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Autophagy, a regulated cellular process, serves as both a tumor suppressor and 
a survival mechanism for tumor cells under stress in cancer. Recent studies 
demonstrate that polyphenols, bioactive compounds present in plant-derived 
foods, and exercise, a potent physiological stimulus, can efficiently modulate 
autophagy in both cancer patients and healthy individuals. This review explores the 
synergistic effects of polyphenols and exercise in regulating autophagy through 
key molecular pathways, including AMPK/mTOR, PI3K/Akt, and SIRT1/FOXO. 
Polyphenols such as quercetin, resveratrol, and curcumin possess autophagy-
inducing properties, which may enhance exercise-induced cellular adaptations, 
contribute to cancer prevention, and improve metabolic health. Moreover, regular 
physical activity promotes autophagic flux, reducing oxidative stress, inflammation, 
and apoptosis resistance—factors critical in cancer progression and overall health 
maintenance. The review highlights the potential of polyphenol-exercise synergy 
in modulating autophagy, which may result in innovative therapeutic approaches 
for cancer treatment and metabolic health.
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1 Introduction

Organisms necessitate fitness, resilience, and adaptability for optimal health, while life 
sciences and medicine strive to enhance health and avert disease through systematic physical 
exercise (1). Exercise is essential in rehabilitation medicine for complete recovery from 
illnesses; however, the molecular mechanisms that facilitate health improvements are poorly 
understood, especially concerning its effects on cellular processes in different organ systems 
(2–4). Autophagy is a vital cellular process that breaks down and recycles intracellular 
components to maintain homeostasis (5–7). It encourages general health, disease prevention, 
differentiation, development, and survival. Given its critical role in cellular health, dysregulated 
autophagy is associated with several pathological conditions, including cancer, that indicate 
possible therapeutic applications by direct targeting of autophagy-related proteins (8, 9). 
Autophagy, an essential cellular protective mechanism, is being investigated as a potential 
treatment for cancer via pharmacological agents or dietary modifications.

Autophagy is pivotal in cancer, facilitating both the induction and suppression of tumor 
growth. It can inhibit inflammation, avert mutations, and forestall chronic tissue damage. 
Autophagy is crucial for the survival of tumor cells under conditions of cellular stress. Tumor 
cells lacking autophagy exhibit a survival disadvantage under metabolic stress. Oncogenic 
pathways enhance autophagy, elevating cellular energy expenditure and facilitating survival. 
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Although autophagy is a non-pharmacological intervention induced 
by physical exercise, it is still unknown what molecular mechanisms 
govern autophagic flux and how they might be used to treat cancer (5, 
10–12). Drugs that modulate autophagy, such as rapamycin, 
carbamazepine, cisplatin, and chloroquine, have received approval for 
human clinical application. Nonetheless, their specificity and organ/
cellular selectivity constrain their applicability. Natural products, 
including polyphenols present in fruits, herbs, vegetables, tea, wine, 
and cereals, present a promising therapeutic approach for regulating 
autophagy. Despite their well-established antioxidative properties, 
current research has indicated other mechanisms through which 
polyphenols exhibit health benefits. The regulation of autophagy by 
polyphenols to benefit human health by exercise has become an 
important new area of research focus. The relationship between 
exercise and polyphenols in regulating autophagy for cancer recovery 
is still ambiguous, despite extensive research on their advantages (13, 
14). This review analyzes the potential advantages of exercise and 
polyphenol-induced autophagy in enhancing well-being and 
preventing cancer. It investigates the molecular mechanisms, effects 
on particular tissues, and prospective future therapies utilizing 
polyphenols as chemoadjuvants.

2 Protein deficiencies in autophagy: 
mechanisms, diagnostics, and 
pathological implications

This section examines autophagy, encompassing chaperone-
mediated, microautophagy, and macroautophagy, along with their 
mechanisms, diagnostic methods, and the effects of protein deletion 
on cellular homeostasis and human health (15). It underscores the 
significance of autophagic flux in preserving cellular homeostasis, 
averting disease, and offering therapeutic advantages, including the 
synthesis and lipidation of LC3 (16–18). Monitoring the accumulation 
of microtubule-associated protein 1A/1B, Beclin1, Atg7, and Light 
Chain 3-II, essential autophagy proteins, is a prevalent technique for 
assessing flux (19, 20). Deficiencies in proteins such as Atg7 can 
exacerbate neurodegenerative diseases like Alzheimer’s, promote 
muscle atrophy, osteoporosis, and cognitive deterioration, 
underscoring the necessity to comprehend their physiological 
implications. Deficiencies in autophagy-related 5 can result in heart 
failure and cardiomyopathy (21, 22). The balance of bone tissue is 
upset by optineurin deficiency, which results in osteoporosis. 
Disruption of autophagy-related genes can lead to neurodegeneration, 
musculoskeletal disorders, cardiovascular problems, and metabolic 
dysregulation (Table 1). To prevent and treat diseases, it is essential to 
have optimal autophagy function (23).

3 Exercise-induced autophagy’s signal 
transduction mechanisms

Exercise affects the body in two ways: through mechanical forces 
and biochemical pathways. This has an impact on autophagy in several 
systems. Mechanotransduction is an important part of the process. It 
involves the contraction of skeletal muscles, the compression of joints, 
and the shear stress of blood flow (24). Myokines, which have anti-
inflammatory qualities, control metabolism, and affect general health, 

are also produced in greater quantities when one is physically active. 
The mechanisms linking exercise to autophagy are examined in this 
section (25) (Figure 1).

3.1 Mechanochemical transduction

Mechanochemical transduction is the process by which external 
mechanical stimuli are transformed into bioelectric signals within 
cells. This mechanism influences exercise-induced autophagy through 
intracellular signaling pathways, cell membrane receptors, and ion 
channels (26, 27).

3.2 Poezol and AMPK: in-depth mechanical 
forces transmission

Physical activity stimulates mechanosensitive proteins in cells, 
converting mechanical signals into biochemical responses and altering 
cell membrane properties, facilitating touch, pain perception, and 
proprioception (28). Excessive mechanical stress elevates Piezo1 
expression, impeding autophagy and hastening intervertebral disc 
degeneration, whereas AMPK activates calcium channels critical for 
exercise mechanotransduction (29). Calcium binding to calmodulin 
activates CaMKKb and AMPK, thereby initiating autophagy via 
FOXO3a and AMPK-ULK1 signaling pathways. AMPK inhibits 
mTORC1 and phosphorylates Beclin1, thereby diminishing 
inflammation, alleviating osteoarthritis, and preventing apoptosis 
(30). The AMPK-mTOR signaling pathway in the nervous system 
facilitates cardiac remodeling, cardiovascular function, brain 
adaptation, synaptic plasticity, exercise resilience, and 
mechanotransduction induced by exercise (31).

3.3 Piezo 1 and AMPK: inverse mechanical 
force transmission

Exercise-induced shear stress in atherosclerosis elevates Piezo1 
expression, inhibits autophagy via YAP signaling activation, and 
facilitates nuclear translocation, underscoring the significance of 
physiological alterations in blood flow (32, 33). The cardiovascular 
system is protected and changes in brain tissue stiffness may 
be detected by exercise-induced Piezo1, which also improves vascular 
wall shear stress, blood flow optimization, Ca2 + signaling activation, 
and AMPK-dependent autophagy (34). In 5 FAD mice, piezo1 
activation enhances neural plasticity, reduces the pathology of 
Alzheimer’s disease, and promotes autophagy by engulfing and 
breaking down amyloid-beta (35).

