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Background: The Gut Microbiota Dietary Index (DI-GM) is a newly developed 
assessment tool that quantitatively evaluates the nutritional modulation of 
intestinal microbial communities through systematic characterization of diet-
microbiome interactions. The relationship between DI-GM and the risk of death 
has not been elucidated in patients with diabetes or prediabetes. The present 
cohort study examined the longitudinal relationship between DI-GM scores and 
both overall mortality and mortality from cardiovascular disease in this clinically 
vulnerable population.

Method: The investigation used data from the National Health and Nutrition 
Examination Survey (NHANES) 2007–2018. Analytical approaches, including 
multivariable-adjusted Cox proportional hazards regression, restricted 
cubic spline (RCS) modeling, stratified subgroup evaluations, and sensitivity 
assessments, were employed to examine the relationships linking DI-GM scores 
to mortality outcomes among individuals with diabetes or prediabetes.

Result: During an average monitoring duration of 77.39 months within the 
cohort of 8,409 participants, 1,430 fatalities from all causes were documented, 
including 381 cases attributed to cardiovascular events. Multivariable-adjusted 
Cox regression analyses showed a negative correlation, with a 1-unit increase 
in DI-GM corresponding to an 8% lower all-cause mortality risk (HR = 0.92, 
95% CI: 0.89–0.95; p < 0.001) and an 11% reduction in cardiovascular-specific 
mortality (HR = 0.89, 95% CI: 0.83–0.95; p < 0.001). When comparing extreme 
quartiles of DI-GM distribution, participants in the highest quartile exhibited 
26% lower all-cause mortality (HR = 0.74, 95% CI: 0.63–0.87; p < 0.001; trend 
p  < 0.05) and 30% lower cardiovascular mortality (HR = 0.70, 95% CI: 0.52–
0.96; p  = 0.025; trend p  < 0.05) than those in the lowest quartile. Subgroup 
analyses confirmed the consistency of the results in most categories. Restricted 
cubic splines demonstrated negative correlations between DI-GM and both 
mortality outcomes. The Beneficial Gut Microbiota Score (BGMS) exhibited 
inverse associations with mortality risks, while the Unfavorable Gut Microbiota 
Score (UGMS) showed no significant relationship. In the sensitive analysis, the 
robustness of multiple interpolation results was verified by deleting missing data.

OPEN ACCESS

EDITED BY

Wenlong Sun,  
Shandong University of Technology, China

REVIEWED BY

Rocio Guizar-Heredia,  
National Institute of Medical Sciences and 
Nutrition Salvador Zubirán, Mexico
Piao Shenghua,  
Guangdong Pharmaceutical University, China
Muhammad Hassan Sarfraz,  
Government College University, Faisalabad, 
Pakistan
Meng-Yao Li,  
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Qiwen Wu  
 20141283@wnmc.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 30 April 2025
ACCEPTED 31 July 2025
PUBLISHED 14 August 2025

CITATION

Song W, Liu D, Xing Z, Jiang L, Tang Y, Xu Z, 
Li L, Yan S, Fu X, Wang Y and Wu Q (2025) 
Association of the newly proposed dietary 
index for gut microbiota and all-cause and 
cardiovascular mortality among individuals 
with diabetes and prediabetes.
Front. Nutr. 12:1621277.
doi: 10.3389/fnut.2025.1621277

COPYRIGHT

© 2025 Song, Liu, Xing, Jiang, Tang, Xu, Li, 
Yan, Fu, Wang and Wu. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  14 August 2025
DOI  10.3389/fnut.2025.1621277

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1621277&domain=pdf&date_stamp=2025-08-14
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1621277/full
mailto:20141283@wnmc.edu.cn
https://doi.org/10.3389/fnut.2025.1621277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1621277


Song et al.� 10.3389/fnut.2025.1621277

Frontiers in Nutrition 02 frontiersin.org

Conclusion: Among patients with diabetes or prediabetes, elevated DI-GM 
levels were negatively correlated with all-cause mortality and cardiovascular 
mortality risks.

