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Background: Serum creatinine/cystatin C (Cr/CysC), a biomarker for skeletal 
muscle mass, has not been well studied in relation to insulin resistance (IR). This 
study examined the associations between Cr/CysC, IR, and all-cause mortality.
Methods: Data were sourced from the NHANES database and analyzed using 
logistic and linear regression to assess the association between Cr/CysC and 
IR, quantified by the triglyceride-to-high-density lipoprotein cholesterol (TG/
HDL) ratio. Restricted cubic splines (RCS) were employed to identify non-linear 
associations, and Cox regression was leveraged to determine associations with 
all-cause mortality.
Results: Higher Cr/CysC ratios were strongly associated with lower IR risk 
(OR = 0.48, 95% CI: 0.32–0.73, p = 0.001) and lower TG/HDL (β = −0.60, 
p = 0.001). RCS analysis indicated a non-linear relationship, with increased IR 
risk below a certain threshold (p < 0.05). Cox regression revealed a negative 
association between Cr/CysC and all-cause mortality in the overall population 
(HR = 0.47, 95% CI: 0.31–0.69, p < 0.001) and among non-IR individuals, but not 
among those with IR. Associations were stronger in middle-aged individuals, 
women, and non-hypertensive participants.
Conclusion: Cr/CysC is inversely associated with IR and all-cause mortality, 
suggesting its potential as a low-cost marker for stratifying IR risk.
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Introduction

Insulin resistance (IR) is a pathological condition defined by disrupted glucose uptake and 
usage in the liver, skeletal muscle, adipose tissue, and other insulin-target tissues (1, 2). IR is 
strongly associated with various metabolic disorders, such as metabolic syndrome (3, 4), 
polycystic ovary syndrome (5, 6), non-alcoholic fatty liver disease (7, 8), and cardiovascular 
diseases (9, 10). The global prevalence of IR has surged alongside obesity and type 2 diabetes 
mellitus (T2DM) (11–14). According to the National Health and Nutrition Examination 
Survey (NHANES), approximately 40% of individuals aged 18–44 years are affected by IR (15), 
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while the American College of Endocrinology reports that over 90% 
of individuals with T2DM in the United States exhibit IR (16).

Skeletal muscle is the primary organ responsible for insulin-
regulated glucose disposal, and greater muscle mass is generally 
associated with improved insulin sensitivity (17–19). In the context of 
IR, insulin signaling in skeletal muscle is impaired, resulting in 
reduced glucose uptake and abnormal protein metabolism, which 
accelerates muscle mass loss. This depletion of muscle mass further 
exacerbates insulin resistance, establishing a vicious cycle of 
deterioration (17). Longitudinal cohort studies state that increased 
Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) is 
independently associated with reduced lean body mass and skeletal 
mass in older men (20). Other indices, such as the relative skeletal 
muscle index and extremity skeletal mass index, have also been 
identified as predictive markers for IR risk (21–23). However, current 
methods for assessing muscle mass, such as CT, MRI, and dual-energy 
X-ray absorptiometry, are expensive and not easily accessible (24, 25), 
emphasizing the need for more accessible biomarkers.

Serum creatinine/cystatin C (Cr/CysC) has been proposed as an 
indicator of sarcopenia, with its validity confirmed through CT 
imaging in older individuals, cancer patients, and individuals with 
diabetes (26–28). Unlike traditional methods, such as the HOMA-IR 
index for assessing IR, Cr/CysC is simple, cost-effective, and requires 
only serum measurements of Cr and CysC, making it highly applicable 
across diverse clinical settings.

While several reports have stated an association between Cr/CysC 
and IR, the majority of studies have focused on populations with 
specific conditions, such as diabetes, osteoporosis, or metabolic 
syndrome (29–32). Despite existing evidence supporting Cr/CysC as 
a muscle mass marker, its direct association with IR and all-cause 
mortality in general populations remains unclear. This study aims to 
address this gap by analyzing nationally representative cohort data.

