/g/day for 14 days) also 
modulated the p-PI3K/p-Akt/p-GSK3β pathway, thereby inhibiting 
the hyperphosphorylation of tau at serine 413 and 404 and apoptosis 
of neurons in the brains of mice injected with Aβ1-42 (45). Excessive 
neuroinflammation is directly related to the development of AD, and 
microglia are the main effectors of neuroinflammation (46). 
Supplementing with bilberry anthocyanins (20 mg/kg/day for 
3 months) can activate astrocytes and microglia, and improve their 
phagocytic function of beta amyloid plaques in APP/PSEN1 mice 
(47). Activation of c-Jun N-terminal kinase (JNK) in the brain can 
stimulate microglia and increase the expression of proinflammatory 
cytokines, including tumor necrosis factor-alpha (TNF-α), 
interleukin-6 (IL-6), and monocyte chemoattractant protein-1 
(MCP-1) (48), anthocyanin supplementation in LPS treated mice 
inhibited JNK activation and reduced the expression of nuclear factor 
kappa-B (NF-κB), TNF-α and interleukin-1beta (IL-1β). In addition, 
anthocyanins also reduced neuroinflammatory markers in Aβ1-42-
induced mouse model by inhibiting the p-JNK/NF-κB/p-GSK3β 
pathway (49). High-fat diet is an important risk factor for inducing 
neurodegenerative diseases (50). Anthocyanin supplementation (4% 
blueberry diet for 5 months) was able to reverse some of the behavioral 
deficits in high-fat diet-induced mice, particularly object recognition 
memory (51). The neuroprotective effects of anthocyanins may 
be  related to attenuated microglial activation and increased 
neuroplasticity (52). Anthocyanin supplementation (100 mg/kg/day 
for 20 weeks) could also further block oxidative stress by improving 
AMPK-mediated autophagy, restore brain-derived neurotrophic 
factor protein levels in the hippocampus of mice on a high-fat diet, 
and ultimately inhibit hippocampal cell apoptosis and ameliorate 
cognitive deficits (53). Anthocyanins (700 mg/kg/day for 20 weeks) 
can also alleviate high-fat diet-induced neuroinflammation by 
inhibiting extracellular signal-regulated kinases, JNK, p38, and NF-κB 
activation (54). In summary, both animal studies and randomized 
clinical trials demonstrate that anthocyanins enhance cognition and 
neuroprotection. The mechanisms underlying these neuroprotective 
benefits are linked to anthocyanins’ ability to reduce oxidative stress, 
inflammation, and apoptosis in the brain. To fully realize the 

neuroprotective effects, further research should determine the best 
dose and frequency of anthocyanins for human use (Table 2).