4 Bioactive compounds associated 
with physical activity

4.1 Myokines

Myokines, originating from skeletal muscle, are essential for the 
health benefits associated with physical exercise. They exert localized 
and pleiotropic effects. Inactivity diminishes myokine response, 
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potentially associated with chronic diseases. Myokines improve health 
by secreting humoral factors that may facilitate the browning of adipose 
tissue (25). Myokines, generated during physical activity, are bioactive 
compounds such as IGF-1, VEGF, irisin, and lactate, which exert both 
local and systemic influences on organs including the heart, brain, and 
skeletal muscle. Exercise-induced metabolic adaptation, tissue repair, 
and general health depend on myokines, which can cross the blood–
brain barrier and interact with particular tissue receptors (25, 36).

4.2 Growth factors

Exercise prompts muscle cells to generate growth factors such as 
IGF-1, which suppresses autophagy through the PI3K/Akt/FOXO and 
PI3K/Akt/mTOR paths, consequently enhancing the production of 
vital growth factors (37). Skeletal muscle adapts to lipids during 
fasting and exercise to maintain glycogen reserves and regulate blood 
glucose levels. AMPK is the primary sensor for these adaptations, 
converting information into SIRT1-mediated deacetylation of PGC-1α 

and FOXO transcriptional regulators. Insufficient AMPK activity 
undermines SIRT1-mediated responses, compromising PGC-1α 
deacetylation and mitochondrial gene expression. VEGF, an essential 
growth factor, facilitates angiogenesis and blood circulation in muscle 
tissue during exercise, thereby indirectly fostering the autophagic 
process by removing waste and dysfunctional cellular components, 
which are critical elements of autophagy (38).

4.3 Irisin

Irisin is a hormone-like myokine that is released into the 
bloodstream during physical activity after being cleaved from protein 
five, which contains the fibronectin type III domain. It modulates 
apoptosis, inflammation, and oxidative stress, and promotes 
autophagy, a process akin to hormonal function. Irisin increases the 
expression of LC3-II and p62 in the circulatory system, mitigating 
stress-induced myocardial hypertrophy (39). It facilitates autophagy 
in the musculoskeletal system via the Atg12-Atg5-Atg16L complex. 

TABLE 1  The influence of exercise training on the alteration of crucial autophagic and associated proteins.

Autophagic 
or-related 
proteins

Molecular mechanism References

LAMP2a Induced the alterations specific to the WAT type (135)

Atg5 Enhanced mitochondrial function, increased muscle mass, and stimulation of mitophagy.

The reduced adiposity and longevity enhancement in Atg5 transgenic mice preserve the homeostasis of aging skeletal muscle 

cells.

Mitigating neurological disorders and preserving neuronal well-being

Reducing excessive glycolytic metabolism in the brain

(45, 136–140)

Beclin1 Augmented deposition of amyloid-beta plaques Modifications of microglial cells

Enhanced the regulation of autophagy and mitophagy capacity

Enhance early myocardial protection and mitigate the risk of myocardial ischemic–hypoxic injury due to extended exercise.

Alterations in gene expression during cellular reprogramming, activation of Wnt signaling pathways, and diminishment of scar 

size post-myocardial infarction

(141–144)

PGC-1α The adaptive genetic responses of autophagy proteins in skeletal muscle

Minimal effects on the hepatic autophagy and mitophagy.

(145–147)

Atg7 Improved the overall metabolism, at least in part, through a heart-brown fat interaction mediated by FGF21 in exercise-trained 

Atg7h&mKO mice

Significant mitochondrial membrane depolarization in skeletal muscle

Induced alterations specific to WAT type

(135, 148, 149)

p62 Induced alterations specific to WAT type

Improves insulin resistance and slows the advancement of NASH

mitigates muscle atrophy in LLC-induced cancer cachexia primarily through Nrf2 activation.

(135, 150, 151)

LC3-II The alterations to the WAT type entailed transforming glycolytic type IIX muscle fibers into oxidative type IIA fibers, thereby 

alleviating exercise-induced myocardial ischemic/hypoxic injury.

(135, 152, 153)

TFEB The nuclear translocation of TFEB in skeletal muscle is initiated by calcineurin-mediated dephosphorylation. (154)

FOXO The regulation of this component, potentially affected by Akt/AMPK, may influence the transcriptional regulation of autophagy 

components

(155)

BCL2 Regulation of stimulus-induced autophagy and glucose metabolism (156)

mTOR Potentially facilitating additional stimulation of protein synthesis at subsequent time points (157)

AMPK Autophagy activation transpires in reaction to diminished intracellular energy charge, serving as an intracellular energy sensor. (136)

BNIP3/NIX The direct engagement with LC3-II is essential for mitophagy, the selective autophagic removal of impaired mitochondria. (158)

ULK1 Improved mitochondrial selective autophagy and cellular viability during periods of starvation. (159)
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By stimulating Wnt/β-catenin signaling, AMPK activity, and 
autophagy, it maintains skeletal integrity and reduces the buildup of 
β-amyloid proteins (40).

4.4 Lactate

The production of lactate, a necessary metabolite that regulates 
autophagy through signaling pathways including reactive oxygen 
species, ERK1/2, mTOR, and p70S6K, is stimulated by high-intensity 
exercise. Under the stress of exercise, lactate promotes Vps34 
lactylation and aids in lysosomal degradation, maintaining muscle 
homeostasis. In diabetics, high-intensity interval training (HIIT) 
lowers blood glucose levels by stimulating autophagy and activating 
the ERK/Ribosomal protein S6 kinase, 90 kDa pathway (41). Studies 
indicate that polyphenols, especially quercetin, may mitigate post-
exercise muscle damage, rendering them a beneficial nutritional 
approach for athletes. These compounds facilitate muscle recovery, 
improve exercise performance, and regulate inflammatory pathways, 
thereby enhancing mitochondrial function. They may further 
augment the advantages of lactate by facilitating autophagy (42).

5 Biological factors and various 
exercise parameters influencing 
autophagic responses

Exercise profoundly influences autophagy, a crucial modulator of 
the immune response, with its characteristics, intensity, and duration 

markedly affecting health and disease. Incorporating exercise regimens 
activates both aerobic and anaerobic systems; however, excessive 
training may result in maladaptive responses. Weight bias affects 
exercise identity, resulting in either adaptive or maladaptive behaviors. 
Individuals possessing a robust exercise identity and weight bias are 
more inclined to partake in maladaptive behaviors. Subsequent 
investigations ought to examine this correlation (43). The stages of life, 
sexual dimorphism, body composition, and muscle fiber types all have 
a significant impact on the autophagic response to physical exercise (44).

6 Different types of exercise in 
association with autophagy

Exercise, categorized as aerobic or anaerobic, encompasses 
metabolic processes such as oxidative metabolism and glycolytic 
pathways, with exercise-adapted molecules augmenting signaling 
pathways such as AMPK, PI3K/Akt, mTOR, Sirt1, and CaMKs, for 
autophagy (41, 42) (Figure 2).

