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Impact of early enteral nutrition
on the prognosis of mechanically
ventilated patients with chronic
obstructive pulmonary disease: a
retrospective cohort study based
on the MIMIC-IV Database

Lamei Ouyang, Canmin Wang and Yunfeng Song*

Department of Critical Care Medicine, The A�liated Guangdong Second Provincial General Hospital of

Jinan University, Guangzhou, Guangdong, China

Background: While early enteral nutrition (EN) is recommended for critically

ill patients, its specific impact on mechanically ventilated chronic obstructive

pulmonary disease (COPD) patients remains uncertain.

Methods: We analyzed data extracted from the MIMIC-IV 3.0 database, focusing

on patients with COPDwho received invasivemechanical ventilation. The cohort

was stratified into two groups: the early EN group (EEN, EN initiated within

48h of ICU admission), and the delayed EN group (DEN, EN initiated after 48h

of ICU admission). Propensity score matching (PSM) was employed to balance

baseline characteristics between the groups, enabling a comparative analysis of

clinical outcomes.

Results: Among 1,052 patients, 513 (48.76%) were in the early EN group and

539 (51.24%) were in the delayed EN group. After PSM, no statistically significant

di�erenceswere observed in 28-daymortality (30.51% vs. 32.82%, p= 0.488), ICU

mortality (17.18% vs. 21.28%, p = 0.146), or 60-day mortality (38.21% vs. 39.74%,

p = 0.660). Similarly, the incidence of ventilator-associated pneumonia (VAP) did

not di�er significantly between the EEN and DEN groups (20.77% vs. 23.33%,

p = 0.388). However, the EEN group exhibited a significantly shorter duration

of mechanical ventilation (127.50 vs. 137.94h, p = 0.023), reduced ICU length

of stay (9.08 vs. 10.07 days, p< 0.01) and total hospitalization (14.64 vs. 16.63

days, p = 0.001). Additionally, subgroup analysis revealed that EEN significantly

reduced 28-day mortality in patients with PaO2/FiO2 >200 (OR = 0.626, 95% CI:

0.414–0.943; p = 0.026).

Conclusion: Although early EN did not significantly improve overall mortality, it

e�ectively decreased ventilation duration and hospital stays and demonstrated

potential survival benefits for patients with better oxygenation. These findings

provide critical evidence for optimizing nutritional support strategies in

mechanically ventilated COPD patients.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a prevalent

chronic respiratory disorder characterized by progressive airflow

limitation and recurrent lower respiratory tract infections

(1, 2). According to the 2019 Global Burden of Disease Study,

COPD represents a significant global health burden, with

212.3 million reported cases and 3.3 million annual deaths,

ranking as the third leading cause of mortality worldwide (3).

Predictive modeling studies project a 23% increase in COPD

prevalence among individuals aged 25 years and older from

2020 to 2050, with the global patient population expected

to approach 600 million by 2050 (4). This epidemiological

trend underscores the critical need to identify modifiable

risk factors that may mitigate COPD-related morbidity

and mortality.

Malnutrition has emerged as a significant modifiable

risk factor in COPD management (5). Extensive research

demonstrates that COPD patients frequently exhibit compromised

nutritional status, with advanced-stage patients showing marked

reductions in body mass index (BMI), fat-free mass, handgrip

strength, and respiratory and skeletal muscle function (6, 7).

The pathophysiological consequences of malnutrition in

COPD patients primarily manifest as reduced respiratory

muscle mass, particularly affecting the diaphragm, which

impairs respiratory muscle function, ventilatory capacity,

and pulmonary defense mechanisms, ultimately leading to

diminished lung function (8). For mechanically ventilated patients,

diaphragmatic function represents a critical determinant of

successful ventilator weaning. Furthermore, clinical studies have

established that malnutrition significantly reduces quality of life

in COPD patients, predisposes to acute respiratory failure, and

increases the incidence of adverse respiratory and cardiovascular

events (9).