4.1.2 Anthocyanins and Parkinson’s disease
Aging significantly increases the risk of developing Parkinson’s 

disease (PD), with prevalence rising from age 50 to 80. The 
pathogenesis of PD is diverse, including α-synuclein misfolding and 
aggregation, oxidative stress, mitochondrial dysfunction, and 
neuroinflammation (55). Current treatments for PD are limited; 
common medications provide only symptom relief and often come 
with significant side effects. Human studies have shown that dietary 
anthocyanins can effectively reduce mortality risk and have a positive 
impact on the mood of patients with PD (56, 57). The main lesions in 
Parkinson’s disease are the midbrain substantia nigra (SN) and the 
striatum, accompanied by degeneration and death of dopaminergic 
neurons. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
induces the death of specific dopaminergic neurons. Mulberry (Morus 
alba L.) extract (500 mg/kg/day for 15 days) can mitigate this cell 
death, reduce pro-apoptotic protein levels, and alleviate symptoms of 
Parkinson’s disease (58). A similar study also suggests that the 
mulberry (Morus alba L.) extract (250 mg/kg/day for 38 days) 
significantly inhibited the expression of Lewy body α-synuclein and 
ubiquitin, which are induced by MPTP (59). The injection of 
6-hydroxydopamine (6-OHDA) leads to oxidative damage in neurons, 
which is associated with the death of neurons in Parkinson’s disease 
(60). Pelargonidin supplementation (20 mg/kg 1 day before and on 
the day of surgery) significantly increased the number of 
dopaminergic neurons in the substantia nigra, reduced lipid 
peroxidation levels, and improved motor function in rats that were 
injected with 6-OHDA (61). Some studies indicate that 
neurodegeneration in Parkinson’s disease (PD) is linked to 
gastrointestinal dysregulation. Additionally, anthocyanin 
supplementation exhibits neuroprotective effects in PD mice (10, 20, 
40 mg/kg/day for 4 weeks) (62) and high-fat diet-induced obese rats 
(25 mg/kg/day for 17 weeks) (63) by modulation the composition and 
metabolism of gut microbiota. Moreover, other foods rich in 
anthocyanins, including sweet cherries (64), black carrot (65), 
blueberries and grape seed (66), may alleviate PD symptoms by 
providing antioxidant benefits, preventing cell death, and improving 
mitochondrial function. These studies indicate that anthocyanins 
could be  a promising new element of treatment strategy for PD, 
requiring further investigation in clinical trials (Table 2).

4.1.3 Anthocyanins and amyotrophic lateral 
sclerosis

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative 
disease characterized by the progressive degeneration and death of 
motor neurons. While current research on anthocyanins in ALS 
remains limited, preliminary evidence from animal models suggests 
potential protective effects on ALS. For instance, anthocyanin-derived 
metabolites such as protocatechuic acid (100 mg/kg after onset until 
death, 1 time/day, 5 times/week) (67) and anthocyanin-enriched 
strawberry extract (2 mg/kg/day after 60 days of age until death) (68), 
were shown to attenuate spinal cord astrogliosis, inhibit motor neuron 
apoptosis, and preserve neuromuscular junction integrity in SOD1 
mutant mice—a widely used ALS model. These interventions 
reportedly delayed disease progression, improved motor performance, 
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and extended survival in preclinical settings. However, no recent 
studies have further explored anthocyanins’ therapeutic mechanisms 
or translational potential in ALS, nor have clinical trials investigated 
their efficacy in human patients. The scarcity of research highlights a 
critical gap in understanding how dietary polyphenols might intersect 
with ALS pathophysiology. Future studies should prioritize (1) 
validating these findings in additional ALS models (e.g., TDP-43 or 
C9orf72-related models), (2) elucidating gut-brain axis interactions, 
and (3) assessing bioavailability and dosing regimens for clinical 
translation (Table 2).

4.2 Anthocyanins and bone diseases

4.2.1 Anthocyanins and osteoarthritis
Osteoarthritis (OA) is a chronic disease primarily affecting the 

elderly. A global study showed that there were about 300 million cases 
of hip and knee OA in 2017 (69). As the elderly population increases, 
osteoarthritis has emerged as a serious disease that affects their quality 
of life. The main pathological mechanism of OA is the degradation of 
the articular cartilage matrix, whose formation is related to cellular 
senescence, aging-related mitochondrial dysfunction, and oxidative 

TABLE 2 Common dietary sources of anthocyanins and health outcomes associated with aging-related diseases.

Dietary Effect Suggested health outcomes

Cherry
Antioxidant;

Lower blood pressure
↑Verbal fluency, motor, memory function, and lifespan (38, 64).

Blueberry
Regulate hormone levels;

Lower blood pressure

↑Memory, brain neural activation and neuroprotective (39, 40, 51, 66);

↓Bone loss caused by ovariectomy (89, 90);

↑Vasodilation function (100, 101).

Black bean
Antioxidant;

Pro-apoptotic

↑Memory functions (44);

↓BPH (128).

Mulberry
Antioxidant;

Anti-apoptotic

↑Learning, motor and memory abilities (42);

↓Dopaminergic neuronal damage (58, 59);

↓Endothelial senescence (96).