6.1 Combination exercise

The research indicates that the integration of aerobic and 
resistance training, a type of exercise, produces differing impacts on 
autophagy. A preclinical tumor study employed resistance training on 
a 1-meter ladder featuring rungs spaced 1.5 centimeters apart and 
inclined at an angle of 85 degrees (45). It has been shown that the 
training regimen, which consists of three sets of two repetitions on a 

FIGURE 1

Schematic illustration of the molecular pathways through which exercise induces autophagy. Mechanotransduction and myokine signaling activate 
AMPK and downstream effectors such as CaMKKβ and FOXO3a. These events suppress mTORC1 and initiate autophagy through ULK1, Beclin1, and 
LC3 pathways.
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treadmill for 25 min, is effective in inhibiting the growth of tumors by 
reducing autophagy, lowering the LC3B-II/I ratio, and maintaining 
high levels of p62 expression. Exercise evaluations and adrenergic 
stimulation do not significantly increase hepatic autophagy levels or 
autophagy responses, according to research on aged mice and clinical 
trials (46). According to the research, factors like type, intensity, and 
duration all influence how combined exercise affects autophagy, 
suggesting that longer or more intense exercise may be necessary to 
increase autophagic activity (47).

6.2 Anaerobic exercise

There is a lack of knowledge about how resistance training and 
other anaerobic processes affect autophagic regulation, as evidenced 
by the paucity of research on autophagy triggered by anaerobic 
exercise. Through pathways like PI3K/Akt, PINK1, Beclin1, and 
ULK1, resistance training increases autophagic activity (48).

6.3 Aerobic exercise

Aerobic exercise significantly influences cellular homeostasis and 
adaptation through the activation of autophagy (49). AMPK 
modulates cellular energy metabolism, which is associated with the 
progression of cancer cells. It functions as a tumor suppressor by 
inhibiting mTOR and promoting cellular autophagy. AMPK can 

enhance autophagy by activating ULK1 and suppressing the 
proliferation of breast cancer cells. Nonetheless, this may result in drug 
resistance during subsequent stages of the tumor. AMPK is also a key 
protein in the TME, having a bidirectional effect on tumor growth, 
promoting glucose metabolism and angiogenesis. Gene knockouts can 
impede tumor proliferation, particularly in preneoplastic lesions. 
Nevertheless, AMPK activity is diminished during energy sufficiency, 
influencing glycolysis and lipogenesis. Aerobic exercise markedly 
increases AMPK activity, facilitating angiogenesis and suppressing 
tumor cell metastasis. Liver kinase B1 (LKB1) inhibits mTOR by 
activating AMPK under low ATP conditions. The reduction of ATP 
during exercise increases the AMP/ATP ratio and activates AMPK 
through LKB1. In pathological conditions, hypoxia stimulation in the 
tumor microenvironment activates AMPK, thereby inhibiting 
angiogenic factors. Aerobic exercise intervention is thus advised 
during the early phase of tumorigenesis (Figure 3) (50, 51).

6.3.1 Running
Running is a prevalent form of exercise in clinical training and 

autophagy research, utilizing treadmill models in preclinical studies. 
This form of exercise improves the AMP/ATP ratio, thereby activating 
P2X7 receptors and inducing AMPK activation. AMPK activates 
ULK1 kinase, thereby initiating autophagy, through the inhibition of 
mTOR activity (52). Running influences NAD + and AMPK 
concentrations, activating Sirt1, which promotes autophagy via 
FOXO3 and BNIP3, consequently impacting downstream targets. 
AMPK augments PGC-1a activity, which in turn elevates PINK1 and 

FIGURE 2

Comparison of molecular pathways activated by aerobic, anaerobic, and combined exercise modalities in regulating autophagy reveals diverse and 
complementary mechanistic roles. Aerobic exercise primarily stimulates the AMP-activated protein kinase (AMPK) pathway and its downstream effector 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which collectively enhance mitochondrial biogenesis and energy 
metabolism. This augments autophagic activity as a cellular adaptation to increased energetic demand. Mechanistically, AMPK activation inhibits the 
mechanistic target of rapamycin (mTOR), a central negative regulator of autophagy, thereby enabling the initiation of autophagic flux, particularly in 
skeletal muscle and cardiac tissues.
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Parkin levels in mitophagy regulators, thereby facilitating 
mitochondrial quality control via autophagy and improving 
mitochondrial function (53, 54).

6.3.2 Swimming
AMPK, Akt, mTOR, FABP1, Beclin1, HSP70, and microRNAs are 

among the key signaling pathways that swimming affects to affect 
autophagic activity. AMPK activation promotes autophagy by 
elevating PGC-1a and FOXO3a levels, whereas swimming inhibits 
FABP1, thereby activating autophagy (55). The exercise-autophagy 
axis encompasses micro-RNAs that regulate autophagy proteins such 
as ULK1 and Beclin1 (56).

6.3.3 Cycling
AMPK activation, mTOR inhibition, and ULK1 stimulation are 

some of the molecular pathways through which cycling triggers 
autophagy. Its importance in cellular homeostasis and stress response 
is highlighted by the possibility that it may also promote autophagy by 
activating Tumor Protein 53 (p53) (57, 58).

6.3.4 Exercise programs: acute and chronic
Chronic exercise, also known as long-term exercise, includes 

planned, repetitive, and sustained physical activity over a longer 
period, while acute exercise is short-term, fleeting physical activity 
that does not involve regular or prolonged training (59). Acute 
exercise is brief, inducing immediate physiological stress, whereas 
chronic exercise persists for several weeks and results in temporary 
stress. Extended physical activity results in enduring physiological 
adaptations such as enhanced muscular strength and improved 
cardiorespiratory endurance (60, 61). The effects of autophagy differ 
based on exercise duration, with acute and chronic regimens yielding 
distinct outcomes in various tissues (Table 2). Acute exercise may 
either augment or diminish autophagy, while chronic exercise 

predominantly enhances it in particular tissues. Research indicates 
that chronic exercise enhances autophagy in rodent cardiac muscle, 
cycling promotes it in skeletal muscle, while treadmill exercise 
diminishes it in the liver (62). Chronic exercise consistently enhances 
autophagy in essential tissues such as skeletal muscle, cardiac muscle, 
and brain tissue, as demonstrated by increased autophagy in murine 
models. Autophagy is an essential regulator of central nervous system 
aging and neurodegeneration, maintaining neuronal health and 
survival by transporting organelles and toxic substances to lysosomes. 
Autophagic responses to exercise differ based on intensity, duration, 
and tissue-specific adaptability, with intense, brief exertions 
stimulating autophagy as a result of cellular stress. Prolonged exercise 
causes long-lasting changes, including increased mitochondrial 
biogenesis and cellular robustness, which lead to autophagic activation 
that continuously removes damaged organelles and maintains 
homeostasis. Particular tissue responses signify unique metabolic 
demands and molecular pathways, exemplified by the differing 
autophagic adaptation mechanisms of cardiac and skeletal muscles 
(63). Cardiomyocytes, as terminally differentiated cells, are essential 
for blood circulation and demand substantial energy, rendering them 
highly reliant on mitochondrial function for sustained contractile 
activities. In the heart, mitophagy is crucial because it removes 
damaged mitochondria, preserving regular energy metabolism and 
cellular respiration (64, 65). This is especially true for cardiomyocytes, 
which have high energy needs and mitochondrial activity. Autophagy 
is vital for protein metabolism and energy provision in skeletal muscle, 
which is essential for daily activities and movement, as it is closely 
linked to the health and function of cardiomyocytes (66). Exercise 
increases the body’s metabolic capacity, and autophagy is crucial for 
removing aged proteins and mitochondria, which promotes the 
growth of new mitochondria and muscle mass. Research has shown 
that chronic exercise is more important than acute exercise because it 
consistently increases autophagy (67).