KEYWORDS

dietary index of gut microbiota (DI-GM), diabetes, prediabetes, all-cause mortality, 
cardiovascular mortality

Introduction

Diabetes is a major public health challenge worldwide. From 1990 
to 2021, global diabetes prevalence increased threefold, with 
projections indicating over 1.3 billion affected individuals by 2025 if 
uncontrolled (1). According to diagnostic criteria established by the 
American Diabetes Association (ADA), diabetes mellitus is classified 
as a persistent metabolic disorder that is diagnostically confirmed 
through sustained hyperglycemia (defined as fasting plasma glucose 
≥ 7.0 mmol/L) or elevated glycosylated hemoglobin (HbA1c) levels ≥ 
6.5%, pathophysiologically rooted in a disorder of insulin production 
or cellular responsiveness (2). Prediabetes, a transitional phase 
between normal glucose regulation and diabetes, affects approximately 
720 million people globally (3, 4). Cardiovascular disease, which is 
strongly linked to diabetes, contributes to over 50% of mortality in this 
population (5). Epidemiological investigations have consistently 
established that individuals with diabetes or prediabetes have 
significantly heightened risks for both all-cause mortality and 
cardiovascular-specific fatality outcomes (6–8).

Gut microbial composition and functionality exert critical 
influences on diabetes pathogenesis (9, 10). The gut microbiome can 
influence systemic inflammation, insulin sensitivity and energy balance 
through various mechanisms, such as the fermentation of dietary fiber, 
the production of short-chain fatty acids (SCFA), and the regulation of 
gut-brain signaling (11–13). A substantial corpus of research has 
demonstrated that individuals with diabetes or prediabetes have a 
reduced abundance and functional capacity of bacteria which produce 
butyrate (14). Dietary factors, particularly fiber intake, strongly regulate 
butyrate-producing microbial populations, potentially enhancing 
glycemic control (15). Nutritional patterns are the primary 
determinants of gut microbiome structure (15). Evidence indicates that 
dietary-derived microbial metabolites positively modulate insulin 
secretion, sensitivity, and diabetes incidence (16–19). Dietary 
modifications alter host microbial communities, cardiometabolic 
profiles, and immune responses through interconnected pathways (20). 
Epidemiological studies have confirmed that a nutritionally imbalanced 
dietary structure characterized by excessive intake of red meat and 
processed meat products, alcohol abuse, frequent consumption of 
refined carbohydrates (such as white bread), and sugar-added 

beverages has a significant dose-dependent association with the 
prediabetes state and the risk of diagnosed diabetes (21, 22).

Many studies have examined the effects of individual dietary 
components and their impact on gut microbiota (23, 24). According to 
Kase et  al., the DI-GM was developed based on a large number of 
literature reviews and indicated that DI-GM is related to indirect 
biomarkers of intestinal microbiota diversity (25). The DI-GM aims to 
quantify the effects of nutritional patterns on the structure and metabolic 
characteristics of the gut microbiome by systematically evaluating the 
interaction between diet and microbiome. Based on a large number of 
review articles, 14 types of foods and nutrients have been determined to 
have beneficial or adverse effects on the gut microbiota. Compared with 
HEI-2015 and the Mediterranean Diet Score (MDS), the DI-GM focuses 
on a broader range of gut microbiome attributes (for example, the 
production of short-chain fatty acids (SCFA), changes in microbiota 
phyla, and specific bacterial species), providing a more comprehensive 
assessment of diet-microbiome relationships (25, 26). Malesza et al.‘s 
research indicates that a high-fat diet is associated with reduced 
microbial richness and increased intestinal permeability (27). A high-fat 
diet rich in meat protein may promote different and less diverse 
populations of sulfur-metabolizing bacteria (28). Recent studies have 
shown a negative relationship between DI-GM and the risk of 
developing diabetes (29). In addition, the incidence of other diseases 
associated with DI-GM, such as stroke (30), chronic kidney disease (31), 
and depression (32), is negatively correlated. Despite growing evidence 
on gut microbiota-diet interactions, the longitudinal associations linking 
the DI-GM to mortality risk in individuals with diabetes or prediabetes 
have not been fully established. The purpose of our study was to 
systematically evaluate the prognostic value of DI-GM for all-cause 
mortality and cardiovascular-specific mortality endpoints in a high-risk 
population using the NHANES data system.

Method

Population

The investigation used data from the NHANES. The survey’s core 
mission focuses on tracking health status and nutritional parameters 
among non-institutionalized civilian residents of the United States 
through three-tiered data collection: standardized in-home 
questionnaires, comprehensive physical examinations at Mobile 
Examination Centers (MECs), and biochemical assays conducted in 
certified laboratories, all implemented via a complex multistage 
probability cluster sampling design. All study protocols received 
ethical approval from the NCHS Institutional Review Board, with 
written informed consent secured from each participant prior to data 
collection. The analytical cohort initially comprised 59,842 
individuals drawn from six consecutive NHANES cycles spanning 