As a potentially modifiable independent risk factor,

malnutrition management through targeted nutritional

interventions has demonstrated significant therapeutic potential in

COPD care. Nutritional rehabilitation in COPD patients enhances

immune function through improved neutrophil activity and

complement system response, thereby augmenting host defense

mechanisms against infections (10). Consequently, nutritional

support has become an integral component of comprehensive

COPD management and a critical factor in facilitating successful

ventilator weaning (11). The timing of nutritional intervention

initiation is particularly crucial for optimizing clinical outcomes

in critically ill patients (12). Emerging evidence suggests that early

standardized enteral nutrition may prevent acute muscle loss

and intensive care unit-acquired weakness (ICU-AW) in patients

experiencing acute exacerbations of COPD (AECOPD) (13).

However, the prognostic implications of early enteral nutrition

in mechanically ventilated COPD patients remain incompletely

characterized and warrant further investigation. This study

aims to evaluate the efficacy of early enteral nutrition (EN) in

improving clinical outcomes among mechanically ventilated

COPD patients.

2 Materials and methods

2.1 Overview

This investigation constitutes a retrospective observational

analysis utilizing the Medical Information Mart for Intensive Care

IV (MIMIC-IV) database (version 3.0, updated July 23, 2024).

MIMIC-IV represents a comprehensive, single-center repository

encompassing clinical data from patients admitted to the intensive

care unit (ICU) of a tertiary care hospital in Boston, Massachusetts,

USA. The database comprises hospitalization records of 94,458

adult patients (≥18 years) admitted to the ICU between 2008

and 2022.

All data within the database have undergone rigorous de-

identification procedures, ensuring the anonymity of individual

patients. Consequently, this study does not qualify as human

subjects research under current regulatory guidelines, and the

use of de-identified health information obviates the requirement

for patient consent. The development and maintenance of the

MIMIC-IV 3.0 database received ethical approval from the

Institutional Review Boards of the Massachusetts Institute of

Technology (MIT, Cambridge, Massachusetts) and Beth Israel

Deaconess Medical Center (BIDMC). Author Lamei Ouyang

obtained authorized access to theMIMIC-IV 3.0 database following

successful completion of the requisite Human Subject Research

course (certification number: 64058594).

2.2 Participant selection

This study enrolled patients aged ≥18 years diagnosed with

COPD according to established diagnostic criteria (14), who

underwent invasive mechanical ventilation and received EN during

their ICU stay. The analysis was restricted to patients experiencing

their first ICU admission. Exclusion criteria comprised: (1) age<18

years at ICU admission; (2) ICU stay duration <48 h; (3) receive

invasive mechanical ventilation < 48 h; (4) no enteral nutrition

admission was received during the ICU stay; and (5) started enteral

nutrition > 7 days after ICU admission (Figure 1 illustrates the

patient flow diagram).

Comprehensive patient data were systematically collected,

encompassing demographic characteristics (age, sex, BMI,

and ethnicity) and physiological parameters recorded within

the initial 24 h of ICU admission, including heart rate,

respiratory rate, body temperature, mean arterial pressure,

blood glucose levels, and 24-h urine output. Laboratory analyses

included arterial blood gas parameters (pH, partial pressure

of oxygen [PO2], partial pressure of carbon dioxide [PCO2],

PaO2/FiO2 ratio, lactate), hematological indices (white blood

cell count [WBC], hemoglobin, platelet count), coagulation

profile (activated partial thromboplastin time [APTT]), and

biochemical parameters (creatinine, blood urea nitrogen, and

electrolyte levels [chloride, calcium, potassium, sodium]). For

variables with multiple measurements within 24 h, mean values

were calculated.
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FIGURE 1

Flow chart of participant selection. MIMIC-IV, medical information mart for intensive care IV; ICU, intensive care unit; EEN, early enteral nutrition;

DEN, delayed enteral nutrition.

Interventional data captured within the first 24 h included

administration of vasopressors, implementation of continuous

renal replacement therapy, invasive arterial pressure monitoring,

and placement of peripherally inserted central catheters. Disease

severity was quantified using validated scoring systems: sequential

Organ Failure Assessment (SOFA), Glasgow Coma Scale (GCS),

Acute Physiology Score III (APS III), and Charlson Comorbidity

Index (CCI). Documented comorbidities included congestive heart

failure, cerebrovascular disease, liver disease, diabetes mellitus,

renal disease, and cancer.

2.3 Grouping

In accordance with the most recent clinical guidelines for

nutritional support in critically ill patients, participants were

stratified into two distinct cohorts: the early enteral nutrition

(EEN) group, defined by the initiation of EN within 48 h

following ICU admission, and the delayed enteral nutrition (DEN)

group, characterized by EN initiation beyond 48 h post-ICU

admission (15).