FIGURE 3

Illustration of AMPK as a central node in mediating both autophagy and anti-cancer effects during aerobic exercise. Through the inhibition of mTOR 
and regulation of glucose and oxygen homeostasis, AMPK contributes to metabolic reprogramming and tumor growth suppression.
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TABLE 2  The molecular difference of autophagic biomarkers based on exercise type and duration, in various tissues.

Exercise type Exercise duration Tissue type Molecular mechanism related to autophagic 
markers

References

Aerobic exercise Acute Exercise Human Skeletal 

Muscle

Acute exercise, training, and insulin stimulation can diminish the 

LC3-II/LC3-I ratio, a commonly utilized autophagy marker.

The activation of AMPK during exercise is inadequate for regulating 

muscle autophagosome levels, whereas mTORC1 signaling through 

ULK1 probably governs insulin’s inhibitory effect on autophagy.

(136)

Aerobic exercise Acute high-intensity interval 

training (HIIT) and moderate-

intensity continuous training 

(MICT)

Human Skeletal 

Muscle

Acute HIIT and MICT induce alterations in autophagy markers, with 

the exercise-induced autophagy response differing across tissues and 

between genders.

(160)

Aerobic exercise High-Volume HIIT Human and rat 

Skeletal Muscle

Exercise-induced changes in autophagosome content markers differ 

between rodents and humans, and exercise-induced decreases in 

LC3B-II protein levels do not reflect autophagy flux levels.

(46)

Aerobic exercise Eccentric exhaustive exercise Rat Skeletal Muscle Basal autophagy factors p62 and Lamp-2 increased significantly 48 h 

after eccentric exhaustive exercise and immediately after blunt trauma. 

Mitochondrial autophagy factor BNIP3 did not increase after 

exhaustive exercise and blunt trauma, but NIX only increased after 

exhaustive exercise

(161)

Aerobic exercise High-intensity exercise Human Skeletal 

Muscle

Macroautophagy and chaperone-mediated autophagy pathways are 

strongly activated by high-intensity exercise, regardless of PO2, and 

oxygenation is necessary to revert these signals to pre-exercise values. 

PHAF1/MYTHO emerges as a pivotal exercise-responsive autophagy 

marker positively associated with the LC3B-II: LC3B–I ratio

(162)

Aerobic exercise Endurance (END), exhaustive 

(ET), strength (ST), and 

concurrent (CC) physical 

exercise

Rat gastrocnemius 

muscle, heart, and 

liver

The research identified alterations in mRNA expression in 

gastrocnemius muscle samples, with increased autophagy markers in 

the CC group. Heart levels diminished in the ET group, whereas liver 

protein levels were downregulated in the same group.

(163)

Aerobic exercise Acute Exercise Human Skeletal 

Muscle

One exercise session elevated LC3I, LC3II, and BNIP3 protein levels 

in human skeletal muscle, whereas 8 weeks of exercise training 

augmented basal levels of LC3I, BNIP3, and Parkin protein in human 

skeletal muscle.

(48)

Aerobic exercise Acute Exercise Rat Skeletal Muscle Exercise-induced metabolic adaptations entail enhanced 

mitochondrial turnover, resulting in augmented degradation and 

biogenesis, partially regulated by PGC-1α.

(142)

Aerobic exercise Acute Exercise Rat Skeletal Muscle Acute inhibition of autophagy in skeletal muscle just before exercise 

does not have an impact on physical performance, PRKAA1 

activation, or glucose homeostasis.

(164)

Aerobic exercise Chronic Exercise Human Skeletal 

Muscle

The decline in autophagosome content suggested in human skeletal 

muscle during exercise is the result of a strong autophagosome 

degradation due to a rapid enhancement in autophagy activity, or a 

decrease in the activity of the system.

MTORC1 signaling markedly affects insulin’s capacity to inhibit 

autophagy, whereas AMPK activation alone does not substantially 

elevate autophagosome levels during exercise.

(148)

Aerobic exercise Chronic Exercise Cardio myocytes Exercise caused physiological hypertrophy influenced by Yap/Taz, 

autophagy, and myosin heavy chain (MHC) dynamics

(165)

Anaerobic exercise Resistance exercise training Human Skeletal 

Muscle

After a training regimen, the expression of beclin-1, Atg12, Atg16, and 

LAMP-2 was elevated, whereas the phosphorylation of p62/SQSTM1 

and ULK-1 was diminished. Resistance training also reduced NLRP3 

expression, the caspase-1/procaspase-1 ratio, Bcl-2 and Bcl-xL 

expression, the Bad/Bcl-2 ratio, and caspase-3 protein levels.

(166)
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7 Insufficient autophagic response 
training

Muscle injury resulting from vigorous physical activity can 
impede daily functions. Overtraining may increase autophagy levels, 
which may be  related to this damage and may be  caused by the 
FOXO3/GABA type A receptor-associated protein-like 1 
(GABARAPL1) signaling pathway (68). Increased skeletal muscle 
growth is linked to higher levels of Atrogin-1 and Muscle RING-finger 
protein-1 (MuRF1), two important factors that control muscle 
atrophy. Excessive exercise can also cause cardiac remodeling to shift 
from adaptive hypertrophy to harmful pathological alterations (69). 
Overexertion influences autophagic flux in skeletal muscle, but not in 
cardiac or hepatic tissue, underscoring the dual function of autophagy 
in overtraining and tissue-specific reactions (70).

8 Effects of sex metamorphosis, the 
composition of the body, life cycle, 
and muscle fiber type

8.1 Sexual metamorphosis

The hepatic mitochondrial adaptability and skeletal muscle 
performance are significantly impacted by sexual metamorphosis. 
This is particularly true in the liver, where autophagy is triggered by 
the mitochondrial biogenesis (PGC-1a) and mitophagy (BNIP3) 
pathways, sexual metamorphosis has a significant impact on exercise-
induced autophagy, affecting skeletal muscle function and hepatic 
mitochondrial adaptability (71). Compared to male mice, female mice 
have lower autophagic flux but higher mitochondrial content and 
levels of autophagy-related proteins. Sex-specific variations in 
autophagy and adaptive responses are revealed by the requirement for 
daily physical activity in male mice to attain a similar mitochondrial 
phenotype. In skeletal muscle, the basal autophagic flux is higher in 
females, whereas in young male mice, exercise specifically promotes 
autophagy. Male skeletal muscle also exhibits increased nuclear 
localization of TFEB, an essential transcription factor (72).