Abbreviations: NHANES, National Health and Nutrition Examination Survey; DI-GM, 

Dietary Index of Gut Microbiota; BGMS, Beneficial Gut Microbiota Score; UGMS, 

Unfavorable Gut Microbiota Score; RCS, Restricted cubic splines; SCFA, Short-

chain fatty acids; FPG, Fasting plasma glucose; 2h-OGTT, 2-hour oral glucose 

tolerance test; HbA1c, Glycated hemoglobin; PIR, Family poverty income ratio; 

BMI, Body mass index; HR, Hazard Ratio; CI, Confidence Interval; TMAO, 

Trimethylamine-N-oxide; ADA, American Diabetes Association.
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2007–2018, with data retrieved from the official NHANES repository. 
We excluded the following individuals: (1) age <20 years at baseline 
(n = 25,072); (2) absence of confirmed diabetes or prediabetes 
diagnosis (n = 25,496); (3) incomplete mortality follow-up (n = 17); 
(4) lack of complete DI-GM measurements (n = 848). The final 
analytical cohort comprised 8,409 eligible individuals (Figure 1).

Definition of diabetes and prediabetes

Diabetes diagnosis was determined by meeting ≥1 of these 
parameters: (1) elevated fasting plasma glucose (FPG ≥ 7.0 mmol/L) 
or 2-h oral glucose tolerance test (2 h-OGTT) ≥ 11.1 mmol/L; (2) 
glycated hemoglobin (HbA1c) ≥ 6.5%; (3) random blood glucose ≥ 
11.1 mmol/L; (4) your doctor has diagnosed you with diabetes or 
you are currently using insulin.

Prediabetes classification required fulfillment of ≥ 1 criterion: (1) 
2 h-OGTT results 7.8–11.0 mmol/L; (2) HbA1c 5.7–6.4%; (3) FPG 
6.1–6.9 mmol/L; (4) a physician’s diagnosis of prediabetes.

Dietary index of gut microbiota

The Dietary Index of Gut Microbiota (DI-GM) was developed to 
evaluate how diet influences the composition of the gut microbiome 
through literature-derived parameters (25). The index was derived from 
two 24-h dietary recall datasets, with the average value of these datasets 
being calculated. The initial data pertaining to the recall were collated at 
the MEC, while subsequent data were obtained through the medium of 
telephone interviews. To ensure data quality, the NHANES implemented 
standardized interviewer training protocols with validated assessment 
tools, effectively minimizing measurement errors related to recall bias 

FIGURE 1

Screening process of participants.
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and interviewer variability. The DI-GM scoring system evaluates 14 
dietary components categorized into two groups: health-promoting 
constituents (fermented dairy products, soybeans, chickpeas, fiber, 
cranberries, avocados, broccoli, coffee, tea, and whole grains,) and 
detrimental elements (refined cereals, unprocessed/processed red meats, 
and high-fat diets [≥ 40% total energy intake]). Specific tea varieties were 
excluded due to insufficient granularity in NHANES dietary records. 
Scoring criteria were defined as follows: beneficial components received 
1 point when intake met or exceeded sex-stratified median values, 
otherwise 0; detrimental components scored 1 point when consumption 
fell below sex-specific medians (or < 40% energy from fat for high-fat 
diets), otherwise 0. The composite DI-GM scale ranges from 0–13 points 
and comprising two subscales: beneficial (0–9) and detrimental (0–4) 
components. Higher aggregate scores reflected stronger microbiota-
friendly dietary profiles. For analytical purposes, the participants were 
stratified into quartiles based on DI-GM scores. The complete scoring 
criteria and food classifications are provided in Supplementary Table 1.

Covariant

The covariates considered in the present study included age, 
gender, race/ethnicity, educational attainment, marital status, family 
poverty income ratio (PIR), body mass index (BMI), smoking, alcohol 
consumption, hypertension, physical activity, coronary heart disease, 
stroke, cancer, insulin usage status and total cholesterol. Educational 
attainment was categorized into three categories: below high school, 
high school, and beyond high school. The classification of ethnicity 
included the categories Mexican-American, other Hispanic, 
non-Hispanic Asian, non-Hispanic White people, non-Hispanic Black, 
and other races. Marital status was dichotomized into married/
cohabiting partnerships and unmarried status (encompassing 
widowed, separated, and divorced individuals). Body mass index 
(BMI) was stratified according to WHO criteria: normal weight (18.5–
24.9 kg/m2), overweight (25.0–29.9 kg/m2), and obese (≥ 30.0 kg/m2). 
Poverty-income ratios were categorized into three tiers: ≤ 1.0 (below 
the poverty line), 1.1–3.0 (low-moderate income), and ≥ 3.1 (higher 
socioeconomic status). Smoking was categorized into three categories: 
individuals who have never smoked, those who used to smoke but have 
quit smoking, and current smokers. Alcohol consumption patterns 
were operationalized as: abstainers (< 12 lifetime drinks or ≥12 drinks 
without past-year consumption), low to moderate drinkers (women ≤ 
1 drink/day; men ≤ 2 drinks/day), and heavy drinkers (women > 1 
drink/day; men > 2 drinks/day). Clinically confirmed hypertension 
was defined as self-reported physician diagnosis. According to previous 
studies, physical activity is divided into low physical activity (<500 
MET/wk) and high physical activity (≥ 500 MET/wk) (33). The insulin 
usage status was categorized as either using or not using. Coronary 
heart disease: Being informed that one has coronary heart disease. 
Stroke: Being informed that one has had a stroke. Cancer: Being 
informed that one has had cancer or a malignant tumor.