Blackcurrant

Antioxidant;

Anti-inflammatory;

Lower blood pressure;

Regulate hormone levels;

Improved glycolipid metabolism

↑Neural response and emotional health (41, 57);

↑Cancellous bone mass (83);

↓Bone loss caused by ovariectomy (88);

↓Intraocular pressure (125);

↓Arterial stiffness (103);

↓Cardiometabolic risk (119);

↓Blood glucose and blood lipid (117).

Bilberry
Anti-inflammatory;

Improved glycolipid metabolism

↑Cognitive function (47);

↑Visual function (126);

↓Cardiometabolic risk (119);

↓Blood glucose and blood lipid (117).

Purple sweet potato
Antioxidant;

Anti-inflammatory

↑Memory function and neuroprotective (53, 54);

↓Development of atherosclerotic lesions (93).

Blackberry Modulate gut microbiota composition ↓Neuroinflammation (63).

Black carrot
Antioxidant;

Anti-apoptotic
↓Neurotoxicity (65).

Strawberry Reduced astrocytosis ↑Grip strength and neuromuscular junction integrity (68).

Purple corn Pro-apoptotic ↓BPH (129).

Grape skin Regulate hormone levels ↓BPH (127).

Red Chinese cabbage Anti-inflammatory ↓Risk of vascular inflammatory disease (94);

Black rice

Anti-inflammatory;

Regulate intestinal flora;

Regulatory bone turnover

↓Bone loss due to diabetes (85);

↑Intestine barrier integrity, ↓colorectal cancer cell proliferation (107).

Wheat Enhanced autophagy ↑Antineoplastic activity (110).

Cranberry Lower blood pressure ↓Risk of cardiovascular disease (102).

Raspberry Lower blood pressure ↓Dementia patients’ blood pressure (104).

Purple rice Anti-inflammatory ↓Articular cartilage degradation (73).

Maqui berry Regulate hormone levels ↓Bone loss caused by ovariectomy (87).

BPH, benign prostatic hyperplasia; ↑, increase or enhance; ↓, reduce or inhibit.
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stress (70). Additionally, both malvidin and pelargonidin can alleviate 
inflammation, cartilage degradation, and pain in OA by inhibiting the 
NF-κB pathway (71). Drugs for osteoarthritis (OA) can have several 
side effects, while nutritional health products are seen as an effective 
alternative for protecting and enhancing bone health (72). Studies 
have shown that anthocyanins improve OA symptoms by inhibiting 
inflammatory responses and the degradation of articular cartilage. For 
example, the anthocyanin in purple rice (6.25–50 μg/mL for 35 days) 
can reduce articular chondrocyte damage by inhibiting IL-1β-induced 
matrix metalloproteinase expression, which is closely related to the 
NF-κB and ERK/MAPK signaling pathways (73). Additionally, 
malvidin (74) and pelargonidin (75) can enhance the inflammatory 
response, reduce cartilage degradation, and alleviate pain in OA by 
inhibiting the NF-κB pathway. Research indicates that Sirtuin 6 
improves chondrocyte aging and slows the progression of 
osteoarthritis (OA) (76). Cyanidin administration (50 mg/kg/day for 
8 weeks), both in vivo and in vitro, enhances Sirt6 activity and inhibits 
the NF-κB signaling pathway. It also prevents IL-1β-induced 
degradation of the extracellular matrix (ECM) and reduces the 
inflammatory response in human OA chondrocytes. Additionally, it 
mitigates proteoglycan loss and cartilage damage caused by 
destabilization of the medial meniscus (DMM) in OA mice (77). 
Clinical studies indicate that consuming foods rich in anthocyanins 
can help balance immune markers in patients with osteoarthritis, 
thereby reinforcing the potential of anthocyanins as an additional 
therapeutic strategy (78). Therefore, anthocyanins can reduce OA 
symptoms and improve patients’ quality of life (Table 2).