8.2 Muscle fiber types

Skeletal muscle fiber types differ in their structural characteristics 
and metabolic capacity, which affects the autophagic response to 
exercise. A greater variety of fiber types, such as Type I, IIA, and IIX 
myosin heavy chain subtypes, are found in rodent skeletal muscle. 
While IIX and IIB fibers maximize anaerobic metabolism and rapid 
contraction, type I fibers improve endurance and energy efficiency. 
Intermediate fibers, or type IIA fibers, contract at moderate rates and 
possess oxidative and glycolytic characteristics. Different muscle fibers 
exhibit different patterns of autophagy; slow-twitch muscles spare 
slow-twitch muscles, while fast-twitch muscles, such as the 
gastrocnemius, are affected by starvation-induced autophagy (73). 
Autophagy is more strongly induced in oxidative soleus muscles by 
endurance training. In skeletal muscle, prolonged exercise promotes 
the shift to slow-twitch fiber predominance, which in turn increases 
autophagic capacity. According to research, autophagy is only found 
in oxidative soleus (SOL) muscles and not in glycolytic extensor 

digitorum longus (EDL) muscles, as indicated by LC3-II expression 
(74). Exercise may cause changes in the type of muscle fibers because 
it stimulates autophagy in oxidative muscle fibers. In oxidative 
muscles, endurance exercise promotes autophagic repair processes, 
which may protect them from excessive catabolism (75).

8.3 Life cycle

Exercise-induced autophagy exhibits considerable variation across 
different life stages, especially in younger individuals, facilitating swift 
cellular repair, metabolic adaptation, and enhanced physiological 
resilience, although it remains robust in older individuals. Research 
conducted by Zhou, Luo, and Yao showed that older adults exhibit a 
diminished autophagic response attributable to the age-related decline 
of autophagy-associated pathways. The skeletal muscle of older mice 
has substantially fewer autophagy-related genes, such as Beclin-1, 
Atg14, and LC3, than that of younger mice (76). Exercise partially 
reinstates autophagic activity in aged skeletal muscle, improving 
muscle function and bone mass. Exercise-induced autophagy 
facilitates osteogenic differentiation in older individuals, whereas 
younger animals preserve cardiac homeostasis despite heightened 
myocardial apoptosis and fibrosis (77). Even in older adults, exercise 
can reverse age-related changes by boosting basal autophagy capacity, 
restoring autophagic activity, and improving cardiac function (78).

8.4 The composition of the body

Exercise diminishes body fat, enhances glucose and lipid 
metabolism, and mitigates obesity by decreasing autophagy. 
Obesity results in compromised cellular autophagy, characterized 
by elevated levels of Atg5, LC3-I, and LC3-II mRNA in visceral 
adipose tissue, and a positive correlation with BMI. Obesity 
induced by a high-fat diet in mice leads to reduced autophagy 
activity in skeletal muscle relative to control mice. Obese mice 
exhibit heightened early autophagy stages in white adipose tissue, 
facilitating the development of autophagosomes. Obesity can 
induce alterations in energy metabolism within adipose tissue (79, 
80). Autophagy modulates adipocyte functionality and energy 
equilibrium, as evidenced by knockout mice exhibiting alterations 
in lipid metabolism, including diminished adipose tissue, reduced 
adipocyte size, and weight loss. Exercise promotes autophagy in 
subcutaneous adipose tissue and inhibits it in perirenal adipose 
tissue, whereas obesity diminishes autophagy by decreasing 
lysosomal quantity, acidity, and fusion. Impairments in autophagic 
function, a hormone predominantly synthesized by white adipose 
tissue and governed by the obesity gene, may obstruct the body’s 
capacity to sustain cellular homeostasis amid metabolic stress (81, 
82). Obesity frequently results in leptin resistance, marked by 
increased blood leptin concentrations and diminished 
responsiveness, especially in the hypothalamus, which is essential 
for energy regulation. Due to a lack of autophagy and poor energy 
regulation, leptin resistance causes obesity and metabolic diseases. 
Although autophagic function and leptin sensitivity can 
be improved by physical activity, there is no concrete proof that 
exercise-induced autophagy and increased leptin sensitivity are 
related. In certain tissues, obesity modifies systemic autophagy, 
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whereas exercise promotes autophagy, maintaining cellular 
homeostasis and increasing energy expenditure. Further 
investigation is required to comprehend the influence of body fat 
composition on the autophagic response to exercise (13).

9 Autophagy induced by exercise in 
maintaining health and recovering 
from disease

In systemic diseases where autophagy is often impaired, 
exercise is a rehabilitative therapy that enhances the body’s ability 
to break down damaged cellular components. Exercise promotes 
autophagy, which improves cellular homeostasis and disease 
resistance while preventing relapse. This process aids in preserving 
organ health, mitigating aging, and fostering longevity. Exercise 
promotes autophagy, modifies pathological processes, and restores 
normal organ functions in the neurological and hormonal 
systems, heart and blood Systems, digestive, and musculoskeletal, 
exercise promotes healing and maintains health (56). Exercise 
improves disease management and health promotion by 
stimulating autophagy to modulate essential signaling pathways 
such as BMP, FOXO, NLRP3, IGF, HIPPO, ERK, and NFjB. This 
mechanism modulates glycolipid metabolism, diminishing 
cellular senescence, oxidative stress, apoptosis, and 
inflammation (83).

9.1 System of musculoskeletal

Exercise improves muscle and bone health by increasing fiber 
strength, promoting bone formation, and decreasing 
musculoskeletal injuries. Autophagy mitigates mitochondrial 
dysfunction, enhances antioxidant defense mechanisms, and 
stimulates downstream signaling pathways (84). Exercise-induced 
autophagy also controls important pathways for muscle growth 
and degeneration. The activation of the PI3K/Akt pathway results 
in an elevation of anti-apoptotic proteins and a reduction of 
pro-apoptotic factors, concurrently inhibiting the ubiquitin 
ligases MuRF-1 and MAFbx. This indirectly inhibits the HIPPO 
pathway, mitigating muscle dysfunction linked to sarcopenia. 
Through the inhibition of protein degradation via the Ubiquitin-
Proteasome System, the modulation of IGF-mTOR signaling and 
the NFjB inflammatory pathways, and the upregulation of 
autophagy-related molecules like Beclin-1 and Atg7, exercise 
reduces growth inhibitor activity. By triggering the Wnt/β-catenin 
signaling pathway, activating autophagy-related complexes, 
encouraging osteogenic differentiation and bone formation, and 
preventing protein accumulation, exercise helps prevent aging-
induced sarcopenia (85–87). This maintains chondrocyte 
homeostasis and prevents misfolded proteins. Exercise improves 
osteopenia and cartilage degradation in arthritis by boosting the 
NLRP3 signaling pathway, which in turn reduces pyrophosphate 
toxicity and degrades inflammatory vesicles. Initial exercise 
treatments are beneficial for musculoskeletal conditions because 
they reverse muscle atrophy, restore function, and improve tissue 
health while controlling molecular pathways that promote 
strength and recovery (88).