Mortality assessment

Mortality outcomes were ascertained through linkage with the 
National Death Index (NDI), a federal mortality registry maintained 
by the National Center for Health Statistics (NCHS). The observational 

window spanned from study enrollment through December 31, 2019, 
capturing complete mortality surveillance data1. Cause-specific 
mortality classifications adhered to ICD-10 coding protocols. 
All-cause mortality aggregated all documented fatalities, including but 
not limited to cardiovascular pathologies (ICD-10 I00-I78), neoplastic 
disorders (C00-C97), accidental trauma (V01-X59), cerebrovascular 
events (I60-I69), diabetes-related complications (E10-E14), and other 
etiologies. Cardiovascular mortality specifically included fatal diseases 
of the cardiovascular system. The follow-up duration was determined 
as the period between baseline evaluation and either mortality 
occurrence or study termination (December 31, 2019).

Statistical analysis

Statistical analyses were performed using R software version 4.3.0 
and SPSS (IBM) version 27. The participant characteristics were 
stratified according to the DI-GM quartiles. Numerical variables are 
expressed as mean ± standard deviation, and categorical data are 
expressed as proportion (%) and frequency distribution. For 
continuous measurements, the nonparametric Kruskal-Wallis test was 
used for comparative analysis, and for inter-group frequency 
comparison, the Pearson χ2 test was used. Three progressively adjusted 
Cox proportional hazards models were constructed to assess the 
relationship between DI-GM and death outcomes. Model 1: Crude 
model without covariates; Model 2: Demographic-adjusted model 
controlling for age, gender, and race/ethnicity; Model 3: Multivariable-
adjusted model incorporating socioeconomic (education attainment, 
marital status, poverty-income ratio) and lifestyle factors (BMI, 
smoking, alcohol consumption, physical activity) alongside clinical 
variables (hypertension, coronary heart disease, stroke, cancer, insulin 
usage status, total cholesterol). For missing values, we adopt a multiple 
interpolation method based on the chain equation of the Bayesian 
framework. Nonlinear associations between DI-GM scores and 
mortality endpoints were evaluated using restricted cubic splines 
(RCS) with three prespecified knots, modeled within the multivariable-
adjusted Cox regression framework. Stratified analyses across 
clinically relevant subgroups were conducted using interaction term 
assessments to detect potential effect modifications. Sensitivity 
evaluations were performed by reanalyzing complete-case datasets 
(excluding observations with missing covariates), thereby confirming 
the robustness of primary findings against missing data assumptions. 
Statistically significant was a p value < 0.05.

Result

Participant baseline characteristics

In this study, a total of 8,409 participants were included, with a 
mean age of 59.32 years (±14.76). The vast majority of all participants 
were non-Hispanic White people, of whom 51.83% were male 
(Table 1). Compared to the lowest group (Q1), groups with older ages, 
higher numbers of non-Hispanic White people, and higher education 

1  https://www.cdc.gov/nchs/data-linkage/mortality-public.htm
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TABLE 1  Participant baseline characteristics.

Variable DI-GM p

Q1 Q2 Q3 Q4

Age, years, mean (SD) 56.32 ± 15.34 57.70 ± 14.99 59.00 ± 14.95 62.07 ± 13.68 <0.001

TC, mean (SD) 4.88 ± 1.14 4.96 ± 1.22 4.93 ± 1.20 4.88 ± 1.17 0.065

Gender, n (%) 0.061

 � Male 735 (51.83) 1,037 (53.12) 1,124 (53.27) 1,462 (49.91)

 � Female 683 (48.17) 915 (46.88) 986 (46.73) 1,467 (50.09)

Race, n (%) <0.001

 � Mexican-American 223 (15.73) 398 (20.39) 419 (19.86) 443 (15.12)