4.2.2 Anthocyanins and osteoporosis
Osteoporosis is a disease marked by low bone mass and changes 

in bone microstructure, leading to increased fragility and susceptibility 
to fractures, which adversely impacts patients’ quality of life (79). 
Advanced age is a major risk factor for chronic diseases. Hormonal 
imbalances that occur with age lead to dysfunction of osteoclasts and 
osteoblasts, oxidative stress, and chronic inflammation, all of which 
significantly contribute to the development of osteoporosis (80, 81). 
Anthocyanins are known for their anti-inflammatory, anti-oxidative, 
and anti-apoptotic effects. Studies suggest that anthocyanin-rich foods 
can improve bone remodeling biomarkers in middle-aged and elderly 
people, indicating their potential role in osteoporosis management 
(82). Sakaki et al. found that blackcurrant diet (a standard chow diet 
with 1% (w/w) anthocyanin for 4 months) improved cancellous bone 
mass loss in young mice by increasing glutathione peroxidase (GPX) 
activity in the humerus. However, this diet only modestly reduced 
TNF-α expression in older mice, with no significant effect on 
cancellous bone mass. This suggests that early administration of 
anthocyanins may help prevent age-related bone loss (83). 
Osteoporosis involves a gradual decline in osteoblasts and increased 
bone resorption by osteoclasts. Cyandin-3-glucoside plays a role in 
regulating osteoblast differentiation via the ERK1/2 signaling pathway 
(84). Osteoporosis related to diabetes is a systemic endocrine 
metabolic bone disease characterized by reduced bone density and 
destruction of bone microstructure. Studies show that anthocyanins 
in black rice extract (0.5, 1.0 and 2.0 g/kg/day for 8 weeks) can 
improve bone loss in diabetes rats by inhibiting bone turnover and 
bone marrow fat production, and up regulating the ratio of RUNX2 
and OPG/RANKL in bone tissue of diabetes rats (85). Decreased 

estrogen levels are the primary cause of bone loss in postmenopausal 
women, with more than 30% of them affected by osteoporosis (86). 
Studies have demonstrated that supplements containing anthocyanins 
from blueberries, blackcurrants, or maqui berries can reduce bone loss 
induced by ovariectomy (87–90). This finding suggests that 
anthocyanins may help alleviate osteoporosis in postmenopausal 
women; however, the exact mechanism of action remains unclear and 
requires further investigation. Thus, anthocyanins, as natural bioactive 
compounds, may offer innovative strategies for preventing and 
treating osteoporosis (Table 2).

4.3 Anthocyanins and cardiovascular 
diseases

4.3.1 Effects of anthocyanins on endothelial 
function

Aging is a complex biological process, and epidemiological 
studies prove that aging is an independent risk factor leading to the 
occurrence of cardiovascular diseases. As people age, the heart 
transitions from compensatory adaptation to maladaptation, 
resulting in cardiac hypertrophy, changes in left ventricular diastolic 
function and contractile reserve, increased arterial stiffness, and 
impaired endothelial function (1). Cardiac dysfunction due to aging 
can lead to various cardiovascular diseases, including atherosclerosis, 
hypertension, and dyslipidemia. Atherosclerosis is a chronic and 
progressive vascular disease that is a precursor of an ischemic heart 
attack. The initial stage of atherosclerotic lesion development 
involves the activation of endothelial cells. Activated endothelial 
cells release the inflammatory mediator MCP-1 into the bloodstream 
and express adhesion molecules (ICAM-1 and VCAM-1) to attract 
circulating monocytes and other immune cells to the site of oxidized 
low-density lipoprotein accumulation (91, 92). Oral administration 
of anthocyanins has been recognized as a therapeutic option for 
managing cardiovascular disease. Research indicates that purple 
sweet potato, red Chinese cabbage (93, 94), and protocatechuic acid 
(95) can reduce plasma VCAM-1 levels and inhibit the expression 
of adhesion molecules on arterial endothelial surfaces. Furthermore, 
daily intake of an extract high in Chinese cabbage anthocyanins (150 
and 300 mg/kg/day for 12 weeks) can lower inflammatory cytokines 
and adhesion molecule levels, thus preventing plaque buildup in the 
arteries of hyperlipidemic mice (94). This suggests that anthocyanins 
suppress inflammation and alleviate the progression of 
atherosclerosis. Furthermore, Cyanidin-3-O-β-glucoside (100, 200 
and 300 mg/kg for 8 weeks) enhances endothelial nitric oxide 
synthase phosphorylation and preserves nitric oxide availability, 
promoting endothelial cell migration and survival (96, 97). 
Cyanidin-3-O-β-glucoside (0.2% C3G for 6 weeks) also enhances 
the function of endothelial progenitor cells and promotes endothelial 
repair, thereby slowing atherosclerosis in apolipoprotein E-deficient 
mice (98). More importantly, anthocyanin metabolites enhance 
endothelial function by influencing the gut microbiota (99). These 
studies suggest that anthocyanins slow atherosclerosis progression 
by regulating vascular endothelial function. In conclusion, 
anthocyanins are crucial for cardiovascular health due to their 
antioxidant and anti-inflammatory properties, as well as their role 
in regulating endothelial cell function (Table 2).
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4.3.2 Anthocyanins and hypertension
Hypertension is a significant risk factor for cardiovascular 