2.4 Statistical analysis

The normality of continuous variables was assessed using

both the Kolmogorov-Smirnov and Shapiro-Wilk tests. As all

continuous variables exhibited non-normal distributions, they

were expressed as medians with interquartile ranges (IQRs), and

comparisons between the two groups were performed using the

Mann-Whitney U test. Categorical variables were presented as

proportions and analyzed using the chi-square test.
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To mitigate potential confounding factors, propensity score

matching (PSM) was employed before comparing outcomes

between the EEN and DEN groups (16). A propensity score

was calculated for each patient using a logistic regression model

including 39 potential baseline prognostic and risk factors in

Table 1, and then individuals were matched using a 1:1 nearest

neighbor matching approach with a caliper width of 0.2 standard

deviations of the propensity score logit. Post-matching balance was

evaluated using standardized mean differences (SMDs), with an

SMD threshold of >0.1 indicating imbalance (17, 18). All PSM

analyses were conducted using R software (version 4.4.1).

The primary outcome was 28-day mortality. Secondary

outcomes included 60-day mortality, ICU mortality, the incidence

of ventilator-associated pneumonia (VAP), hospital length of

stay (LOS hospital), ICU length of stay (LOS ICU), and

duration of invasive mechanical ventilation. For both primary and

secondary endpoints, categorical variables were compared between

groups using the Chi-square test, while continuous variables

were compared using the Mann-Whitney U test. Subsequently,

the 28-day survival, ICU survival and 60-day survival were

estimated using Kaplan-Meier (K-M) survival curves, and the

hazard ratio between two groups was estimated using the Cox

proportional hazards model. Subgroup analyses were performed

to identify populations potentially benefiting from EEN, stratified

by age, sex, lactate level, BMI, and PaO2/FiO2 ratio. The

associations between EEN and 28-day mortality were quantified

using univariate logistic analysis, with results visualized in forest

plots. Furthermore, to delineate independent associations, we

performed distinct sensitivity analyses by excluding patients with

cancer diagnoses, non-white individuals, or patients not receiving

vasoactive agents. These analyses aimed to examine the reliability

and applicability of our results across diverse patient groups

and clinical scenarios. Variables exceeding 30% missingness were

excluded from the analysis. Then, missing data for covariates

were addressed using multiple imputation via the MICE package

in R (Supplementary Figure S1). The primary analysis model

was applied to each of 20 imputed dataset, and estimates were

pooled using Rubin’s rules to derive final parameter estimates

with standard errors accounting for missing data uncertainty. All

statistical analyses were conducted in R (version 4.4.1), with a

two-sided p-value <0.05 considered statistically significant.

3 Results

3.1 Demographic data and baseline
characteristics

The study cohort consisted of 1,052 patients, as depicted in

Figure 1. Among these, 513 patients (48.76%) were classified into

the EEN group, defined by the initiation of EN within 48 h of

ICU admission, while 539 patients (51.24%) were assigned to

the DEN group, characterized by EN initiation beyond 48 h of

ICU admission. The demographic and clinical characteristics of

both groups are presented in Table 1. Notably, during the first

24 h of ICU admission, the DEN group demonstrated significantly

higher lactate levels (1.60 [1.10, 2.50] vs. 1.36 [1.00, 1.97]; p <

0.001) and elevated disease severity scores, including the Acute

Physiology Score III (APS III) (55.00 [45.00, 71.00] vs. 54.00

[42.00, 68.00]; p = 0.038) and Charlson Comorbidity Index (CCI)

(6.00 [5.00, 8.00] vs. 6.00 [5.00, 8.00]; p = 0.018). Additionally,

the DEN group exhibited a higher prevalence of vasopressor

support (451 [83.67%] vs. 353 [68.81%]; p < 0.001), invasive

arterial pressure monitoring (428 [79.41%] vs. 322 [62.77%]; p <

0.001), and continuous renal replacement therapy (89 [16.51%]

vs. 51 [9.94%]; p = 0.002). After PSM, there was no significant

differences in all these baseline characteristics, with all SMDs<0.10

(Supplementary Table S1).