 � Other Hispanic 151 (10.65) 224 (11.48) 236 (11.18) 338 (11.54)

 � Non-Hispanic White 

people

521 (36.74) 671 (34.38) 828 (39.24) 1,246 (42.54)

 � Non-Hispanic Black 397 (28.00) 486 (24.90) 447 (21.18) 536 (18.30)

Other races 126 (8.89) 173 (8.86) 180 (8.53) 366 (12.50)

Education, n (%) <0.001

 � Below high school 457 (32.23) 661 (33.86) 736 (34.88) 845 (28.85)

 � High school 373 (26.30) 467 (23.92) 483 (22.89) 649 (22.16)

 � Above high school 588 (41.47) 824 (42.21) 891 (42.23) 1,435 (48.99)

Marital, n (%) 0.989

 � No spouse/partner/

divorced/single

564 (39.77) 776 (39.75) 837 (39.67) 1,175 (40.12)

 � Married/cohabiting 854 (60.23) 1,176 (60.25) 1,273 (60.33) 1754 (59.88)

Smoking, n (%) <0.001

 � Do not smoke 705 (49.72) 960 (49.18) 1,052 (49.86) 1,573 (53.70)

 � Smoking 415 (29.27) 601 (30.79) 696 (32.99) 977 (33.36)

 � Now smoking 298 (21.02) 391 (20.03) 362 (17.16) 379 (12.94)

Hypertension, n (%) 0.212

 � No 478 (33.71) 664 (34.02) 745 (35.31) 951 (32.47)

 � Yes 940 (66.29) 1,288 (65.98) 1,365 (64.69) 1978 (67.53)

BMI, n (%) <0.001

 � Normal <25 189 (13.33) 289 (14.81) 325 (15.40) 526 (17.96)

 � 0verweight 25–30.0 368 (25.95) 586 (30.02) 624 (29.57) 949 (32.40)

 � Obesity> 30 861 (60.72) 1,077 (55.17) 1,161 (55.02) 1,454 (49.64)

Drinking, n (%) <0.001

 � No alcohol 297 (20.94) 397 (20.34) 471 (22.32) 612 (20.89)

 � Low/moderate alcohol 

consumption

703 (49.58) 1,014 (51.95) 1,115 (52.84) 1707 (58.28)

 � Heavy drinking 418 (29.48) 541 (27.72) 524 (24.83) 610 (20.83)

PIR, n (%) <0.001

 � ≤1.00 374 (26.38) 466 (23.87) 530 (25.12) 544 (18.57)

 � 1.00–3.00 665 (46.90) 915 (46.88) 979 (46.40) 1,263 (43.12)

 � ≥3.00 379 (26.73) 571 (29.25) 601 (28.48) 1,122 (38.31)

Physical activity, n (%) 0.095

 � Low physical activity 1,009 (71.16) 1,353 (69.31) 1,528 (72.42) 2,117 (72.28)

 � High physical activity 409 (28.84) 599 (30.69) 582 (27.58) 812 (27.72)

(Continued)
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levels were concentrated in the higher DI-GM groups. However, 
we also observed a significant decrease in obesity, smoking, and heavy 
drinking rates with the increase of DI-GM, indicating a potential 
association between healthy living and elevated DI-GM. In the DI-GM 
group, there was no statistically significance differences in gender, 
marital status, physical activity, prevalence of hypertension, prevalence 
of coronary heart disease, prevalence of stroke, and insulin 
usage status.

Correlation between DI-GM and all-cause 
and cardiovascular mortality

During the average 77.39-month follow-up, there were 1,430 
all-cause deaths in 8409 participants, including 381 deaths due to 
cardiovascular disease. Multivariable-adjusted Cox proportional 
hazards regression models were used to assess the mortality risk 
associations with DI-GM scores. (Table 2) In Model 1 (unadjusted 
model), DI-GM was not significantly associated with all-cause 
mortality and cardiovascular mortality (p > 0.05). In Model 2 (adjusted 
for demographic factors), each 1-unit increment in DI-GM levels 
corresponded to a 9% diminished risk of all-cause mortality 
(HR = 0.91, 95% CI 0.88–0.94) and 13% decreased likelihood of 
cardiovascular-specific mortality (HR = 0.87, 95% CI 0.82–0.94), both 
meeting conventional statistical significance (p < 0.001). Participants 
in Q4 showed a 30% lower hazard ratio for all-cause mortality than 
those in Q1 (HR = 0.70, 95% CI 0.60–0.82; trend p < 0.001). Similarly, 
the Q4 group demonstrated a 35% reduced risk of cardiovascular 
mortality relative to the Q1 group (HR = 0.65, 95% CI 0.48–0.89, trend 
p < 0.001). In Model 3 (the fully adjusted model), per 1-unit increment 
in DI-GM concentration, multivariable analysis revealed statistically 
significant risk attenuation: all-cause mortality showed an 8% 