diseases. Chronic hypertension increases the heart’s workload, 
requiring it to pump blood more forcefully. Over time, this can lead 
to cardiac hypertrophy and ultimately result in heart failure. In 
addition, hypertension damages vascular endothelial cells and 
promotes the formation of atherosclerosis, which can lead to 
coronary heart disease, strokes, and other serious conditions. 
Clinical pilot studies indicate that healthy elderly individuals aged 
65 to 80, who consume 26 grams of freeze-dried wild blueberry 
powder (containing 302 mg of anthocyanins) daily for 12 weeks, 
experience significant increases in blood flow-mediated vasodilation 
and decreases in 24 h dynamic systolic blood pressure compared to 
the placebo group (100). Studies have also found that 5-week 
low-dose wild blueberry extract (222 mg of anthocyanins) 
significantly reduced systolic blood pressure in healthy elderly 
people (68–75 years old) (101). Moreover, a 6-week regimen of 
85 mg of cranberry extract (25% anthocyanins) per day significantly 
lowered both systolic and diastolic blood pressure in patients with 
myocardial infarction (102). Short-term (28 days) ingestion of 
300 mg New  Zealand blackcurrant extract capsules (35% 
blackcurrant extract) reduced arterial stiffness and blood pressure 
in elderly individuals with an average age of 73.3 years (103). These 
studies indicate that anthocyanins can lower blood pressure. 
Growing evidence suggests that anthocyanin’s anti-hypertensive 
effects primarily stem from its antioxidant, anti-inflammatory, and 
ACE inhibitory properties, along with its ability to inhibit the growth 
of vascular endothelial cells. However, the intake of anthocyanin-
rich blood orange juice (50 mg/500 mL) for 4 weeks also had no 
effect on blood pressure in healthy people (25–84 years old) (104), 
but it could significantly reduce blood pressure in patients with 
dementia (104). Therefore, the antihypertensive effects of 
anthocyanins depend on both the dosage and the duration of 
administration, and additional clinical trials are needed to determine 
the ideal nutritional intake and specific mechanisms, which will help 
create a stronger scientific basis for the prevention and treatment of 
cardiovascular diseases (Table 2).