Accumulating evidence suggests that Cr/CysC may 
be associated with all-cause mortality. As a surrogate marker of 
muscle mass, low Cr/CysC levels could reflect underlying 
sarcopenia and poor metabolic reserves, both independently 
associated with increased mortality risk (33, 34). However, the 
combined evaluation of Cr/CysC with respect to both IR and 
mortality in general populations remains underexplored. This study 
aims to fill that gap by examining the associations between Cr/
CysC, IR, and all-cause mortality in a nationally representative 
U. S. cohort.

The hyperinsulinemic–euglycemic clamp is considered the gold 
standard for assessing IR. However, this method is invasive, costly, and 
time-consuming, making it impractical for routine clinical use. In 
recent years, the triglyceride-to-high-density lipoprotein cholesterol 
(TG/HDL) ratio has been repeatedly validated as a reliable surrogate 
marker for IR (35, 36). Studies indicate that a TG/HDL ratio of 3.5 
provides optimal predictive value for IR, demonstrating high sensitivity 

and specificity in identifying insulin-resistant individuals (37). 
Therefore, this study adopts a TG/HDL ratio ≥ 3.5 as the diagnostic 
criterion for IR.

Methods

Data source and inclusion procedures

Data were sourced from the NHANES, organized by the National 
Center for Health Statistics, to inspect the nutritional and health 
conditions of U. S. citizens. The survey employs a rigorous multistage 
probability sampling to ensure that the data accurately represent 
diverse demographic groups.

Data from three NHANES cycles (1999–2004) were employed. 
After initial inclusion of 4,196 participants, pregnant women 
(n = 165), patients with malignant neoplasms (n = 463), diabetes 
mellitus (n = 429), insulin or glucose-lowering medications 
(n = 2), missing continuous variables (n = 292), and missing 
categorical variables (n = 758) were excluded. Finally, 2,087 
participants were left. The inclusion procedures are displayed in 
Figure 1.

Measurement of the Cr/CysC ratio

Serum creatinine was determined by the kinetic Jaffe method. 
Cystatin C in serum was determined by cystatin C immunoassay 
(Siemens Healthineers Diagnostics) (38).

Definition of IR

TG/HDL is considered a surrogate index of IR, with a ratio > 3.5 
predictive of IR (39).

Assessment of covariates

Covariates related to IR were also recorded (40–43), encompassing 
age, sex, ethnicity, poverty income ratio (PIR) (≤3, >3), marriage, 
education, alcohol use, tobacco use, hypertension (yes, no), body mass 
index (BMI), waist circumference, insulin, glucose, HDL-C, total 
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), TG, Cr, 
CysC, and Cr/CysC. PIR ≤ 3 was considered low to moderate income, 
and PIR > 3.0 was considered high income (42). BMI (kg/m2) was 
divided into <30 kg/m2 (non-obese) and ≥30 kg/m2 (obese 
individuals) (44).

Mortality evaluation

To determine all-cause death, we accessed the NHANES mortality 
dataset, which is linked to the National Death Index. First, causes of 
death were classified according to ICD-10 codes (45). The follow-up 
duration was from the participant’s examination at the ambulatory 
screening center to death or until 31 December 2019, whichever 
occurred earlier.

Abbreviations: Cr/CysC, Creatinine/Cystatin C; IR, Insulin Resistance; HOMA-IR, 

Homeostasis Model Assessment of Insulin Resistance; NHANES, National Health 

and Nutrition Examination Survey; RCS, Restricted Cubic Splines; CHARLS, China 

Health and Retirement Longitudinal Study; T2DM, Type 2 Diabetes Mellitus; HDL-C, 

High-density Lipoprotein Cholesterol; TG, Triglycerides; LDL-C, Low-density 

Lipoprotein Cholesterol; PIR, Poverty Income Ratio; BMI, Body Mass Index; ORs, 

Odds Ratios; CIs, Confidence Intervals; HRs, Hazard Ratios.
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Data synthesis

This study incorporated weights in all analyses to acquire 
nationally representative estimates for U.S. citizens. Descriptive 
statistics for categorical estimates were delineated as weighted 
percentages, and pairwise comparisons were performed using 
chi-square tests.