diminished hazard (HR = 0.92, 95% CI 0.89–0.95), while cardiovascular 
death exhibited an 11% decreased likelihood (HR = 0.89, 95% CI 0.83–
0.95), both with p < 0.001. Participants in Q4 demonstrated a 26% 
lower all-cause mortality hazard relative to their Q1 counterparts 
(HR = 0.74, 95% CI 0.63–0.87; trend p < 0.05), with cardiovascular 
mortality showing comparable risk reduction (HR = 0.70, 95% CI 
0.52–0.96; trend p < 0.05). In the complete model that underwent full 
adjustment, BGMS demonstrated a remarkably negative correlation 
with both all-cause mortality risk and cardiovascular mortality risk 
(p < 0.001). Conversely, UGMS was no significantly association with 
either all-cause mortality or cardiovascular mortality (p > 0.05).

Detection of nonlinear outcomes between 
DI-GM and mortality

To assess potential non-linear associations, restricted cubic spline 
(RCS) modeling was implemented within the fully adjusted Cox 
proportional hazards framework (Model 3). (Figure 2) The increase 
in the DI-GM score was significantly and negatively correlated with 
the risk of all-cause mortality and cardiovascular mortality, with a 
primarily linear correlation (non-linear test p > 0.05). A linear 
negative correlation was also observed between the BGMS and 
all-cause and cardiovascular mortality (non-linear test p  > 0.05), 
whereas no significant relationship was found between the UGMS and 
the two mortality rates. (Figure 3).

Subgroup analysis

We conducted a stratified analysis to evaluate the association 
between different populations and mortality rates. The findings 

TABLE 1  (Continued)

Variable DI-GM p

Q1 Q2 Q3 Q4

Coronary heart disease,  

n (%)

0.226

 � Yes 111 (7.83) 150 (7.68) 186 (8.82) 268 (9.15)

 � No 1,307 (92.17) 1802 (92.32) 1924 (91.18) 2,661 (90.85)

Stroke, n (%) 0.629

 � Yes 97 (6.84) 149 (7.63) 154 (7.30) 197 (6.73)

 � No 1,321 (93.16) 1803 (92.37) 1956 (92.70) 2,732 (93.27)

Cancer, n (%) 0.002

 � Yes 184 (12.98) 242 (12.40) 273 (12.94) 463 (15.81)

 � No 1,234 (87.02) 1710 (87.60) 1837 (87.06) 2,466 (84.19)

Insulin usage status, n (%) 0.167

 � Using 196 (13.82) 280 (14.34) 310 (14.69) 371 (12.67)

 � Not using 1,222 (86.18) 1,672 (85.66) 1800 (85.31) 2,558 (87.33)

DM, n (%) 0.401

 � Diabetes 988 (69.68) 1,400 (71.72) 1,481 (70.19) 2037 (69.55)

 � Prediabetes 430 (30.32) 552 (28.28) 629 (29.81) 892 (30.45)

Numerical variables were summarized using mean ± SD, with statistical comparisons employing nonparametric Kruskal-Wallis tests. Categorical variables were presented as counts 
(percentages) analyzed through Pearson’s χ2 tests.
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TABLE 2  COX regression model for the connection between DI-GM and death.

Variable Model 1 Model 2 Model 3

HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value

All-cause death

DI-GM 0.99 (0.96,1.03) 0.698 0.91 (0.88,0.94) <0.001 0.92 (0.89,0.95) <0.001

DI-GM (Quartile)

Q 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q 2 0.98 (0.83,1.16) 0.822 0.93 (0.79,1.10) 0.418 0.95 (0.80,1.13) 0.548

Q 3 0.96 (0.82,1.14) 0.666 0.82 (0.69,0.96) 0.016 0.80 (0.68,0.94) 0.008

Q 4 0.99 (0.85,1.16) 0.945 0.70 (0.60,0.82) <0.001 0.74 (0.63,0.87) <0.001

P for Trend 0.987 <0.001 <0.001

BGMS 0.94 (0.90,0.98) 0.003 0.86 (0.82,0.90) <0.001 0.89 (0.85,0.93) <0.001

UGMS 1.07 (1.02,1.13) 0.004 0.99 (0.94,1.04) 0.756 0.98 (0.93,1.03) 0.400

Cardiovascular death

DI-GM 0.96 (0.90,1.03) 0.225 0.87 (0.82,0.94) <0.001 0.89 (0.83,0.95) <0.001

DI-GM (Quartile)