9.2 The neurological system

While autophagy helps maintain neuronal homeostasis by 
removing dysfunctional mitochondria and amyloid-beta, exercise 
enhances cognitive abilities and lowers neurological disorders by 
encouraging synaptogenesis, axonogenesis, neuroplasticity, and 
neuronal proliferation. Exercise-induced autophagy enhances 
neuronal health by preventing the accumulation of neurotoxic 
aggregates, optimizing mitochondrial function, diminishing oxidative 
stress, and maintaining neuronal integrity via essential signaling 
pathways. Neurodegenerative diseases such as Parkinson’s and 
Alzheimer’s may be mitigated by stimulating the Akt-FOXO-mTOR 
pathway and Beclin1-dependent autophagy, an essential regulator of 
cellular catabolism. Autophagy reduces neuronal damage, improves 
neuronal plasticity, and minimizes neurodegeneration by eliminating 
neurotoxic aggregates such as amyloid-beta peptides and alpha-
synuclein. In Alzheimer’s disease, exercise-induced autophagy triggers 
the Beclin1-dependent pathway, which raises Neuregulin 1 expression 
and triggers the Akt-FOXO-mTOR signaling cascade (89). Physical 
activity enhances ERK-RSK-cAMP-response element binding protein 
activity enhances antioxidant defenses, mitigates neuronal 
degeneration, and facilitates autophagy, rendering it essential for 
Parkinson’s disease, Alzheimer’s disease, and cognitive rehabilitation. 
Exercise improves neuroplasticity, corrects deficiencies in synaptic 
and axonal transport, and enhances learning and cognitive abilities. It 
promotes neuroprotection through autophagy, regulating stress 
responses and enhancing angiogenesis in ischemic injuries. In reaction 
to injury, p62 amplifies the ERK pathway, Atg3 alleviates stress, and 
the PI3K-Akt–mTOR axis is stimulated, consequently reducing 
neuronal necrosis, strengthening defense mechanisms, and promoting 
tissue recovery (90, 91).

9.3 Heart and blood systems

Exercise stimulates autophagy to sustain energy balance and 
degrade damaged proteins, thereby decreasing cardiomyocyte 
apoptosis and reestablishing cellular homeostasis. Mitophagy induced 
by exercise enhances mitochondrial quality and cardioprotection, 
while autophagic markers such as Beclin1 and LC3-II are elevated in 
myocardial ischemia and hypoxic injury cases, encouraging the 
breakdown of organelles and metabolic waste products. By enhancing 
mitochondrial ATP-sensitive K + channels, lowering ischemic injury, 
and promoting autophagy via the AMPK-ULK1 pathway, exercise 
inhibits cardiomyocyte apoptosis and lowers endoplasmic reticulum 
stress. Exercise increases mitochondrial oxidative capacity and ATP 
synthesis boosts mVps34 activity, and stimulates autophagy, all of 
which improve myocardial function and prevent heart failure (92, 93). 
These enhancements reduce cardiac stress and facilitate the heart in 
fulfilling its energy requirements. In patients with atherosclerosis, 
swimming decreases inflammatory cytokines such as MMP-9, IL-6, 
and sICAM-1-1, enhances autophagy by activating LC3 and Beclin1, 
and slows the development of aortic plaque. Myocardial metabolic 
function and mitochondrial biogenesis are improved by exercise 
training, which also improves heart and blood health. It improves 
cardiac output, circulation, and myocardial architecture while also 
increasing membrane permeability. The cardiovascular system is 
protected by exercise-induced autophagy, which improves 
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mitochondrial function and breaks down malfunctioning components 
to aid in recovery during stress and illness (94–96).

9.4 Hormonal system

Myocardial metabolic function and mitochondrial biogenesis are 
improved by exercise training, which also improves cardiovascular 
health. It improves cardiac output, circulation, and myocardial 
architecture while also increasing membrane permeability. The 
cardiovascular system is protected by exercise-induced autophagy, which 
improves mitochondrial function and breaks down malfunctioning 
components to aid in recovery during stress and illness. Exercise-induced 
autophagy is essential for metabolic regulation and lipid clearance, 
supporting the health of the endocrine system, particularly in metabolic 
diseases such as non-alcoholic fatty liver disease (97, 98). Additionally, it 
promotes hepatocyte autophagy, which lowers the buildup of cholesterol 
and triglycerides. Myelin and C1q/TNF-related protein 5 are two 
components that control this process. By boosting Atg7 expression, 
encouraging autophagy elongation, and lowering endoplasmic reticulum 
stress, exercise can lessen hepatic steatosis in fatty liver conditions. 
Additionally, it alters the Akt signaling pathway, which triggers 
autophagy and inhibits the release of TNF-α. This lowers MIF levels and 
lessens the metabolic alterations linked to obesity. Autophagy brought 
on by exercise decreases the buildup of fat in the liver by triggering the 
AMPK pathway, which regulates glucose metabolism and disorders 
(99–101). Physical activity in individuals with diabetes stimulates 
AMPK, PGC-1a, and BNIP3 expression, reduces endoplasmic reticulum 
stress, and promotes autophagic function, thereby alleviating renal 
damage in patients with chronic kidney disease (102).

9.5 Malignancy and aging

In aged organisms, exercise-induced autophagy improves tissue 
vitality and durability by preventing cell death and lipofuscin 
accumulation. Through AMPK-dependent autophagy, exercise extends 
lifespan by modifying the FOXO/Eukaryotic signaling pathway during 
senescence. Exercise suppresses apoptosis, increases autophagy, lowers 
antiapoptotic B-cell lymphoma-extra-large proteins, and delays cellular 
senescence (103). Additionally, it reduces the activity of cancer cells by 
removing oncogenic molecules, reactive oxygen species, misfolded 
proteins, and damaged mitochondria. Through the preservation of 
cellular homeostasis, inhibition of tumor growth, and enhancement of 
cell viability, exercise-induced autophagy promotes cancer recovery. 
Research indicates that it prolongs the life of colon cancer mice by 
decreasing the expression of Atrogin-1 and MuRF-1 (103).

10 Natural polyphenols combined 
with exercise in cancer

Natural polyphenols, plant-derived organic compounds, have 
been investigated for their potential health benefits, including 
protection against diabetes, cardiovascular diseases, oxidative stress, 
neurodegenerative disorders, and aging. They can suppress cancer by 
modifying signaling pathways, inducing apoptosis, and obstructing 
cell cycle processes, ultimately eradicating cancer cells. Polyphenols 

regulate enzymes implicated in tumor cell growth and proliferation. 
They additionally impede angiogenesis, avert metastasis, and engage 
with DNA (104). Flavonoids, phenolic acids, and tannins are essential 
phenolic compounds that confer health benefits by modulating 
inflammatory and oxidative pathways and eradicating cancer cells. 
Numerous athletes endorse dietary supplements to enhance physical 
performance during training, with research indicating the 
advantageous effects of specific compounds such as quercetin, 
resveratrol, and polyphenolic compounds derived from grape extract 
or beetroot juice. Exercise and antioxidant supplements may 
synergistically influence cancer development and progression through 
their antioxidant effects, thereby enhancing treatment efficacy (105).

10.1 Saffron

Saffron, obtained from the stigmas of the Crocus sativus L. plant, 
serves as a herbal remedy, coloring agent, and flavoring agent, and has 
demonstrated efficacy in addressing various health concerns (106).