4.4 Anthocyanins and cancer

Aging is a key risk factor for both the onset and progression of 
cancer, which is a leading cause of the rising mortality rate globally 
(105). Several studies have confirmed that anthocyanins possess 
anti-cancer properties. For example, it has been shown that 
anthocyanins (200 mg/kg) are able to significantly inhibit the growth 
of colorectal cancer cells, and to promote the apoptosis of cancer 
cells by regulating the PI3K/AKT signaling pathway (106). 
Anthocyanin can also further activate the aryl hydrocarbon receptor 
pathway by regulating intestinal flora, improve the intestinal barrier 
function, reduce inflammatory, and inhibit the proliferation and cell 
cycle of colorectal cancer cells (107). In addition, anthocyanins can 
slow tumor development by inhibiting tumor-associated 
inflammatory responses and reducing pro-inflammatory factors in 
the tumor microenvironment (20). In breast cancer and prostate 
cancer studies, anthocyanins have inhibited the growth of cancer 
cells by regulating the cell cycle and inducing apoptosis, thus 
showing a good preventive effect (108, 109). The latest studies show 

that anthocyanin-rich cereal diets (anthocyanin content 140 mM/g 
for 4.5 months) enhance autophagy by reducing M1 macrophage 
markers in tumors and promoting the expression of M2 macrophage 
markers, thereby exerting antitumor effects in Lewis lung cancer 
mice (110). Anthocyanins diet (0.5% CAN for 15 weeks) can also 
reduce lipid deposition in cancer cells by regulating the AMPK/
mTOR signaling pathway, thereby inhibiting the development of 
urethane-induced lung cancer in C57BL/6 J mice (111). While 
multiple studies have confirmed the anti-cancer effects of 
anthocyanins, further research is needed to determine their effective 
dosage and long-term clinical effects. Furthermore, the current 
study has focused on the relationship between anthocyanins intake 
and cancer risk, and some epidemiological studies showing that a 
diet rich in anthocyanins may be associated with reduced risk of 
some cancers (112). However, more randomized controlled trials are 
still needed to validate the specific mechanism of action of 
anthocyanins and its potential use in cancer prevention (Table 2).

4.5 Anthocyanins and metabolic syndrome

Aging is a major risk factor for developing metabolic syndrome, 
a complex condition characterized by symptoms like obesity, glucose 
intolerance, insulin resistance, dyslipidemia, and hypertension 
(113). These symptoms significantly increase the risk of 
cardiovascular disease and diabetes mellitus. Compared with healthy 
individuals, the proliferation of harmful bacterial flora in the gut of 
patients with metabolic syndrome is increased, and the beneficial 
bacterial flora is inhibited (114). Research shows that anthocyanin 
metabolites promote the growth of beneficial gut flora, improving 
intestinal health and metabolic function (115). Chronic 
inflammation is a hallmark of metabolic syndrome, and 
anthocyanins (320 mg/day for 4 weeks) can lower systemic 
inflammation by inhibiting proinflammatory factors like TNF-α and 
IL-6, thus alleviating metabolic syndrome symptoms (116, 117). 
Anthocyanins can also ameliorate the development of metabolic 
syndrome by improving the hypertrophy and inflammatory status of 
adipose tissue by regulating the leptin signaling pathway (118). 
These studies suggest that anthocyanins alleviate key features of 
metabolic syndrome by regulating gut microbiota, reducing chronic 
inflammation, and modulating leptin signaling pathways. In 
addition, anthocyanins play an important role in regulating lipid 
metabolism. Studies have shown that anthocyanins (640 mg/day for 
4 weeks) can reduce the levels of low-density lipoprotein cholesterol 
(LDL-C) and triglyceride (TG) levels in serum, while increasing the 
level of high-density lipoprotein cholesterol (HDL-C), thus 
improving abnormal lipid metabolism (119, 120). Anthocyanins 
(320 mg/day for 4 weeks) effectively improve insulin resistance by 
activating AMPK and PPAR-γ signaling pathways, enhancing cell 
sensitivity to insulin (99, 117). Oxidative stress is considered a key 
factor in the development of metabolic syndrome, and anthocyanins 
effectively reduce oxidative damage by scavenging free radicals and 
boosting the activity of antioxidant enzymes (116, 121). These 
researches indicate that anthocyanins mitigate metabolic 
disturbances associated with metabolic syndrome by regulating lipid 
metabolism, insulin sensitivity, and antioxidative stress. Although 
these studies provide a rationale for anthocyanins as a natural drug 
for potential antimetabolic syndrome, future studies should 
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FIGURE 1

The chemical properties, biological functions, and ability to improve age-related diseases of anthocyanins. ROS, reactive oxygen species. Created with  
Figdraw.com.

investigate the potential benefits and optimal dosing of anthocyanins 
in clinical applications (Table 2).

