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Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) 
is strongly associated with insulin resistance (IR). This study examined the 
relationship between estimated glucose disposal rate (eGDR), a simple IR 
indicator, and MASLD risk.

Methods: Using NHANES 2017–2018 data (n = 3,957), MASLD was diagnosed by 
CAP ≥285 dB/m. eGDR was calculated from waist circumference, hypertension, 
and HbA1c.

Results: Lower eGDR significantly predicted higher MASLD risk (OR = 0.396, 
p < 0.01) and elevated CAp values (b = −21.375, p < 0.01). It also correlated with 
unfavorable lipid profiles (lower HDL, higher triglycerides). Subgroup analyses 
showed consistent associations across age, sex, and diabetes status.

Conclusion: Estimated glucose disposal rate was significantly associated 
with both MASLD and dyslipidemia. eGDR may serve as a useful indicator for 
identifying risk factors related to these metabolic disorders. Mediation analysis 
revealed that relative fat mass (RFM), (high-density lipoprotein cholesterol) 
HDL, triglyceride (TG), visceral adiposity index (VAI), and uric acid to HDL ratio 
(UHR) mediated the association between eGDR and MASLD, with respective 
proportions of 61.09, 6.79, 6.53, 9.85, and 12.9%.
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) has evolved into a 
public health issue all over the world. MASLD endangers approximately 25 to 30% of adults 
worldwide and is considered a multisystem disease (1, 2). It is not only associated with liver-
specific complications, like liver fibrosis and cirrhosis, but also with a series of extrahepatic 
diseases, comprising cardiovascular disease, diabetes, and renal disease. In recent years (3), 
the incidence of MASLD has also been rapidly increasing (4) as the morbidity of chronic 
metabolic diseases such as diabetes, obesity, and hypertension continues to rise. Identifying 
emerging risk factors related to the occurrence and progression of MASLD is therefore 
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essential (5). This in turn will help detect risky populations and 
establish effective prevention and intervention measures to address 
this increasingly serious health challenge.

Estimated glucose disposal rate (eGDR) is a validated clinical 
approach designed to evaluate insulin resistance (IR) in individuals, 
particularly in patients with diabetes. This method is derived from 
common clinical indicators, including hypertension, waist circumference 
(WC), and glycated hemoglobin (HbA1c) (6). This approach offers a 
relatively easy alternative over more complex procedures such as the 
hyperinsulinemic-euglycemic clamp technique (7), which is cost-
effective and scalable and suitable for large-scale cohort studies. Studies 
have shown that eGDR is correlated with the risk of multiple metabolic 
and cardiovascular diseases, like fatty liver, coronary heart disease, and 
stroke (8). By providing a reliable assessment of insulin sensitivity, eGDR 
has become a vital tool in clinical practice and research to detect patients 
with a high risk of chronic health problems at an early stage (9).

The study aims to explore the correlation between eGDR and 
MASLD and to assess the potential influence of dyslipidemia on this 
relationship. Although eGDR has connections with multiple metabolic 
diseases, like IR, type 2 diabetes, and cardiovascular disease, its role in 
the prognosis of MASLD has not been completely clarified. Expanded 
research is necessary to reveal its clinical implications in this 
area completely.

2 Methods

2.1 Study population

National Health and Nutrition Examination Survey (NHANES) 
choose a typical sample of the US non-hospitalized general population 
using a complex multistage probability sampling design. Vibration-
controlled transient elastography was first introduced to estimate hepatic 
steatosis by controlled attenuation parameters (CAP) during the 
NHANES 2017–2018 period. This study focused specifically on the 2017–
2018 NHANES, which had a total of 9,254 participants. The study was 
divided into two main parts: the first investigated the link between eGDR 
and MASLD; the second investigated the link between eGDR and lipids. 
For the first part, the study eliminated participants who were younger 
than 20 years old (n = 3,685), and those who lacked body mass index 
(BMI) data (n = 394), WC data (n = 247), CAP data (n = 270), poverty 
income ratio (PIR) data (n = 575) and glycosylated HbA1c data (n = 126). 
The analysis sample for this part finally included 3,957 participants. 
Details of the screening process are shown in Figure 1.