The research indicates that high-intensity interval training 
(HIIT) and saffron aqueous extract may lower breast cancer risk by 
increasing Sirtuin-1 and p53 expression in tumor tissue. The study 
demonstrated that HIIT and SAE can reduce tumor volume and 
increase the expression of anti-and pro-apoptotic proteins in mice 
with 4T1 breast cancer (107). Nonetheless, these treatments failed to 
augment apoptotic induction, despite facilitating the apoptotic 
pathway. Its immunomodulatory properties are facilitated by 
multiple mechanisms, including the modulation of innate and 
adaptive immunity components. The pharmacological effects of 
saffron are chiefly attributed to crocin and crocetin, which can 
influence the MAPK and NF-κB signaling pathways. It regulates the 
expression of genes that encode pro-inflammatory cytokines, 
inducible enzymes, adhesion molecules, chemokines, and acute-
phase proteins. These factors are essential in regulating inflammatory 
processes within the immune system. Consequently, saffron and its 
constituents may be  regarded as a promising immunoregulatory 
agent for the treatment of immune disorders. A study conducted by 
Mirzaei and associates revealed that the application of saffron, 
honey, and rose water over 4 weeks diminished fatigue in 75 breast 
cancer patients. The Jollab group exhibited a marked decrease in the 
Visual Analogue Fatigue Scale (VAFS), Fatigue Severity Scale (FSS), 
and both physical and cognitive subscales of the Cancer Fatigue 
Scale (CFS) in comparison to the placebo group. Nonetheless, the 
scores on the affective subscale exhibited no significant alteration 
post-intervention in either group. This indicates that saffron may 
serve as a potential remedy for cancer-related fatigue in women 
diagnosed with breast cancer (108). The analyzed articles indicate 
that although saffron and exercise may positively influence breast 
cancer cells, their combination might be  less effective or yield 
paradoxical effects. Additional in vitro studies may elucidate these 
effects and propel the investigation forward.

10.2 Curcumin

Curcumin, a plant comprising 120 species, is recognized for its 
therapeutic properties, which include antiproliferative, anti-
thrombotic, antitumor, anti-inflammatory, antihepatotoxic, diuretic, 
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hypotensive, antimicrobial, antioxidant, and antityrosinase 
effects (109).

Guo et al. discovered that the conjunction of curcumin treatment 
and swimming exercise markedly diminished breast cancer by 
influencing signaling pathways such as IL-17, calcium, PI3K-Akt, and 
Wnt (110). The combined effects of curcumin and exercise also 
influenced amino sugar and nucleotide sugar metabolism (111). The 
research indicates that endurance training combined with curcumin 
may improve tumor suppression. Research indicates that aerobic 
exercise and curcumin do not substantially mitigate oxidative stress 
in cancerous mice; however, they do significantly affect gene 
expression in mice with breast cancer (Figure 4) (111).

Aerobic exercise training diminished high-sensitivity C-reactive 
protein and PTX3, concurrently lowering body fat percentage and 
BMI, independent of curcumin supplementation. An 8-week exercise 
program incorporating curcumin may reduce inflammatory markers 
(112). Research by Moghiseh et al. demonstrates that aerobic exercise 
and curcumin nano micelles can mitigate the impact of doxorubicin 
on cardiac tissues in breast cancer patients. Aerobic exercise 
diminishes the expression of CAS3, CAS9, and BAX genes, whereas 
curcumin supplementation enhances BCL2 gene expression (113). 
The combination of curcumin and physical activity diminishes tumor 
proliferation and decreases Il4 and Stat-6 gene expression. A five-week 
endurance training regimen combined with curcumin is more 
efficacious in cancer treatment than non-pharmacological methods 
alone. The protective effects of curcumin against chemotherapy-
induced side effects in breast cancer patients have been confirmed 
(114). Hemati and colleagues’ clinical trials validated curcumin’s 
protective properties against chemotherapy’s adverse effects in breast 
cancer patients. Curcumin supplementation was found to 
be advantageous in countering tamoxifen-induced non-alcoholic fatty 
liver disease, indicating its potential as a preventive adjunct to 
tamoxifen therapy (115).

10.3 Quercetin

Quercetin, a natural compound, possesses potential therapeutic 
applications for conditions such as diabetes, gouty arthritis, allergies, 
hyperuricemia, obesity, and cancer by inhibiting cancer progression, 
enhancing cell membrane integrity, and modulating autophagy (116). 
Quercetin influences multiple signaling pathways related to cell 
proliferation, survival, and apoptosis, including VEGF, NF-κB, and 
Akt/mTOR. Studies indicate that aerobic exercise and quercetin 
supplementation can diminish TIE-2 and VEGF-A expression in 
breast cancer models. This indicates that the combination may inhibit 
tumor angiogenesis (117). A study demonstrated that physical exercise 
markedly diminished tumor progression in a murine model, yielding 
a 75% reduction in the placebo group and a 40% reduction in the 
quercetin group. Additional research is required to substantiate these 
findings (118). Additional research is required to thoroughly 
understand the synergistic effects of quercetin and exercise training in 
cancer, encompassing optimal combinations, mechanisms, and long-
term advantages. Quercetin and exercise training may substantially 
diminish tumor size, improve survival rates, and elevate the quality of 
life for cancer patients. However, the research indicates that the effects 
of quercetin on human subjects remain unverified, necessitating 
additional investigation for clinical application. The authors propose 

that the integration of quercetin with various training modalities may 
yield greater benefits or efficacy (118).

10.4 Daidzein

Daidzein, an isoflavone present in soy, along with exercise 
training, may effectively combat breast cancer by enhancing natural 
killer (NK) cell activity and inducing apoptosis in cancer cells. When 
integrated, these interventions can efficiently activate NK cells and 
trigger apoptosis. A study by Wang et  al. revealed that consistent 
exercise and daidzein can markedly inhibit breast cancer proliferation 
in BALB/c mice. The combination also increased epinephrine and 
IL-6 levels, enhancing natural killer cell activity and inducing 
apoptosis in cancer cells (119). The study indicates that this 
combination could serve as an effective approach to breast cancer 
prevention and treatment; however, additional research is 
required (120).

10.5 Gallic acid and kaempferol

The research indicated that chemotherapy diminished JAG1 
gene expression, whereas supplementation with Gallic acid and 
Kaempferol, along with aerobic exercise, significantly lowered its 
expression in both breast cancer and cancer-chemotherapy cohorts. 
The expression levels of BDNF and NGF genes were elevated in the 
cancer group receiving chemotherapy combined with supplements 
and chemotherapy combined with aerobic exercise, with BDNF and 
NGF genes exhibiting a significant increase relative to other groups. 
They concluded aerobic exercises and supplements declined the side 
effects of paclitaxel and improved the neurogenesis (121). 
Endurance training diminishes tumor growth and development by 
lowering the expression of genes such as HIF1α and VEGFα, 
whereas gallic acid and kaempferol regulate these genes and affect 
other cancer-associated genes (121). Owing to uncertainties, the 
routine clinical application of Gallic acid and Kaempferol is not 
advised, and their prospective role in clinical contexts remains 
conjectural (122).