The analysis involved three models with stepwise adjustments: the 
crude model was not adjusted; Model 1 adjusted for sex, age, and 
ethnicity; Model 2 further adjusted for PIR, marriage, education, 
drinking, smoking, hypertension, and BMI.

Logistic regression analyses with IR as a dichotomous outcome were 
employed to characterize the risk estimates in odds ratios (ORs) and 95% 
confidence intervals (CIs). Additionally, the linear trend across tertiles 
was tested by introducing tertiles as a single continuous variable into the 
model. Weighted linear regression models were employed to analyze 
continuous outcome variables. The Cox proportional hazards model was 
utilized to estimate hazard ratios (HRs) and 95% CIs between Cr/CysC 
and all-cause mortality. The dose–response relationship between Cr/

CysC and IR was studied using restricted cubic splines (RCS), with the 
median as the inflection point and five selected nodes. The relationship 
was tested separately in the overall population and subgroups (men and 
women). All data analyses were conducted using R version 4.2.2 and 
SPSS 27, with p < 0.05 indicating statistical significance.

Results

Baseline characteristics

The sociodemographic characteristics and clinical data are listed 
in Table 1. Compared to their non-IR counterparts, individuals with 
IR were more often men, non-Hispanic White or of other ethnicities, 
and smokers. They also exhibited larger waist circumference, a higher 
prevalence of metabolic disorders (such as hypertension, high BMI, 
high insulin uptake, and high plasma glucose), poorer blood lipid 
profiles (higher TC, TG, LDL-C, and low HDL-C), and higher Cr and 
CysC levels but lower Cr/CysC ratios.

FIGURE 1

Inclusion procedures in NHANES 1999–2004.
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TABLE 1  Weighted characteristics and measured data from NHANES 1999–2004.

Characteristics All No-IR IR P*

(n = 2087) (n = 1,509) (n = 578)

Age

  20–39 617 (43.1) 470 (43.9) 147 (40.8) 0.309

  40–60 620 (42.1) 453 (42.1) 167 (41.9)

  > 60 850 (14.9) 586 (14.0) 264 (17.3)

Sex

  Male 1,137 (51.2) 760 (46.0) 377 (66.4) <0.001*

  Female 950 (48.8) 749 (54.0) 201 (33.6)

Ethnicity

  Non-Hispanic White 1,163 (75.8) 844 (74.7) 319 (79.1) 0.001*

  Non-Hispanic Black 353 (9.1) 296 (10.6) 57 (4.8)

  Other ethnicities 571 (15.1) 369 (14.7) 202 (16.2)

Marriage

  Married or living with a partner 1,316 (67.5) 926 (66.2) 390 (71.3) 0.125

 � Not married nor living with a 

partner
771 (32.5) 583 (33.8) 188 (28.7)

PIR

  > 3 896 (54.6) 657 (53.5) 239 (58.0) 0.155

  ≤ 3 1,191 (45.4) 852 (46.5) 339 (42.0)

Education

  High school graduate or higher 1,475 (84.6) 1,096 (85.0) 379 (83.5) 0.488

  Less than high school 612 (15.4) 413 (15.0) 199 (16.5)

Drink (Past 12 months)

  0 time 473 (16.9) 321 (16.0) 152 (19.4) 0.177

  ≤ 12 times 1,561 (80.4) 1,151 (81.5) 410 (77.3)

  > 12 times 53 (2.7) 37 (2.4) 16 (3.4)

Smoke

  No 915 (45.9) 707 (47.9) 208 (39.8) 0.017*

  Yes 1,172 (54.1) 802 (52.1) 370 (60.2)

Hypertension

  No 1,401 (75.1) 1,045 (78.0) 356 (66.7) 0.001*

  Yes 686 (24.9) 464 (22.0) 222 (33.3)

BMI (kg/m2)

  < 30 1,434 (71.6) 1,093 (75.6) 341 (60.0) <0.001*

  ≥ 30 653 (28.4) 416 (24.4) 237 (40.0)