For the second part, we excluded participants who were under 20 
(n = 3,685), and those who lacked BMI data (n = 394), WC data (n = 247), 
PIR data (n = 622), glycosylated HbA1c data (n = 126), triglyceride (TG) 
data (n = 2,176), as well as low-density lipoprotein (LDL) data (n = 22). 
The analysis sample for this part ultimately included 1,956 participants. 
Details of the screening process are shown in Figure 2.

2.2 Definition of MASLD

To confirm the diagnosis of MASLD, a CAP score ≥ 285 dB/m 
must achieved, a threshold with 80% sensitivity and 77% specificity in 
identifying hepatic steatosis, regardless of other etiology of chronic 
hepatopathy (10). To be diagnosed, individuals were also required to 

exhibit a minimum of one cardiometabolic risk factor listed below: 
overweight/obesity/central obesity, hyperglycemia or diabetes, 
hypertension, elevated TG, and lower high-density lipoprotein 
cholesterol (HDL-C), including:

 (a) BMI ≥ 25 kg/m2, or WC > 94 cm (men) or 80 cm (women);
 (b) Fasting blood glucose (FBG) ≥ 5.6 mmol/L [100 mg/dL], or 

glycosylated HbA1c ≥ 5.7% [39 mmol/L], or been diagnosed 
with diabetes, or diabetes therapy;

 (c) Blood pressure (BP) ≥ 130/85 mm Hg, or taking specific 
antihypertensive drugs;

 (d) Plasma TG ≥ 1.70 mmol/L [150 mg/dL], or taking lipid-
lowering drugs;

 (e) Plasma HDL-C ≤ 1.0 mmol/L [40 mg/dL] (man) and ≤ 
1.3 mmol/L [50 mg/dL] (woman), or on lipid-lowering therapy 
(11, 12).

2.3 Definition of eGDR

Estimated glucose disposal rate (mg/kg/min) is an index used to 
assess IR and is calculated as: eGDR = 21.158 − (0.09 × WC) − (3.407 × HT) −  
(0.551 × HbA1c) [where WC indicates waist circumference (cm), HT 
indicates hypertension status (1 for yes, 0 for no), and HbA1c indicates 
percentage of glycated hemoglobin] (13).

FIGURE 1

The flow chart of participant selection in the first part of the study.

FIGURE 2

The flow chart of participant selection in the second part of the 
study.
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2.4 Definition of relative fat mass (RFM)

The RFM is calculated based on WC, height, and sex using the 
following formula: RFM = 64 − (20 × height/WC) + (12 × sex), where 
sex = 1 for women and 0 for men (14).

2.5 Definition of visceral adiposity index 
(VAI)

Visceral adiposity index is calculated differently for males and 
females. For males: VAI = [WC/(39.68 + 1.88 × BMI)] × (TG/1.03) ×  
(1.31/HDL). For females: VAI = [WC/(36.58 + 1.89 × BMI)] ×  
(TG/0.81) × (1.52/HDL) (15).

2.6 Definition of uric acid to HDL ratio 
(UHR)

UHR is calculated by dividing serum uric acid (mg/dL) by HDL-C 
(mg/dL) (16).

2.7 Confounding factors

The study chose confounding factors associated with MASLD 
according to previous studies. Demographic data was acquired via 
the NHANES database, including age (in years), sex (male or 
female), race/ethnicity (including White, Black, Mexican, and 
other), household PIR, and marital status (having or not having a 
partner). Educational levels were also assessed (senior high school 
dropout, high school graduation, and post-secondary education). 
The information was acquired from the NHANES. BMI was 
calculated as weight/height2. CAP (dB/m) data was derived from 
inspection data. A body shape index (ABSI) was calculated using the 
following formula (17): ABSI = WC (m) * height (m) ^ (5/6)/weight 
(kg) ^ (2/3). Smoking status (yes/no) was obtained from the 
questionnaire. In addition, the following measures were obtained 
from laboratory test data: HbA1c (%), total cholesterol (TC) (mg/
dL), TG (mg/dL), LDL (mg/dL), and HDL (mg/dL). Diagnosis of 
hypertension referred to guidelines provided by the Joint National 
Committee on Prevention, Detection, Evaluation, and Treatment of 
High Blood Pressure (JNC). The standards for assessing 
hypertension were: systolic blood pressure ≥ 140 mmHg or 
DBP-diastolic blood pressure ≥ 90 mmHg, and patients taking 
antihypertensive drugs during the survey period. Criteria for 
assessment of diabetes were: diabetes diagnosis by physician, 
HbA1c ≥ 6.5%, FBG ≥ 126 mg/dL, or receiving diabetes 
medications and insulin.