3.2 Comparison of primary outcomes
before and after propensity score matching

Prior to PSM, no statistically significant difference in 28-day

mortality was observed between the EEN group and the DEN group

(145 [28.27%] vs. 179 [33.21%]; p= 0.082) (Table 2). The univariate

Kaplan–Meier survival curve for 28 days further confirmed the

absence of a significant difference in survival time between the

EEN and DEN groups (HR = 0.825, 95% CI: 0.663–1.028; p

= 0.086) (Figure 2A). Post-matching analysis revealed a 2.31%

reduction in 28-day mortality in the EEN group compared to

the DEN group; however, this difference did not reach statistical

significance (119 [30.51%] vs. 128 [32.82%]; p = 0.488). The 28-

day Kaplan–Meier curve after propensity matching was consistent

with the result (HR = 0.921, 95% CI: 0.718–1.182; p = 0.518)

(Figure 2B).

3.3 Comparison of secondary outcomes
before and after propensity score matching

Prior to PSM, the EEN group exhibited significantly lower

ICU mortality compared to the DEN group (83 [16.18%] vs.

119 [22.08%]; p = 0.015), whereas no significant difference was

observed in 60-day mortality (182 [35.48%] vs. 220 [40.82%]; p =

0.075) (Table 2). Univariate Kaplan-Meier analysis for ICU survival

(HR = 0.954, 95% CI: 0.720–1.263; p = 0.742) (Figure 2C) and

60-day survival (HR = 0.835, 95% CI: 0.686–1.016; p = 0.071)

(Figure 2E) demonstrated no significant intergroup difference. The

incidence of VAP did not differ significantly between the EEN and

DEN groups (98 [19.10%] vs. 121 [22.45%]; p = 0.182). However,

the EEN group showed significantly shorter total hospital stays

(13.58 [8.35, 20.37] vs. 16.74 [10.87, 25.86] days; p < 0.001),

reduced ICU stays (8.17 [5.17, 14.45] vs. 10.65 [7.44, 17.20]

days; p < 0.001), and decreased duration of invasive mechanical

ventilation (116.90 [79.58, 233.68] vs. 144.88 [95.47, 260.12]

hours; p < 0.001). Following PSM, no significant differences were

observed in ICUmortality (67 [17.18%] vs. 83 [21.28%]; p= 0.146)

or 60-day mortality (149 [38.21%] vs. 155 [39.74%]; p = 0.660).

The ICU Kaplan–Meier curve (HR = 0.978, 95% CI: 0.708–1.350;

p = 0.892) (Figure 2D) and 60-day Kaplan–Meier curve (HR =

0.948, 95% CI: 0.757–1.187; p= 0.640) (Figure 2F) post-propensity

matching echoed the propensity-matched result. VAP incidence

remained comparable between groups (81 [20.77%] vs. 91 [23.33%];

p = 0.388). Nonetheless, the EEN group maintained significantly
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TABLE 1 Clinical characteristics of patients before and after propensity score matching.

Variables Before PSM After PSM

Early EN
(n = 513)

Delayed EN
(n = 539)

p-value Early EN
(n = 390)

Delayed EN
(n = 390)

p-value

Age (years) 70.28 [62.06, 78.05] 71.22 [62.91, 77.90] 0.834 70.02 [62.03, 77.76] 70.75 [62.86, 77.39] 0.873

Male (%) 281 (54.78) 311 (57.70) 0.339 220 (56.41) 222 (56.92) 0.885

BMI (kg/m2) 27.58 [23.37, 34.96] 28.28 [23.73, 34.40] 0.367 27.16 [23.11, 35.23] 27.97 [23.32, 33.81] 0.712

Race (%) 0.034 0.638

White 329 (64.13) 366 (67.90) 254 (65.13) 257 (65.90)

Black 54 (10.53) 33 (6.12) 34 (8.72) 27 (6.92)

Other or unknown 130 (25.34) 140 (25.97) 102 (26.15) 106 (27.18)

Vital indicators

HR (bpm) 84.16 [73.38, 95.80] 86.46 [74.15, 99.16] 0.018 85.35 [75.06, 97.01] 85.52 [73.41, 98.28] 0.961

RR (bpm) 20.58 [17.96, 23.15] 20.00 [17.80, 22.80] 0.273 20.55 [17.93, 23.45] 20.17 [17.89, 22.82] 0.558