  Waist circumference (WC)(cm) 95.80 (15.19) 93.26 (14.88) 103.19 (13.58) <0.001*

  Insulin (uU/mL) 10.49 (9.00) 8.82 (6.55) 15.37 (12.65) <0.001*

  Plasma glucose (mmol/L) 97.12 (17.76) 95.35 (15.50) 102.24 (22.36) <0.001*

  TC (mg/dL) 198.39 (38.12) 195.17 (36.92) 207.73 (39.99) <0.001*

  HDL-C (mg/dL) 52.86 (14.89) 57.21 (14.13) 40.22 (8.42) <0.001*

  LDL-C (mg/dL) 120.19 (33.47) 118.52 (32.73) 125.01 (35.11) 0.003*

  TG (mg/dL) 126.79 (66.66) 97.27 (35.90) 212.51 (61.02) <0.001*

  Cr (mg/dL) 0.86 (0.30) 0.84 (0.30) 0.90 (0.31) 0.001*

  CysC (mg/L) 0.79 (0.23) 0.77 (0.22) 0.85 (0.25) <0.001*

  Cr/CysC 1.12 (0.35) 1.13 (0.36) 1.09 (0.34) 0.002*

*p < 0.05. Unweighted n, all other analyses are weighted.
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Associations between Cr/CysC and IR

In weighted logistic regression modeling (Table 2), Cr/CysC was 
greatly and negatively associated with IR risk and remained robust 
(OR = 0.35, 95% CI: 0.15–0.79) in Model 2. Consistently, IR risk was 
considerably lower in the highest quartile (OR = 0.48, 95% CI: 0.32–
0.73). A linear trend was unveiled for this association (P for 
trend = 0.001). Cr/CysC ratio may be  a protective indicator for 
assessing IR risk.

In weighted linear regression (Table 3), continuous Cr/CysC was 
negatively associated with TG/HDL (β = −0.38, SE = 0.14) in the 
unadjusted model, especially in the highest quartile (T3: β = −0.38, 
SE = 0.17). The correlation was enhanced after adjusting for 
demographic factors (age, sex, and ethnicity; continuous Cr/CysC: 
β = −0.67, SE = 0.23; T3: β = −0.72, SE = 0.18; P for trend, p < 0.001). 
After further adjustment for confounders, the significant association was 
maintained (continuous: β = −0.55, SE = 0.20; T3: β = −0.60, SE = 0.17), 
suggesting a robust negative association between Cr/CysC and TG/HDL.

RCS modeling proved a non-linear link between Cr/CysC and IR 
risk (Figure 2). All three plots revealed that Cr/CysC was negatively 
linked with IR risk, with non-linear associations in men, women, and the 
whole population. IR risk was greater at lower Cr/CysC. The non-linear 
trend was particularly pronounced in women and the whole population. 
The turning points for total populations, men, and women were Cr/
CysC = 1.06, 1.18, and 0.95, respectively. These inflection points suggest 
the differential effects Cr/CysC ratio on the outcomes of different sexes.

Associations between Cr/CysC and 
mortality

This study illustrated a linear inverse link of Cr/CysC to all-cause 
death (Table 4). In continuous variable analysis, each unit increase in 
Cr/CysC was linked with a 53% decline in death risk (HR = 0.47, 
95%CI: 0.30–0.69). Tertile comparisons exhibited progressively lower 
risks in T2 (0.77, 0.63–0.94) and T3 (0.73, 0.56–0.95) versus T1 (both 
p < 0.05), with a notable linear trend (P for trend = 0.007). Similar 
patterns were unveiled in IR subgroups.

Similarly, in the population without IR, the continuous variable 
analysis revealed a negative link of Cr/CysC levels to all-cause death 

(HR = 0.42, 95% CI: 0.26–0.67). Death risk in T2 (0.76, 0.61–0.96) and 
T3 groups (0.70, 0.52–0.96) was significantly lowered. However, in IR 
populations, the continuous variable analysis did not reveal a 
pronounced link (0.60, 0.30–1.19). Similarly, categorical variable 
analysis did not reveal considerable differences in mortality risk 
between the T2 (0.76, 0.52–1.11) or T3 (0.84, 0.52–1.37) groups and 
the T1 group.