2.8 Statistical analysis

The study population characteristics were first analyzed 
separately for the two groups of data. The first part investigated 
the relationship between eGDR and MASLD. The second part 
investigated the correlation of eGDR with lipids. The data was 
grouped into four sets according to quartiles of eGDR. We first 

analyzed the data of the study population separately to explore 
the characteristics of population distribution in different eGDR 
groups and whether there were associations between various 
variables. Multivariate linear regression models were selected, 
adjusting for other confounders to reveal true effects. Two 
models (Model I and Model II) were established, and a smoothed 
curve fitting was used to reveal the complex relationships 
between these variables. In addition, subgroup analyses of 
MASLD and CAP were performed to explore the relationship of 
these factors with different subgroups, thereby more meticulously 
understanding their role in different populations. The study used 
multivariate linear regression models and constructed Models 
I  and II to assess the relationship between lipids and eGDR, 
controlling for other variables that may influence this 
relationship. Finally, we also performed a subgroup analysis of 
lipids to investigate the link between lipids and eGDR in different 
subgroups in order to more precisely identify the effect of liver 
function for specific populations affected by lipids. Mediation 
analysis was conducted using the ‘mediation’ package in R to 
evaluate the indirect, direct, and total effects of eGDR on MASLD 
through various lipid-related indicators. This analysis quantified 
the extent to which RFM, HDL, TG, VAI, and UHR mediated the 
statistical association between eGDR and MASLD. R4.4.1 
language and EmpowerStas were used as statistical software.

3 Results

3.1 Results of the study population

Three thousand, nine hundred fifty-seven subjects participated in 
Part 1 and 1956 participated in Part 2. The baseline characteristics are 
shown in Tables 1, 2. The data was divided into four groups according 
to quartiles of eGDR. Compared to people in the lower eGDR group, 
those in the higher eGDR group were younger, suggesting that eGDR 
may be related to age. In addition, the higher eGDR group had more 
females, which suggests that eGDR may be associated with gender. 
People with higher eGDR were also less likely to develop diabetes and 
hypertension, have lower CAP values, and lower prevalence of 
MASLD, which is consistent with the clinical significance of eGDR. In 
terms of lipid levels, people with higher eGDR had lower TC and 
higher HDL, implying a negative correlation between eGDR and age, 
CAP, MASLD, TC, and a positive one between eGDR and HDL 
(p < 0.001). Further linear regressions were applied to obtain specific 
correlation relationships.

3.2 Multivariate linear regression of eGDR 
and MASLD

Model I accounted for variables like age, gender, and ethnicity. 
Model II accounted for variables like age, gender, ethnicity, marital 
status, education, hypertension, diabetes, smoking habits, and 
ABSI. In the unadjusted model, a considerable inverse correlation was 
noticed between eGDR and MASLD (OR = 0.636, 95% CI: 0.615, 
0.658, p < 0.001). After adjusting confounders, the OR in Model I was 
0.604 (95% CI: 0.580, 0.629, p < 0.001) and further decreased to 0.396 
(95% CI: 0.320, 0.491, p < 0.01) in Model II (Table 3).
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3.3 Multivariate linear regression for eGDR 
and CAP

Model I accounted for variability in age, gender, and ethnicity. 
In Model II, confounding factors regarding age, sex, race, marital 
status, education, hypertension, diabetes mellitus, tobacco use, 
and ABSI were considered for analysis. In the unadjusted model, 
a significant negative correlation was found between eGDR and 
CAP values, with a b value of −12.837 (95% CI: −13.864, −11.809, 
p < 0.001). In Model I, the relationship between eGDR and CAP 

values remained significant, with a b value of −13.248 (95% CI: 
−14.444, −12.052, p < 0.001). In Model II, the b value was 
−21.375 (95% CI: −25.828, −16.921, p < 0.01). The results 
revealed a significantly stronger inverse relationship between 
eGDR and CAP values (Table 4).