Temperature (◦C) 36.98 [36.71, 37.28] 36.88 [36.61, 37.26] 0.028 36.97 [36.69, 37.31] 36.89 [36.61, 37.29] 0.219

MAP(mmHg) 75.04 [69.96, 81.15] 74.56 [69.10, 80.98] 0.374 75.50 [70.30, 80.76] 74.14 [68.95, 81.20] 0.334

Glucose (mg/dL) 138.29 [112.75, 170.89] 140.75 [117.67, 171.12] 0.282 140.46 [113.69, 176.96] 138.22 [117.06, 169.23] 0.685

First-day Urine Output

(mL)

1,290.00 [831.00, 2,010.00] 1,230.00 [730.50, 1,882.00] 0.169 1,258.50 [765.00, 1,950.00] 1,250.00 [775.00, 1,932.75] 0.969

Laboratory indicators

PH 7.35 [7.30, 7.41] 7.34 [7.28, 7.40] 0.002 7.34 [7.29, 7.39] 7.35 [7.29, 7.40] 0.975

PO2 (mm Hg) 107.00 [86.00, 145.00] 121.00 [92.00, 171.82] <0.001 111.30 [87.72, 154.75] 114.75 [90.00, 163.20] 0.317

PCO2 (mm Hg) 48.00 [41.50, 57.25] 44.29 [39.00, 51.39] <0.001 46.88 [41.00, 55.42] 45.81 [39.89, 54.77] 0.140

Pao2/Fio2 (P/F, mmHg) 205.34 [151.17, 278.00] 217.74 [157.91, 288.96] 0.110 211.33 [152.13, 285.50] 217.48 [156.50, 286.88] 0.457

Lactate (mmol/L) 1.36 [1.00, 1.97] 1.60 [1.10, 2.50] <0.001 1.40 [1.05, 2.17] 1.47 [1.10, 2.30] 0.18

WBC (×10∧9/L) 11.70 [8.35, 15.93] 12.60 [8.96, 17.18] 0.020 11.84 [8.65, 16.34] 12.25 [8.88, 16.26] 0.354

Hemoglobin (g/dL) 10.30 [8.90, 11.95] 10.37 [9.00, 11.79] 0.996 10.44 [9.03, 12.20] 10.43 [9.00, 11.85] 0.433

Platelets (×10∧9/L) 206.50 [149.50, 281.25] 191.00 [134.28, 258.54] 0.007 202.00 [146.58, 267.75] 197.25 [137.62, 271.62] 0.454

APTT 31.80 [27.50, 39.25] 33.50 [28.59, 43.74] 0.001 32.40 [27.80, 41.04] 33.36 [28.40, 42.82] 0.158

BUN (mg/dL) 25.67 [17.80, 44.00] 25.20 [17.41, 40.90] 0.146 25.09 [17.27, 40.00] 26.62 [18.00, 44.19] 0.524

Creatinine (mg/dL) 1.10 [0.70, 1.87] 1.17 [0.80, 1.83] 0.063 1.10 [0.73, 1.90] 1.15 [0.80, 1.83] 0.349

Calcium (mg/dL) 8.35 [7.85, 8.80] 8.17 [7.68, 8.66] <0.001 8.27 [7.77, 8.70] 8.24 [7.75, 8.76] 0.807

Chloride (mmol/L) 102.00 [97.50, 106.00] 103.60 [99.50, 107.00] 0.001 102.33 [98.35, 106.67] 103.00 [99.00, 106.32] 0.679

Sodium (mmol/L) 139.67 [136.33, 142.50] 139.00 [136.00, 141.50] 0.005 139.33 [135.67, 142.24] 139.00 [136.43, 142.00] 0.674

Potassium (mmol/L) 4.23 [3.87, 4.77] 4.34 [3.90, 4.78] 0.164 4.25 [3.90, 4.80] 4.35 [3.90, 4.70] 0.841

Medications and interventions

Vasoactive agent (%) 353 (68.81) 451 (83.67) <0.001 300 (76.92) 307 (78.72) 0.546

Continuous renal

replacement therapy (%)

51 (9.94) 89 (16.51) 0.002 46 (11.79) 52 (13.33) 0.517

Invasive arterial pressure

monitoring (%)