Overall, the results suggest that the Cr/CysC was negatively linked 
with all-cause death in total populations and non-IR individuals, but 
no pronounced association was noticed in IR populations.

Subgroup analysis

The results manifested a significant inverse association between Cr/
CysC and study outcomes (OR = 0.60, 95% CI: 0.43–0.82), indicating 
that higher Cr/CysC levels were statistically correlated with lower odds 
of adverse outcomes. In the age stratification, pronounced associations 
were unveiled only in the 40–60 years group. In the sex stratification, 
both men and women presented notable negative associations, 
especially in women. In the ethnicity stratification, other ethnicities 
showed notable associations. Negative associations of Cr/CysC with 
outcomes were significant in those who were unmarried or not living 
with a partner and in those with low PIR. Significant associations were 
also shown among moderate drinkers and smokers. In addition, the 
associations were particularly significant among those without 
hypertension and those with a BMI < 30 (p < 0.05) (see Table 5).

TABLE 2  Weighted logistic regression of Cr/CysC and TG/HDL.

Cr/CysC Crude Model 1 Model 2

Continuous 0.60 (0.38, 0.96) 

0.033*

0.32 (0.15, 0.68) 

0.004*

0.35 (0.15, 0.79) 

0.013*

Categories

T1 Ref Ref Ref

T2 0.88 (0.64, 1.20) 

0.402

0.70 (0.49, 0.98) 

0.040*

0.72 (0.51, 1.02) 

0.061

T3 0.71 (0.50, 0.99) 

0.044*

0.46 (0.30, 

0.71) < 0.001*

0.48 (0.32, 0.73) 

0.001*

P for trend 0.84 (0.71, 0.99) 

0.043*

0.68 (0.54, 

0.84) < 0.001*

0.69 (0.56, 0.85) 

0.001*

Crude Model: Non-adjusted model; Model 1: adjusted for age, sex, and ethnicity; Model 2: 
adjusted for age, sex, ethnicity, marriage, PIR, education, drinking, smoking, hypertension, 
and BMI. *P < 0.05.

TABLE 3  Weighted linear regression of Cr/CysC and TG/HDL.

Index Model Cr/CysC

Beta (SE) P

Crude

Continuous −0.38 (0.14) 0.009*

Categories

T1 Ref

T2 −0.19 (0.14) 0.175

T3 −0.38 (0.17) 0.031*

P for trend −0.19 (0.08) 0.032*

Model 1

Continuous −0.67 (0.23) 0.007*

Categories

T1 Ref

T2 −0.36 (0.14) 0.012*

T3 −0.72 (0.18) <0.001*

P for trend −0.36 (0.09) <0.001*

Model 2

Continuous −0.55 (0.20) 0.010*

Categories

T1 Ref

T2 −0.29 (0.13) 0.031*

T3 −0.60 (0.17) 0.001*

P for trend −0.30 (0.08) 0.001*

SE: standard error, *P < 0.05.
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Discussion

This study explored the associations between Cr/CysC, IR, and 
all-cause death based on the NHANES databases and uncovered that 
higher Cr/CysC was significantly and inversely linked with IR, 
exhibiting a non-linear dose–response link. Cr/CysC was negatively 
associated with all-cause death in non-IR populations but not in the 
IR population. Subgroup analyses evinced that an inverse link of Cr/
CysC with IR was more notable in the middle-aged, female, and 
non-hypertensive populations.