3.4 Smoothed curve fitting

After fully adjusting for covariates, the smoothed curve 
fitting between eGDR and MASLD showed that eGDR exhibited 

TABLE 1 Clinical characteristics of the study population in the eGDR and MASLD quartile subgroups.

Characteristic eGDR Q1 eGDR Q2 eGDR Q3 eGDR Q4 P-value

Age 56.47 ± 14.79 53.99 ± 15.92 46.09 ± 16.00 38.60 ± 14.47 <0.001***

Gender <0.001***

  Male 55.64 48.4 51.66 40.73

  Female 44.36 51.6 48.34 59.27

Race <0.001***

  Mexican American 6.46 6.76 12.7 7.34

  Non-Hispanic White 70.56 64.07 61.93 63.28

  Non-Hispanic Black 12.7 11.45 8.46 9.48

  Other 10.28 17.73 16.91 19.91

Education 0.1992

  Below high school 10.89 10.06 11.06 8.57

  High School or above 89.11 89.94 88.94 91.43

Marital <0.001***

  Yes 66.52 62.26 67.33 57.77

  No 33.48 37.74 32.67 42.23

PIR 3.11 ± 1.63 3.06 ± 1.61 3.10 ± 1.64 3.12 ± 1.66 0.8569

Weight 103.97 ± 21.92 86.11 ± 21.80 86.16 ± 15.80 66.01 ± 10.76 <0.001***

Height 169.48 ± 10.06 167.32 ± 10.64 169.14 ± 9.67 167.08 ± 9.40 <0.001***

BMI 36.19 ± 7.00 30.65 ± 6.78 30.05 ± 4.61 23.61 ± 3.14 <0.001***

ABSI 0.0842 ± 0.0043 0.0825 ± 0.0044 0.0817 ± 0.0043 0.0786 ± 0.0040 <0.001***

Smoke <0.01**

  Yes 12.8 18.12 18.77 18.57

  No 87.2 81.88 81.23 81.43

DM <0.001***

  Yes 41.33 15.72 6.94 1.03

  No 58.67 84.28 93.06 98.97

Hypertension <0.001***

  Yes 95.22 70.91 7.27 0

  No 4.78 29.09 92.73 100

CAP 313.23 ± 56.25 275.14 ± 59.23 264.20 ± 51.13 218.11 ± 43.81 <0.001***

MASLD <0.001***

  No 26.86 58.38 65.42 93.85

  Yes 73.14 41.62 34.58 6.15

Values for categorical variables are presented as count (%), and values for continuous variables are presented as mean ± SD.
PIR, poverty-to-income ratio; BMI, body mass index; ABSI, A body shape index; DM, Diabetes Mellitus; CAP, controlled attenuation parameter; MASLD, metabolic dysfunction-associated 
steatotic liver disease; eGDR, estimated glucose disposal rate. Asterisks denote significance levels: **(P < 0.01), ***(P < 0.001).
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a negative correlation with MASLD, consistent with the results of 
the multivariate linear regression (Figure  3). The smooth  
curve fitting between eGDR and CAP revealed that eGDR 

exhibited a negative correlation with CAP, consistent with the 
results of the multivariate linear regression between eGDR and 
CAP (Figure 4).

TABLE 2 Clinical characteristics of the study population by eGDR and lipid quartile grouping.