322 (62.77) 428 (79.41) <0.001 276 (70.77) 287 (73.59) 0.380

Peripherally inserted

central catheter (%)

249 (48.54) 245 (45.45) 0.317 175 (44.87) 184 (47.18) 0.518

Disease severity scoring system

SOFA 7.00 [5.00, 10.00] 7.00 [5.00, 10.00] 0.434 7.00 [5.00, 10.00] 7.00 [5.00, 10.00] 0.882

GCS 15.00 [13.00, 15.00] 15.00 [14.00, 15.00] 0.834 15.00 [13.00, 15.00] 15.00 [14.00, 15.00] 0.822

(Continued)
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TABLE 1 (Continued)

Variables Before PSM After PSM

Early EN
(n = 513)

Delayed EN
(n = 539)

p-value Early EN
(n = 390)

Delayed EN
(n = 390)

p-value

APS III 54.00 [42.00, 68.00] 55.00 [45.00, 71.00] 0.038 56.00 [43.00, 69.00] 54.50 [44.00, 67.75] 0.857

CCI 6.00 [5.00, 8.00] 6.00 [5.00, 8.00] 0.018 6.00 [5.00, 8.00] 6.00 [5.00, 8.00] 0.359

Comorbidities

Congestive heart failure

(%)

236 (46.00) 271 (50.28) 0.166 185 (47.44) 190 (48.72) 0.720

Cerebrovascular_disease

(%)

82 (15.98) 78 (14.47) 0.495 62 (15.90) 62 (15.90) 1.000

Liver disease (%) 65 (12.67) 90 (16.70) 0.065 49 (12.56) 59 (15.13) 0.300

Diabetes (%) 180 (35.09) 191 (35.44) 0.906 141 (36.15) 138 (35.38) 0.823

Renal disease (%) 136 (26.51) 136 (25.23) 0.636 100 (25.64) 103 (26.41) 0.807

Cancer (%) 61 (11.89) 79 (14.66) 0.187 54 (13.85) 50 (12.82) 0.674

PSM, propensity score matching; EN, enteral nutrition; BMI, bodymass index; HR, heart rate; RR, respiratory rate; MAP, mean arterial pressure; PH, potential of hydrogen; PO2 , partial pressure

of oxygen; PCO2 , partial pressure of carbon dioxide; WBC, white blood cell; APTT, activated partial thromboplastin time; BUN, blood urea nitrogen; SOFA, sequential organ failure assessment;

GCA, glasgow ccoma scale; APS III, acute physiology score III; CCI, Charlson comorbidity index.

TABLE 2 Primary and secondary outcomes.

Outcomes Before PSM After PSM

Early EN
(n = 513)

Delayed EN
(n = 539)

p-value Early EN
(n = 390)

Delayed EN
(n = 390)

p-value

28-day mortality (%) 145 (28.27) 179 (33.21) 0.082 119 (30.51) 128 (32.82) 0.488

ICU mortality (%) 83 (16.18) 119 (22.08) 0.015 67 (17.18) 83 (21.28) 0.146

60-day mortality (%) 182 (35.48) 220 (40.82) 0.075 149 (38.21) 155 (39.74) 0.660

VAP(%) 98 (19.10) 121 (22.45) 0.182 81 (20.77) 91 (23.33) 0.388

LOS ICU (days) 8.17 [5.17, 14.45] 10.65 [7.44, 17.20] <0.001 9.08 [5.39, 15.35] 10.07 [7.24, 16.11] <0.001

LOS hospital (days) 13.58 [8.35, 20.37] 16.74 [10.87, 25.86] <0.001 14.64 [8.97, 21.46] 16.63 [10.68, 25.58] 0.001

Invasive mechanical

ventilation (hours)

116.90 [79.58, 233.68] 144.88 [95.47, 260.12] <0.001 127.50 [80.55, 247.23] 137.94 [93.05, 266.69] 0.023

ICU, intensive care unit; VAP, ventilator-associated pneumonia; LOS, length of stay.

shorter total hospital stays (14.64 [8.97, 21.46] vs. 16.63 [10.68,

25.58] days; p = 0.001), reduced ICU stays (9.08 [5.39, 15.35] vs.