This study proved an independent non-linear link between 
elevated Cr/CysC and low IR risk. Consistently, a CHARLS study of 
5,055 middle-aged and older adults reported that enhanced Cr/CysC 
was related to diminished risk of diabetes and cardiometabolic 

comorbidities (33). A cohort study of American adults found that low 
Cr/CysC was related to elevated cardiovascular event risk (34). The 
potential mechanisms may be that Cr/CysC is an index of muscle 
mass, reflecting the contribution of skeletal muscle to insulin-
regulated glucose uptake, and reduced muscle mass may exacerbate 
IR through ectopic lipid deposition and inflammation (17, 19). 
Furthermore, non-linear analysis indicated a threshold effect of Cr/
CysC, where values < 1.06 corresponded to rapidly escalating IR risk, 
emphasizing the need for early intervention in low Cr/
CysC populations.

We found that lower Cr/CysC was markedly connected with 
greater all-cause death, especially in non-IR populations. Consistently, 
a cohort study involving 1,476 participants found that low Cr/CysC 
was linked to enhanced mortality risk in patients with T2DM (46). 
Another cohort study of 12,914  U.S. adults reported negative 
correlations of Cr/CysC with deaths from all causes, cardiovascular 
events, and cancer (47). As a surrogate index of skeletal muscle mass, 
lower Cr/CysC may reflect muscle loss, leading to reduced insulin 
sensitivity, increased chronic inflammation, and ectopic lipid 
deposition (17–19), thereby impairing glucose homeostasis and 
accelerating metabolic disorders (18). Notably, this association 
disappeared in the IR population, potentially due to IR-related chronic 
inflammation, abnormal insulin signaling, and renal dysfunction 
(48–50).

Lower mortality risk with higher Cr/CysC levels aligns with the 
skeletal muscle’s role in maintaining metabolic health. This inverse 
association may be mechanistically explained by the critical role of 
skeletal muscle in regulating glucose metabolism, insulin sensitivity, 
and overall physiological resilience (1). Low Cr/CysC, as a proxy for 
reduced muscle mass, could indicate poor metabolic capacity, leading 

FIGURE 2

RCS curves for the link between Cr/CysC and IR. (A) Entire Cohort; 
(B) Females; (C) Males. Red lines represent ORs, and gray areas 
denote 95%CIs.

TABLE 4  Cox regression of Cr/CysC and all-cause mortality.

Index Cr/CysC 
Variable

Cr/CysC

HR (95%CI) P

Total

Continuous 0.47 (0.31–0.69) <0.001*

Categories

T1 Ref

T2 0.77 (0.63–0.94) 0.009*

T3 0.73 (0.56–0.95) 0.018*

P for trend 0.84 (0.74–0.95) 0.007*

Without IR

Continuous 0.42 (0.26–0.67) <0.001*

Categories

T1 Ref

T2 0.76 (0.61–0.96) 0.019*

T3 0.70 (0.52–0.96) 0.026*

P for trend 0.82 (0.71–0.96) 0.011*

With IR

Continuous 0.60 (0.30–1.19) 0.145

Categories

T1 Ref

T2 0.76 (0.52–1.11) 0.160

T3 0.84 (0.52–1.37) 0.483

P for trend 0.89 (0.70–1.13) 0.343

*P < 0.05.
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to higher systemic inflammation, impaired insulin signaling, and 
increased vulnerability to comorbidities (18). Notably, the absence of 
a significant association in the insulin-resistant subgroup might 
be attributed to the complex interplay between chronic inflammation, 
endothelial dysfunction, and renal impairment commonly present in 
this population, potentially attenuating the predictive value of Cr/
CysC for mortality risk (9).

We also acknowledge recent mechanistic studies that further 
elucidate the complex pathophysiology of IR. For example, 
selenoproteins have emerged as redox-sensitive modulators involved 
in lipid and glucose metabolism, with dysregulated expression 

implicated in oxidative stress and IR progression (51). Moreover, 
epigenetic regulation may also contribute to IR heterogeneity: a recent 
study found that LncRNA Kcnq1ot1 levels were significantly elevated 
in patients with T2DM and correlated with inflammatory cytokines 
IL-6 and IL-β, suggesting a role in metabolic inflammation (52). These 
molecular insights may complement future biomarker-based risk 
stratification strategies.