Characteristic eGDR Q1 eGDR Q2 eGDR Q3 eGDR Q4 P-value

Age 56.78 ± 15.14 53.16 ± 15.73 45.65 ± 15.92 38.44 ± 14.37 <0.001***

Gender 0.0036

  Male 56.82 46.77 48.15 45.86

  Female 43.18 53.23 51.85 54.14

Race <0.001***

  Mexican American 7.12 6.61 13.63 8.05

  Non-Hispanic White 68.97 64.25 62.17 63.07

  Non-Hispanic Black 13.38 9.92 9.96 9.71

  Other 10.53 19.21 14.24 19.17

Education 0.0167

  Below high school 12.68 10.22 13.27 7.84

  High School or above 87.32 89.78 86.73 92.16

Marital 0.0244

  Yes 64.6 61.02 67.12 58.73

  No 35.4 38.98 32.88 41.27

PIR 3.02 ± 1.64 2.92 ± 1.61 2.91 ± 1.64 3.23 ± 1.64 0.0036

Weight 104.27 ± 22.64 84.67 ± 19.64 86.16 ± 15.80 66.74 ± 11.01 <0.001***

Height 169.70 ± 9.94 167.25 ± 10.52 169.44 ± 9.88 168.06 ± 9.38 <0.001***

BMI 36.20 ± 7.19 30.25 ± 6.53 29.96 ± 4.70 23.56 ± 2.99 <0.001***

ABSI 0.0842 ± 0.0042 0.0824 ± 0.0046 0.0816 ± 0.0044 0.0788 ± 0.0041 <0.001***

Smoke 0.0023

  Yes 12.93 21.82 19.08 15.39

  No 87.07 78.18 80.92 84.61

DM <0.001***

  Yes 44.72 17.14 7.35 1.23

  No 55.28 82.86 92.65 98.77

Hypertension <0.001***

  Yes 95.04 71.88 8.09 0

  No 4.96 28.12 91.91 100

TG 130.22 ± 64.99 113.74 ± 61.51 109.81 ± 67.11 79.84 ± 45.68 <0.001***

LDL 106.77 ± 39.12 114.41 ± 33.33 115.74 ± 31.68 108.34 ± 37.03 <0.001***

HDL 48.54 ± 13.06 54.99 ± 16.00 51.70 ± 13.46 59.86 ± 15.08 <0.001***

TC 181.37 ± 43.63 192.14 ± 38.98 189.39 ± 36.74 184.12 ± 41.26 <0.001***

Values for categorical variables are presented as count (%), and values for continuous variables are presented as mean ± SD.
PIR, poverty-to-income ratio; BMI, body mass index; ABSI, A body shape index; DM, Diabetes Mellitus; TG, triglyceride; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; 
LDL, low-density lipoprotein cholesterol; eGDR, estimated glucose disposal rate. Asterisks denote significance levels: ***(P < 0.001).

TABLE 3 Multifactor linear regression of eGDR and MASLD.

Variable Non-adjusted 
model

P-value Model I P-value Model II P-value

OR [95% CI] OR [95% CI] OR [95% CI]

eGDR 0.636 (0.615,0.658) <0.001*** 0.604 (0.580,0.629) <0.001*** 0.396 (0.320,0.491) <0.01**

Model I accounted for variables like age, gender, and ethnicity.
Model II accounted for variables like age, gender, ethnicity, marital status, education, hypertension, diabetes, smoking habits and ABSI. Asterisks denote significance levels: **(P < 0.01), ***(P 
< 0.001).
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3.5 Subgroup analysis

3.5.1 Subgroup analyses by age

3.5.1.1 Subgroup analysis of eGDR and MASLD by age
It was observed that eGDR had a significant inverse correlation 

with MASLD in all age groups. In individuals aged 20–39 years, 
higher eGDR was associated with improved clinical outcomes 
(i.e., lower risk) with an OR of 0.358 (95% CI: 0.242, 0.532, 
p < 0.01). Similarly, the ORs for eGDR were 0.382 (95% CI: 0.300, 
0.487, p < 0.01) versus 0.430 (95% CI: 0.299, 0.618, p < 0.01) in 
individuals aged 40–59 years versus those aged 60–80 years, 
respectively, both of which showed a significant negative 
correlation. This suggests that clinical outcomes were gradually 
improved with increased eGDR values among young (20–39 years 
old), middle-aged (40–59 years old), and older adults (60–80 years 
old). Notably, these ORs were all significantly lower than 1 
(Supplementary Table S1).