10.07 [7.24, 16.11] days; p < 0.001), and decreased duration of

invasive mechanical ventilation (127.50 [80.55, 247.23] vs. 137.94

[93.05, 266.69] hours; p= 0.023).

3.4 Additional analyses

Subgroup analyses based on propensity-matched data were

conducted to explore the association between early EN and 28-

day mortality across subgroups of COPD patients. Stratifications

included sex, age, lactate levels, BMI, and PaO2/FiO2 ratio. Results

revealed that EEN was significantly associated with a reduction

in 28-day mortality in patients with PaO2/FiO2 > 200 (OR =

0.626, 95%CI: 0.414–0.943; p= 0.026) (Figure 3). Adjusted Kaplan-

Meier survival curves from Cox regression analysis are presented in

Figure 4.

3.5 Sensitivity analysis

There were 1,052 patients in the entire cohort. We performed

further sensitivity analyses after excluding 140 patients with cancer

diagnoses (HR: 0.871; 95% CI: 0.665–1.140; p = 0.314), 357 non-

white individuals (HR: 0.842; 95% CI: 0.615–1.153; p = 0.284),

and 248 patients not receiving vasoactive agents (HR: 0.959; 95%

CI: 0.739–1.246; p = 0.756), respectively, and the results were

consistent with the primary outcome (Table 3).

4 Discussion

This retrospective cohort study analyzed 1,052 mechanically

ventilated patients with COPD from the MIMIC-IV database

to evaluate the effects of early EN vs. delayed EN on clinical

outcomes. The analysis revealed that while early EN did not

demonstrate statistically significant reductions in mortality rates,

it was associated with significantly shorter durations of invasive

mechanical ventilation, reduced ICU and hospital lengths of

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2025.1620011
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ouyang et al. 10.3389/fnut.2025.1620011

FIGURE 2

Kaplan–Meier survival curves of the two groups at 28 days (A, B), ICU (C, D) and 60 days (E, F) before and after propensity score matching.

stay, and improved survival trends in specific patient subgroups.

These findings underscore the potential clinical benefits of timely

nutritional intervention in this critically ill population.

The observed mortality outcomes align with previous studies,

suggesting that early EN may not substantially improve survival

rates in this patient population (19–21). This phenomenon may

be attributed to the complex pathophysiology of COPD and

the frequent occurrence of multi-organ dysfunction in critically

ill patients. While early nutritional support has been shown to

preserve gut barrier function andmitigate infection risks, its impact

on mortality may be modulated by multiple confounding factors,

including disease severity, comorbid conditions, and the patient’s

overall metabolic state (22–25). Furthermore, the significant

reduction in both ICU and hospital lengths of stay associated with

early EN corroborates findings from previous investigations (19,

20, 24). This effect may be mediated through improved metabolic

homeostasis, reduced incidence of infectious complications, and

enhanced recovery processes, thereby facilitating more efficient

patient rehabilitation.

The present study demonstrates that early EN significantly

reduces the duration of mechanical ventilation, a finding that

aligns with previous investigations (26–28). This effect may be

attributed to multiple mechanisms through which early nutritional

support improves clinical outcomes. First, early EN helps maintain
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FIGURE 3

Subgroup analyses to identify the specific benefit population.

FIGURE 4

The Kaplan–Meier survival curve adjusted for the subgroup with PaO2/FiO2 >200.

respiratory muscle function. Patients with COPD often suffer

from respiratory muscle weakness, and prolonged mechanical

ventilation may exacerbate disuse atrophy of these muscles (29–

31). Lower respiratory muscle strength plays a significant role in

COPD and is associated with an increased risk of exacerbation.

Respiratory muscle function could serve as a marker of disease

status and early prognosis in COPD (29). Early nutritional

support provides adequate energy and protein, helping to maintain

respiratory muscle strength and endurance, thereby reducing

dependence on mechanical ventilation (13). Studies have shown

that malnutrition is a significant factor contributing to respiratory

muscle weakness, and early EN can improve nutritional status,

subsequently reducing the duration of mechanical ventilation (26–

28). Second, early EN may shorten the duration of mechanical

ventilation by reducing infectious complications (15, 32–34).

Mechanically ventilated patients are prone to VAP, and early
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TABLE 3 Sensitivity analysis of the relationship between early enteral nutrition and 28 day mortality.