Q 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q 2 1.10 (0.80,1.52) 0.547 1.05 (0.76,1.45) 0.762 1.10 (0.80,1.51) 0.567

Q 3 0.92 (0.66,1.27) 0.599 0.77 (0.56,1.07) 0.121 0.75 (0.54,1.04) 0.087

Q 4 0.93 (0.69,1.26) 0.658 0.65 (0.48,0.89) 0.006 0.70 (0.52,0.96) 0.025

P for Trend 0.351 <0.001 0.001

BGMS 0.89 (0.82,0.97) 0.010 0.82 (0.75,0.89) <0.001 0.86 (0.78,0.94) <0.001

UGMS 1.06 (0.96,1.17) 0.225 0.98 (0.89,1.08) 0.629 0.95 (0.86,1.05) 0.347

HR: Risk Ratio, CI: Confidence Interval. Model 1, unadjusted; Model 2, adjusted according to age, gender and race; Model 3, adjusted according to age, gender, race, educational attainment, 
marital status, BMI, PIR, hypertension, drinking, smoking, physical activity, coronary heart disease, stroke, cancer, insulin use status and total cholesterol.

FIGURE 2

The restricted cubic spline (RCS) curves for all-cause mortality (A) and cardiovascular mortality (B) in patients with diabetes or prediabetes, adjusted for 
age, gender, race, educational attainment, marital status, BMI, PIR, hypertension, drinking, smoking, physical activity, coronary heart disease, stroke, 
cancer, insulin use status and total cholesterol.
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revealed that DI-GM exhibited a consistently negative correlation with 
mortality across most subgroups, which was statistically significant. 
Furthermore, in terms of cardiovascular mortality, smoking status and 
race interact with DI-GM, indicating potential regulatory effects 
(interaction p < 0.05). (Figure 4).

Sensibility analysis

In the sensitivity analysis, 6,839 participants were included after 
excluding those who lacked covariate values when the baseline was 
excluded (Supplementary Table 2). The relationship between DI-GM 
and all-cause mortality and cardiovascular mortality demonstrated 
stability. Similar stability was observed in the associations between 
BGMS and UGMS and all-cause mortality and 
cardiovascular mortality.

Discussion

This study is pioneering in its use of the substantial sample size of 
the NHANES database to appraise the connection between DI-GM 
and survival outcomes among people with diabetes or prediabetes. 
Our analysis revealed an inverse dose–response relationship between 
DI-GM scores and the risks of all-cause and cardiovascular mortality. 
This association was found to be highly consistent, suggesting that 
relatively high DI-GM scores are linked to a lower likelihood of both 

types of mortality. These results underscore the clinical significance of 
dietary patterns that enhance microbial diversity in the context of 
diabetes management and mortality reduction.

Insulin resistance is a critical factor in the development and 
progression of diabetes and its precursor states (34, 35). Individuals 
with lower gut microbiome diversity tended to show more significant 
overall obesity and insulin resistance characteristics (36). An 
imbalance in intestinal flora may lead to a reduction in the number 
of beneficial bacteria that produce short-chain fatty acids (SCFAs), 
especially butyric acid, which is directly related to decreased insulin 
sensitivity and abnormal blood sugar control (37–39). A plethora of 
studies have demonstrated that the diversity of the gut microbiome 
plays a crucial role in maintaining optimal insulin sensitivity and 
mitigating insulin resistance (40). An imbalance in the gut 
microbiome can lead to the proliferation of harmful bacteria, such 
as proteobacteria, which transform choline and carnitine from food 
into trimethylamine (TMA). Once produced, TMA is further 
metabolized in the liver to form trimethylamine-N-oxide (TMAO), 
a compound that substantially elevates the risk of cardiovascular 
disease by facilitating atherosclerosis, thrombosis, and inflammatory 
processes (41). In addition, the metabolite of the gut microbiome, 
TMAO, is positively correlated with all-cause mortality and 
cardiovascular mortality (42). A positive association has been 
demonstrated between elevated TMAO levels and the increased 
probability of developing diabetes (43). Studies have shown a 
connection between dietary changes and shifts in the gut 
microbiome (37, 44).