3.5.1.2 Subgroup analysis of eGDR and CAP by age
A significant inverse correlation was observed between eGDR 

and CAP in all age groups. In patients aged 20–39 years, the 
b-value was −22.816 (95% CI: −27.201, −18.432, p < 0.001), 
indicating that the increase in eGDR in this age group was 
associated with a significant decrease in CAP. Similarly, b value 
showed significant negative correlations in patients aged 
40–59 years (b = −19.733, 95% CI: −25.181, −14.285, p < 0.01) 
and in those aged 60–80 years (b = −21.577, 95% CI: −27.819, 
−15.335, p < 0.01). The above results further supported the 
clinical significance of eGDR in different age groups. Especially, 
in patients aged 20–39 years, the effect of CAP on MASLD was 
more significant (Supplementary Table S2).

3.5.2 Subgroup analysis by sex
The correlation of eGDR and MASLD was assessed in male versus 

female populations, showing that eGDR was significantly inversely 
related to the occurrence of MASLD in both sexes, as shown in 
Supplementary Table S3. The relationship between eGDR and CAP 
under gender stratification was further analyzed, which suggested that 
eGDR was significantly inversely linked with CAP values in both men 
and women (Supplementary Table S4).

3.5.3 Subgroup analysis by diabetes
The correlation between eGDR and MASLD was assessed in 

diabetic versus non-diabetic populations, showing a significant 
relationship in both populations, as shown in Supplementary Table S5. 
The correlation between eGDR and CAP values in diabetic and 
non-diabetic patients was further analyzed, which indicated that 

eGDR and CAP values were significantly negatively correlated in both 
groups (Supplementary Table S6).

3.5.4 Subgroup analysis based on ethnicity
The association between eGDR and MASLD was evaluated across 

different ethnic groups, including White, Black, Mexican American, 
and Other populations. The results demonstrated a significant 
association in all four groups (Supplementary Table S7). Furthermore, 
the association between eGDR and CAP values was analyzed within 
each ethnic subgroup. The results indicated a significant association 
between eGDR and CAP values across all four ethnic groups 
(Supplementary Table S8).

3.6 Multivariate linear regression of eGDR 
and lipids

Model I was modified based on age, gender, and ethnicity. Model 
II was modified based on a variety of factors including age, gender, 
ethnicity, marital situation, education, presence of hypertension, 
diabetes, tobacco use, and ABSI. When all covariates were taken into 
account, the relationship was significant between TG and eGDR 
(b = − 0.005, p < 0.05); LDL was not significantly linked with eGDR 
(b = −0.002, p = 0.183); HDL was significantly positively linked with 
eGDR (b = 0.036, p < 0.01); TC was not significantly associated with 
eGDR (b = 0.0002, p = 0.876) (Supplementary Table S9).

3.7 Subgroup analysis of lipids

3.7.1 Subgroup analysis by age
The HDL levels were positively correlated with eGDR, especially in 

patients aged 20–39 years (b = 0.045, p < 0.01), 40–59 years (b = 0.030, 
p < 0.05), and 60–80 years (b = 0.024, p < 0.05). There was an inverse 
relation between LDL levels and eGDR in those aged 20–39 years 
(b = −0.007), but not significant (p = 0.06). However, LDL did not show 
a significant correlation with eGDR in individuals aged 40–59 years 
and 60–80 years (p > 0.05). TC levels had no noteworthy correlation 
with eGDR in any age (p > 0.05). TG showed a significant inverse 
correlation with eGDR in patients aged 20–39 years (b = − 0.005, 
p < 0.05), while no consistency was shown in patients aged 40–59 years 
and 60–80 years (p = 0.09 vs. p = 0.056) (Supplementary Table S10).

3.7.2 Subgroup analysis by sex
In both male and female groups, eGDR was significantly positively 

correlated with HDL levels, and increased eGDR may contribute to 
increased HDL levels. eGDR was significantly negatively correlated 
with TG in both men and women, suggesting that eGDR may 

TABLE 4 Multifactor linear regression of eGDR and CAP.