Sensitivity Matching 28 day mortality, n/N (%) Correlation analysis

Total EEN DEN P HR 95%CI P

Model 1 (n= 912) Before PSM 257/912 (28.18%) 116/460 (25.66%) 141/452 (30.65%) 0.094 0.871a 0.665-1.140 0.314

After PSM 191/650 (29.38%) 90/325 (27.69%) 101/325 (31.08) 0.344 0.844b 0.629-1.132 0.257

Model 2 (n= 695) Before PSM 204/695 (29.35%) 91/329 (27.66%) 113/366 (30.87%) 0.353 0.842a 0.615-1.153 0.284

After PSM 140/462 (30.30%) 67/231 (29.00%) 73/231 (31.60%) 0.544 0.898b 0.631-1.278 0.551

Model 3 (n= 804) Before PSM 277/804 (34.45%) 120/353 (33.99%) 157/451 (34.81%) 0.809 0.959a 0.739-1.246 0.756

After PSM 211/602 (35.05%) 105/301 (34.88%) 106/301 (35.22%) 0.932 0.983b 0.739-1.306 0.934

Model 1: Excluded participants with cancer; Model 2: Excluded non-white participants; Model 3: Excluded participants without vasoactive agent.
aHR, from a multivariable Cox proportional model adjusted for all covariates in Table 1.
b HR, from a multivariable Cox proportional hazards model with the same strata and covariates, with additional adjustment for the propensity score.

EN helps maintain gut barrier function, reducing the risk of

bacterial translocation and systemic infections. Several studies

have shown that early EN can lower the incidence of VAP,

thereby reducing the duration of mechanical ventilation (19, 35,

36). Additionally, early nutritional support can enhance immune

function, further reducing infection risks. Third, early EN may

reduce the duration of mechanical ventilation by improving

metabolic status and reducing inflammatory responses (37–40).

Critically ill patients often experience metabolic disturbances and

systemic inflammation, which can prolong mechanical ventilation.

Early nutritional support can modulate metabolic status and

reduce the release of inflammatory mediators, thereby promoting

recovery. Studies have shown that early EN can lower levels

of inflammatory markers such as C-reactive protein (CRP)

and interleukin-6 (IL-6), subsequently reducing the duration of

mechanical ventilation (41, 42).

Subgroup analyses revealed that EEN significantly reduced

28-day mortality in patients with a PaO2/FiO2 ratio > 200. This

subgroup likely represents patients with less severe hypoxemia

and preserved pulmonary function, where early nutrition could

synergize with better baseline oxygenation to optimize recovery

(43). The interaction between adequate oxygenation and metabolic

support may enhance cellular repair processes and reduce oxidative

stress, thereby improving survival. Conversely, in patients with

severe hypoxemia (PaO2/FiO2 ≤ 200), the benefits of EEN might

be overshadowed by overwhelming physiological derangements,

necessitating more aggressive interventions. These findings

advocate for personalized nutritional strategies, prioritizing

EEN in COPD patients with better oxygenation to optimize

clinical outcomes. Future studies should validate this oxygenation

threshold and investigate synergistic effects of combined oxygen

therapy and nutritional support.

This study has several limitations. Despite a sample size of

1,052 participants, this study remained underpowered to detect

very small effects. Definitive conclusions regarding such minimal

effect magnitudes would require larger cohorts. As a retrospective

analysis, unmeasured confounders (e.g., variations in clinician

practices, unrecorded comorbidities) may influence outcomes.

Future prospective, multi-center randomized controlled trials are

warranted to validate these findings and further elucidate optimal

nutritional strategies in this high-risk cohort. Despite rigorous

PSM, residual bias cannot be entirely excluded. The single-

center design and reliance on the MIMIC-IV database limit

generalizability to other settings. Additionally, the definition of

EEN as initiation within 48 h may not reflect optimal timing, as

some studies recommend even earlier initiation (44, 45).

In conclusion, our retrospective study demonstrates that

early EN, while not significantly reducing 28-day mortality in

mechanically ventilated COPD patients, significantly shortens

mechanical ventilation duration, ICU/hospital stays, and lowers

mortality risk in the subgroup with PaO2/FiO2 >200. Early EN

holds clinical value by enhancing metabolic support and reducing

complications, thereby improving recovery and conserving

healthcare resources.
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