10.6 Green tea

Catechins can mitigate muscle damage and oxidative stress in 
senescence-accelerated mice. Green tea extract augments physical 
performance in both animals and humans by enhancing endurance 
and lipid metabolism. Research indicates that EGCG can stimulate 
fat oxidation genes in the muscle mitochondria of mice subjected 
to a high-fat diet (123). Concentrated green tea supplements rich 
in catechins and caffeine can elevate daily energy expenditure in 
humans. These findings indicate that green tea extract may alleviate 
the impact of exercise on muscle health. Green tea extract has been 
shown to enhance fat oxidation and insulin sensitivity during 
moderate exercise (124). Nonetheless, short-term EGCG 
supplementation can result in elevated levels in adults. A controlled 
experiment demonstrated no notable effect on lipid and energy 
metabolism, inflammatory markers, or oxidative stress indicators. 
A study revealed no significant alterations in biomarkers following 
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640 mg of green tea catechins, indicating an inadequate dosage for 
alleviating oxidative stress and muscle damage; however, 
augmented aerobic exercise and green tea extract may impede 
prostate cancer (125). The research included cancer-afflicted rats 
and a healthy control cohort. A study indicates that green tea 
extract markedly diminishes prostate cancer risk in rats by 
reestablishing the equilibrium between pro-oxidants and 
antioxidants, involving rats subjected to HEGT treatment alone or 
in conjunction with aerobic exercise (126). Research indicated that 
aerobic exercise and green tea extract can diminish levels of 
cyclooxygenase-2 (COX-2), NF-kB, and P53  in the prostates of 
rats. The rats were categorized into six groups: healthy, cancer, low 
to moderate-intensity exercise, green tea extract, cancer training 
with green tea extract, and sham (127). Post-mortem analysis of 
prostate tissues revealed elevated NF-kB levels in the CCt group 
and diminished p53 levels in the CTr, CEx, and CTr + CEx groups, 
indicating that a regular intake of green tea may contribute to the 
reduction of these levels (128).

Physical activity is associated with cancer, as angiogenesis 
influences blood vessel formation. The combination of exercise 
training and plant-derived phytochemicals may aid in cancer 
prevention. Moderate aerobic exercise is more efficacious in 
suppressing angiogenesis markers in tumor tissue. MMPs, including 
MMP-9 and MMP-2, play a role in cancer cell invasion, tumor growth, 
and the facilitation of metastasis. Endothelial cells can selectively 
express and activate matrix metalloproteinases (MMPs), initiating 
angiogenesis and the angiogenic switch, highlighting the potential of 
combining exercise with plant-derived phytochemicals in cancer 
treatment (129). The study by Khosravi et al. investigated the effects 
of aerobic exercise and green tea extract on MMP-2/−9 and VEGF 
levels in both healthy rats and prostate cancer patients. The results 
indicated no significant differences in MMP-2, MMP-9, or VEGF 
levels between the healthy and cancer groups. The study indicates that 
additional research should concentrate on the regulation of tumor 
dissemination and angiogenesis concerning physical activity and 
antioxidant use (130).

10.7 Resveratrol

Resveratrol, a naturally occurring polyphenolic compound, is 
an antitoxin produced by plants in reaction to external stimuli. It 
is found in grapes, mulberries, cranberries, and peanuts, and has 
received significant attention for its cancer-preventive and anti-
cancer properties in recent years. Research demonstrates that 
resveratrol can induce autophagic cell death through the Ca2+/
AMPK-mTOR signaling pathway, leading to the death of human 
non-small cell lung cancer cells (A549). It can also induce 
apoptosis in human ovarian cancer (OVCAR-3) cells, an effect 
that is reduced by the autophagy inhibitor chloroquine. 
Resveratrol can induce autophagy in SKOV3 human ovarian 
cancer cells and inhibit apoptosis. However, in conjunction with 
the autophagy inhibitor 3-methyladenine (3-MA), resveratrol 
markedly increases cell apoptosis by inhibiting autophagy, 
suggesting that autophagy induced by resveratrol may protect 
SKOV3 cells. Resveratrol can stimulate autophagy and apoptosis 
in cisplatin-resistant human oral cancer CAR cells, whereas 3-MA 
obstructs autophagosome fusion and enhances CAR cell viability 

(131–133). Resveratrol supplementation modulates inflammation, 
metabolism, glucose and lipid metabolism, and muscle atrophy by 
enhancing AMPK activity, decreasing protein degradation, and 
inhibiting NF-κB; however, its effects in vivo remain contentious. 
Recently, the research demonstrated that resistance training and 
resveratrol supplementation significantly diminish tumor volume 
via mTORC1 and AMPK signaling pathways, leading to decreased 
phosphorylation and activation of factors and carcinogenic 
markers (134). Additional research is required to enhance 
confidence. A study demonstrated that RSV synergistically 
amplified the anticancer effects of DTX in prostate carcinoma 
LNCaP cells, resulting in heightened apoptosis and necroptosis. 
This indicates RSV as a potential adjuvant for DTX therapy in 
prostate carcinoma.it has been also determined that resveratrol, 
diminished A549 cell viability in a concentration-dependent 
manner and exhibited a synergistic effect with cisplatin and 
carboplatin, potentially facilitating apoptosis via autophagy and 
elevating reactive oxygen species levels (133).

FIGURE 4

A graphical representation of the synergy between polyphenols and 
exercise in regulating autophagy elegantly illustrates how these two 
distinct but complementary stimuli converge on critical intracellular 
signaling networks that maintain cellular homeostasis and exert 
therapeutic effects. Both polyphenols and exercise activate AMP-
activated protein kinase (AMPK), a master energy sensor that 
promotes autophagy initiation by inhibiting the mechanistic target of 
rapamycin (mTOR) pathway, a central negative regulator of 
autophagy. Concurrently, Sirtuin 1 (SIRT1), a NAD+-dependent 
deacetylase modulated by both interventions, enhances autophagic 
flux by deacetylating key transcription factors such as FOXO and 
autophagy-related proteins, thus facilitating tumor cells quality 
control.
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11 Conclusion and future perspectives

The interplay between polyphenols and exercise in modulating 
autophagy presents a promising, non-invasive approach to 
improving health outcomes in both cancer patients and healthy 
individuals. By targeting key molecular pathways such as AMPK/
mTOR, PI3K/Akt, and SIRT1/FOXO, polyphenols and exercise 
work synergistically to regulate cellular homeostasis, reduce 
oxidative stress, and modulate inflammatory responses. This review 
highlights the emerging evidence that polyphenol supplementation, 
combined with regular physical activity, can enhance autophagic 
flux, ultimately contributing to cancer prevention, improved 
treatment responses, and overall metabolic health. However, despite 
promising preclinical and clinical studies, several knowledge gaps 
remain. Future research should focus on a few approaches. 
Determining the optimal doses and bioavailability-enhancing 
strategies for polyphenols to maximize their autophagy-inducing 
effects in cancer patients and healthy populations. Also, the role of 
individual genetic and epigenetic variations in autophagic responses 
to polyphenols and exercise should be  investigated to develop 
personalized therapeutic strategies. In addition, well-designed, 
large-scale clinical trials are needed to validate the efficacy of 
combined polyphenol-exercise interventions in cancer prevention 
and treatment. Further elucidating the precise molecular 
mechanisms by which polyphenols and exercise modulate 
autophagy across different cancer types and physiological states. 
Furthermore, exploring the long-term health benefits and potential 
risks of sustained polyphenol intake alongside exercise, particularly 
in aging populations and cancer survivors. In conclusion, integrating 
polyphenols with exercise holds significant potential for enhancing 
autophagy and promoting cellular resilience. With further research 
and clinical validation, this dual approach may offer an effective, 
accessible, and non-toxic strategy for cancer management and 
health optimization.
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