Variable Non-adjusted 
model

P-value Model I P-value Model II P-value

Beta [95% CI] Beta [95% CI] Beta [95% CI]

eGDR
−12.837(−13.864, 

−11.809)
<0.001*** −13.248(−14.444–12.052) <0.001*** −21.375(−25.828–16.921) <0.01**

Model I accounted for variables like age, gender, and ethnicity.
Model II accounted for variables like age, gender, ethnicity, marital status, education, hypertension, diabetes, smoking habits and ABSI. Asterisks denote significance levels: **(P < 0.01), ***(P 
< 0.001).
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contribute to lowering TG levels, while the effect on LDL and TC was 
not significant in either sex. Although both sexes showed a significant 
relationship between eGDR and HDL and TG, females had a stronger 
inverse relationship between eGDR and TG (larger b-value), while 
males showed a weaker negative correlation in this regard 
(Supplementary Table S11).

3.8 Mediation analysis

Mediation analysis was performed to assess the role of  
various lipid-related indicators in the association between eGDR 
and MASLD. The proportions of mediation effects were 61.09% 
for RFM, 6.79% for HDL, 6.53% for TG, 9.85% for VAI, and 
12.9% for UHR. These results are illustrated in 
Supplementary Figure S1.

4 Discussion

The study discussed the link between eGDR and MASLD based on 
the NHANES database and proved a significant negative correlation. 
Additionally, the association between eGDR and CAP was investigated. 
The results demonstrated that eGDR was not only associated with 
MASLD but also significantly linked to CAP values. By examining disease 
status as a categorical variable and CAP measurements as continuous 
variables, the findings further elucidated the association between eGDR 
and liver health. eGDR is an important measure to assess insulin 
sensitivity, and lower eGDR often indicates the presence of IR. IR is a key 
pathophysiological mechanism involved in MASLD (18).

Under normal physiological conditions, insulin regulates blood 
glucose levels mainly by inhibiting gluconeogenesis in the liver (19), 
promotes glycogen synthesis (20), and then regulates fatty acid synthesis 
(21). Despite insulin’s role in managing liver glucose metabolism, such 
functions are impaired when the body becomes insulin-resistant (22), 
leading to increased hepatic glucose output (23). At the same time, 
insulin’s suppression of fatty acid production within the liver may 
be weakened or possibly intensified, resulting in increased hepatic fat 
synthesis (24). In addition, IR triggers a series of metabolic disorders that 
further exacerbate hepatic fat deposition (25). For example, enhanced 
lipolysis in adipose tissue causes more release of free fatty acids (FFAs) 
and glycerol (26), which promote gluconeogenesis and lipogenesis after 
entering the liver (27). At the same time, the decreased ability of skeletal 
muscle to take up glucose leads to increased blood glucose levels and 
provides more substrate for hepatic fat synthesis (28).

It has been shown that there are selective changes in the hepatic 
response to insulin signaling under insulin-resistant conditions. On the 
one hand, the impairment of glucose metabolism regulation mediated by 
insulin has been observed; on the other hand, its ability to regulate fatty 
acid synthesis may not be  completely lost or may even continue to 
promote fat synthesis through novel signaling pathways such as CREBZF 
(29). This selective IR mechanism may be a major cause of the occurrence 
and progression of MASLD. Thus, lower eGDR increases the risk of 
hepatic fat deposition by exacerbating IR, not only affecting hepatic 
glycometabolism but also facilitating lipogenesis and lipid accumulation 
within the liver, thereby increasing the likelihood of hepatic steatosis (30, 
31). Our subgroup analysis revealed that the association between eGDR 
and MASLD remained significant in the non-diabetic population. 
Similarly, Zhang et al. and Peng et al. have also focused on the application 
of eGDR in non-diabetic populations (9, 32). This process is inversely 
related to the development and progression of MASLD. By elucidating 
this mechanism, we can better understand the interplay between glucose 
metabolism and liver fat deposition, thereby offering novel therapeutic 
approaches for managing diseases in this realm.