Our findings further underscore the value of incorporating Cr/
CysC as a biomarker in broader clinical frameworks. A recent 
machine-learning model (53) demonstrated strong predictive capacity 
for diabetic macroangiopathy using routine clinical features. While 

TABLE 5  Subgroup analysis of Cr/CysC and IR.

Variables N (%) Case/control OR (95%CI) P

All patients 2087 (100.00) 578/1509 0.60 (0.43 ~ 0.82) 0.002*

Age

  20–39 617 (29.56) 147/470 0.72 (0.39 ~ 1.32) 0.289

  40–60 620 (29.71) 167/453 0.50 (0.26 ~ 0.95) 0.034*

  > 60 850 (40.73) 264/586 0.81 (0.51 ~ 1.29) 0.382

Gender

  Men 1,137 (54.48) 377/760 0.46 (0.29 ~ 0.71) <0.001*

  Women 950 (45.52) 201/749 0.21 (0.11 ~ 0.41) <0.001*

Ethnicity

  Non-Hispanic White 1,163 (55.73) 319/844 0.92 (0.64 ~ 1.33) 0.659

  Non-Hispanic Black 353 (16.91) 57/296 0.84 (0.35 ~ 2.04) 0.699

  Other ethnicities 571 (27.36) 202/369 0.40 (0.22 ~ 0.74) 0.003*

Marriage

  Married or living with a partner 1,316 (63.06) 390/926 0.71 (0.49 ~ 1.02) 0.065

  Not married nor living with a partner 771 (36.94) 188/583 0.39 (0.22 ~ 0.70) 0.001*

PIR

  > 3 896 (42.93) 239/657 0.80 (0.52 ~ 1.24) 0.323

  ≤ 3 1,191 (57.07) 339/852 0.47 (0.31 ~ 0.74) <0.001*

Education

  High school graduate or higher 1,475 (70.68) 379/1096 0.65 (0.44 ~ 0.95) 0.025*

  Less than high school 612 (29.32) 199/413 0.60 (0.34 ~ 1.07) 0.083

Drink (Past 12 months)

  0 times 473 (22.66) 152/321 0.83 (0.42 ~ 1.65) 0.595

  ≤ 12 times 1,561 (74.80) 410/1151 0.45 (0.30 ~ 0.67) <0.001*

  > 12 times 53 (2.54) 16/37 1.38 (0.73 ~ 2.60) 0.324

Smoking status

  No 915 (43.84) 208/707 0.61 (0.37 ~ 0.99) 0.047*

  Yes 1,172 (56.16) 370/802 0.65 (0.43 ~ 0.99) 0.044*

Hypertension

  No 1,401 (67.13) 356/1045 0.51 (0.34 ~ 0.77) 0.001*

  Yes 686 (32.87) 222/464 0.85 (0.56 ~ 1.27) 0.422

BMI (kg/m2)

  < 30 1,434 (68.71) 341/1093 0.64 (0.43 ~ 0.95) 0.026*

  ≥ 30 653 (31.29) 337/416 0.64 (0.38 ~ 1.08) 0.095

*P < 0.05.
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our study did not focus on complications, the potential utility of Cr/
CysC in such ML-based risk prediction tools represents a valuable 
direction for future research, particularly for the early identification 
of high-risk individuals.

Additionally, although our study is observational in nature, 
we recognize that interventions targeting the biological underpinnings 
of IR are of significant interest. In particular, traditional Chinese 
medicine formulations such as Liuwei Dihuang Decoction have 
shown promise in improving IR through activation of the PI3K/Akt 
signaling pathway in preclinical models (54). These complementary 
strategies may align with Cr/CysC-based assessments in the future. 
Similarly, innovative therapies addressing complications of diabetes, 
such as glucose-responsive photodynamic analgesic gels for treating 
diabetic abscesses (55), underscore the expanding therapeutic 
landscape of diabetes care and its intersection with metabolic 
regulation. Although these interventions fall beyond the scope of our 
cohort-based analysis, they highlight the interconnected biological 
systems that influence IR, muscle mass, inflammation, and 
metabolic outcomes.