4.6 Anthocyanins and other diseases

Glaucoma is a chronic, progressive optic nerve disease that is a 
leading cause of irreversible blindness worldwide (122). The likelihood 
of developing glaucoma and other common eye diseases, like cataracts 
and macular degeneration, rises with age (123, 124). Studies have shown 
that black currant anthocyanins (50 mg/day for 4 weeks) are effective in 
lowering intraocular pressure in both healthy individuals and glaucoma 
patients (125). Additionally, bilberry anthocyanins (120 mg/day for 
24.32 ± 10.34 months) can improve visual function in patients with 
normal-tension glaucoma (126). However, the specific mechanism of 
action has not been reported in the literature and requires further 
investigation. Benign prostatic hyperplasia (BPH) is a common chronic 
disease of the urinary system among elderly men. An imbalance of 
androgens in older men is one of the main causes of 
BPH. Dihydrotestosterone (DHT) and converted testosterone by 5-α 
reductase type 2 (5AR2), binding with androgen receptor (AR), affect 
prostate proliferation and growth. In BPH, androgen signaling boosts 
the levels of prostate-specific antigen (PSA) and certain cytokines, like 
proliferating cell nuclear antigen (PCNA) and cyclin D1. Research has 
demonstrated that polymerized anthocyanin (PA) reduces the expression 
of proteins related to androgen signaling, including 5AR2, AR, and PSA 

in LNCaP cell lines. Oral administration of PA (100 mg/kg/day for 
4 weeks) can reduce the expression levels of AR, 5ar2, PSA, PCNA, 
cyclin D1, Bcl-2  in prostate tissue and serum DHT level, ultimately 
improving prostate weight in rats with BPH (127). Similarly, Jang et al. 
demonstrated that a 4-week black soybean (40, 80, and 160 mg/kg for 
4 weeks) anthocyanin intervention effectively reduced prostate volume 
in benign prostatic hyperplasia (BPH) rats (128). Meanwhile, purple 
corn extract enhanced (10, and 50 mg/kg/day for 4 weeks) pro-apoptotic 
gene expression by inhibiting androgen and AR signaling markers and 
regulating the PI3K/AKT signaling cascade, resulting in reduced prostate 
hypertrophy weight (129). These findings suggest that anthocyanin may 
be a promising natural treatment for BPH (Table 2).

5 Conclusion

Anthocyanins, as plant-derived bioactive compounds, hold 
significant potential to extend lifespan and combat age-related diseases 
through pleiotropic mechanisms such as autophagy activation, 
oxidative stress reduction, and promoting intestinal health. Preclinical 
evidence supports their therapeutic benefits in neurodegenerative 
disorders, osteoporosis, cancer, cardiovascular diseases, and other 
aging-associated conditions, mediated by antioxidant, anti-
inflammatory, and metabolic regulatory properties (Figure  1). 
However, critical knowledge gaps persist in translating these findings 
to elderly populations: (1) Existing studies predominantly rely on 
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animal models or young/middle-aged cohorts, with minimal data on 
long-term efficacy and safety in frail older adults (≥75 years) 
exhibiting multimorbidity or polypharmacy. (2) Age-related declines 
in gastrointestinal absorption, hepatic metabolism, and renal excretion 
may alter anthocyanin pharmacokinetics, yet no studies have 
systematically addressed this. (3) The impact of genetic polymorphisms 
(e.g., GST enzymes), sex hormones, and baseline microbiota diversity 
on anthocyanin effects remains unexplored in aging contexts.
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