The study also identified a significant inverse relation between eGDR 
and MASLD. This finding is in agreement with previous studies. For 
example, Peng et al. further extended this association to liver fibrosis and 
demonstrated that eGDR exhibited a stronger inverse association with 
liver fibrosis in patients without diabetes (33). Caprio et al. (34) showed 
that IR was positively linked with liver fat content in adolescents with 
obesity, suggesting that IR was a pivotal risk factor for MASLD. Tricò et al. 
(35) also proved that decreased insulin sensitivity was associated with 
increased hepatic fat accumulation. In addition, Bonet et al. (36) study 
noted that adolescents with MASLD exhibited delayed glucose 
metabolism. Our results are in accordance with former studies and further 
support the potential value of eGDR in assessing the risk of MASLD.

FIGURE 3

Smooth curve fitting between eGDR and MASLD.

FIGURE 4

Smooth curve fitting between eGDR and CAP.
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The study discovered a significant inverse relationship between 
eGDR and TG, and a notable positive association between eGDR and 
HDL-C values. This finding suggests that IR is closely linked to the 
typical dyslipidemia pattern. Specifically, IR increases TG levels by 
promoting hepatic synthesis and secretion of very low-density 
lipoprotein. Meanwhile, it lowers HDL-C levels by accelerating their 
catabolism (37). Peng et al. (33) further proposed a mediating role of 
the atherogenic index of plasma (AIP). Their findings thus provide 
insights into the relationship between eGDR and lipid abnormalities. 
Subgroup analysis of lipids by age showed that the negative 
association between eGDR and TG was stronger in females. This may 
be attributed to the role of estrogens in enhancing insulin sensitivity 
and promoting lipolysis. Subgroup analysis of lipids by age suggests 
that young people aged 20–39 years should pay more attention to 
their lipid levels. This finding reveals that the regulatory effect of IR 
on triglycerides diminishes with age. This may be because younger 
individuals exhibit more active mitochondrial function and a higher 
capacity for lipid oxidation (38). This result suggests that insulin 
sensitivity affects not only hepatic fat deposition but also may 
influence the risk of cardiovascular diseases by regulating lipid 
metabolism (39). Therefore, eGDR has potential applications in 
assessing the overall risk of metabolic diseases.

Mediation analysis results indicate that RFM exhibited the strongest 
mediation effect among all indicators, accounting for 61.09%. Traditional 
lipid markers, including HDL (6.79%) and TG (6.53%), showed limited 
mediation effects. Composite indices, including VAI (9.85%) and UHR 
(12.9%), demonstrated significantly higher mediation effects than single 
lipid markers, suggesting that comprehensive assessment of fat 
distribution (14, 15) or oxidative stress and inflammation (16) provides 
a more thorough understanding of the association between IR and 
MASLD. Even after adjusting for these mediators, the direct effect of 
eGDR on MASLD ranged from 38.91 to 93.47%, indicating that IR may 
directly drive MASLD through non-lipid pathways.

The results of this research possess significant implications in clinical 
medicine. First, as an indicator of insulin sensitivity, eGDR is significantly 
associated with both MASLD and dyslipidemia. In clinical practice, 
assessing eGDR may aid in identifying risk factors related to these 
metabolic disorders. Second, this finding also provides ideas for making 
new therapeutic strategies, such as increasing eGDR levels by improving 
insulin sensitivity. The study not only reveals the association between eGDR 
and MASLD, but also further investigates the correlation between eGDR 
and lipids.

This study has both strengths and limitations. First, This study has 
both strengths and limitations. First, the NHANES database has become 
an important resource for metabolic health research worldwide because 
of its broad population coverage. However, the limitation of NHANES 
lies in a cross-sectional design of data collection, making it difficult to 
investigate causality in depth. Nonetheless, NHANES covers broad and 
diverse populations, which gives it unique advantages in external 
validity and generalizability. Therefore, in the future, long-term 
longitudinal studies in different regions and populations are warranted 
to further validate the clinical utility of eGDR in different populations.
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