This study identified a particularly strong inverse association 
between Cr/CysC and IR in middle-aged individuals (40–60 years), 
women, and those without hypertension. The accelerated decline in 
skeletal muscle mass that typically occurs during middle age may 
amplify potential metabolic benefits associated with higher Cr/CysC 
levels in this population (20). Sex differences are likely influenced by 
the regulatory role of estrogen in muscle protein synthesis (23), with 
muscle loss in women rendering Cr/CysC fluctuations more sensitive 
to metabolic disturbances.

Additionally, the stronger association observed in 
non-hypertensive individuals may be explained by the absence of 
hypertension-related vascular endothelial dysfunction, which can 
impair skeletal muscle microcirculatory perfusion and limit insulin-
mediated glucose uptake (1, 9). In hypertensive patients, this 
pathological state may obscure the potential contribution of muscle 
mass, as reflected by Cr/CysC, to insulin sensitivity. Furthermore, 
chronic inflammation and oxidative stress commonly present in 
hypertensive individuals may independently promote IR through 
mechanisms, such as muscle atrophy and ectopic lipid accumulation 
(48, 49).

These findings collectively suggest that Cr/CysC, as a surrogate 
biomarker of muscle mass, may serve as a useful indicator associated 
with IR risk in individuals without significant vascular pathology. 
Consequently, Cr/CysC may have potential utility as an auxiliary 
marker in identifying individuals with increased IR risk in specific 
high-risk populations, including middle-aged individuals, women, 
non-hypertensive people, those with lower socioeconomic status, 
moderate drinkers or smokers, and those with a BMI < 30.

Our study has several notable strengths. First, it utilizes data from 
the large-scale NHANES database, ensuring strong representativeness 
and broad applicability. Second, the use of RCS models and subgroup 
analyses reveals non-linear associations and sex-specific differences, 
providing support for personalized prevention strategies. Additionally, 
Cr/CysC, as a low-cost and easily accessible biomarker, shows 
potential for clinical application in the risk stratification of IR.

However, this study has several limitations. First, its cross-
sectional design prevents causal inferences, which should be addressed 
in future longitudinal or interventional studies. Second, the serum 
creatinine and cystatin C measurements in NHANES 1999–2004 were 

not traceable to the IDMS or ERM-DA471/IFCC reference standards. 
Although standardized and calibrated methods were used, this may 
introduce measurement bias; however, internal comparisons remain 
valid. Third, potential confounding from unmeasured factors affecting 
cystatin C levels, such as certain medications and clinical conditions, 
could not be fully controlled due to data limitations. Fourth, since the 
study population was based in the United States, the generalizability 
of these findings to other ethnicities and regions requires confirmation 
in large, multicenter, and international cohorts. Additionally, although 
TG/HDL is a convenient and widely accepted surrogate marker for IR, 
it can be influenced by lipid metabolism disorders, inflammation, and 
medication use, with variable diagnostic accuracy across different 
populations. To validate the robustness of our findings, a sensitivity 
analysis using the TyG index was performed, which yielded consistent 
results. Although TG/HDL > 3.5 has been widely used as a surrogate 
marker for IR, its diagnostic accuracy may vary across racial and 
ethnic groups due to genetic and metabolic differences in lipid profiles. 
While this threshold has demonstrated utility in multiethnic cohorts, 
further validation using subgroup analyses or development of 
ethnicity-specific cutoffs may enhance its diagnostic precision 
and generalizability.

Moreover, future research should focus on clarifying the biological 
mechanisms linking skeletal muscle mass, Cr/CysC, and IR through 
cellular, animal, and clinical studies. Prospective research is also 
needed to explore the feasibility and clinical value of applying Cr/
CysC as a simple, accessible tool for early IR risk assessment, 
particularly in resource-limited settings.

Conclusion

The present study confirmed that Cr/CysC was independently and 
inversely linked with IR and all-cause mortality and revealed a 
significant protective effect in specific subgroups. This low-cost 
indicator has the potential for IR risk stratification, especially in 
resource-limited areas.
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