FIGURE 3

The restricted cubic spline (RCS) curves for all-cause mortality (A) and cardiovascular mortality (B) among patients with diabetes or prediabetes, 
comparing Beneficial Gut Microbiota Score (BGMS) and Unfavorable Gut Microbiota Score (UGMS). The model was adjusted for age, gender, race, 
educational attainment, marital status, BMI, PIR, hypertension, drinking, smoking, physical activity, coronary heart disease, stroke, cancer, insulin use 
status and total cholesterol.
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Intestinal diols and lactones in urine are indirect biomarkers 
of intestinal microbiota diversity. DI-GM was positively correlated 
with the levels of intestinal diols and lactones in urine, indicating 
enhanced diversity of the intestinal microbiota. A higher DI-GM 
score indicates enhanced intestinal microbiota diversity (25). 
Recently, Wu et al. conducted a cross-sectional study of 21,640 
people in the United States and found that higher DI-GM scores 
were significantly associated with a reduced risk of diabetes (29). 
However, there is still a scarcity of longitudinal studies that have 
investigated the issue of mortality in patients diagnosed with 
diabetes mellitus or prediabetes. According to our results, a 
pronounced inverse association was observed between DI-GM 
levels and mortality outcomes, with both all-cause and 

cardiovascular death risks demonstrating marked reductions 
(p < 0.05). This suggests that DI-GM is associated with a reduced 
risk of death in patients with diabetes or prediabetes. The results 
in RCS demonstrated a negative linear correlation between 
DI-GM and BGMS for all-cause and cardiovascular mortality 
(non-linear p > 0.05). Our research results also indicate that 
UGMS is negatively correlated with all-cause mortality and 
cardiovascular mortality in patients with diabetes or prediabetes, 
but the difference was no statistically significant (p  > 0.05). 
Tindall and Shreiner et al. demonstrated that UGMS focuses on 
components such as red meat and refined grains, which generate 
uremic toxins such as TMAO through intestinal flora metabolism, 
activate the NLRP3 inflammatory body, and induce endothelial 

FIGURE 4

Stratified analysis of mortality from diabetes or prediabetes with DI-GM. Stratified multivariable analyses were performed using Model 3, with all 
stratification variables systematically excluded from covariate adjustment to avoid over-adjustment bias. This methodological approach ensured that 
variables used for subgroup categorization were not included as confounders in respective stratified models.
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cell apoptosis (45, 46). In addition, a diet high in fat and sugar but 
low in fiber, fruits and vegetables is associated with chronic 
inflammation (47). In our study, there was no significant 
association between UGMS and mortality. This might be due to 
the shorter course of diabetes in the high-exposure group of 
UGMS in the sample, which led to the cumulative effect of chronic 
inflammation not being fully manifested. Dietary optimization 
has demonstrated efficacy in fostering the proliferation of 
beneficial gut microbiota, thereby reducing the risk of death, 
consistent with the findings of previous studies. The absence of 
statistical significance in the coarse model may indicate the 
influence of confounding factors, particularly age. Interestingly, 
we performed a stratified analysis and discovered that DI-GM 
exerted a more pronounced effect on the mortality risk among 
middle-aged and elderly individuals, which might be attributable 
to age-related decline in metabolic reserves. Zhang et  al. 
discovered that an augmentation in the score of DI-GM was 
correlated with the risk of developing sarcopenia, a condition that 
was prevalent among middle-aged and elderly populations and is 
connected with inadequate metabolic reserves (48). A substantial 
body of research has demonstrated that the gut microbiota plays 
a pivotal role in the aging process. Higher DI-GM scores have 
been found to be associated with a reduced risk of accelerated 
aging (49, 50). Our results showed a significant interaction 
between smoking and race in the subgroup analysis. Research 
indicates that smoking significantly increases the risk of all-cause 
and cardiovascular mortality in individuals with diabetes. 
However, smoking cessation is associated with a lower risk and a 
strong positive correlation with other cardiovascular health 
outcomes (including heart failure and peripheral artery disease) 
(51–53). Therefore, it may mask the protective factors of DI-GM, 
leading to an increased risk of death. The prevalence of diabetes 
also varies by race, with the highest prevalence among Hispanics/
Latinos (54, 55).

DI-GM has many potential applications in clinical practice. By 
quantifying the impact of diet on the gut microbiota, DI-GM can 
identify high-risk groups for diabetes, cardiovascular diseases and 
cancer (56–58). Based on the beneficial and unfavorable components 
of DI-GM, dietary plans are customized for patients, such as guiding 
prediabetic patients to adjust the proportion of dietary fiber to reduce 
the risk of progression (32, 35, 57, 59).

This investigation presents several notable strengths. First, as a 
novel dietary evaluation metric, DI-GM has been examined for its 
associations with mortality in populations with diabetes or prediabetes 
for the first time, to our knowledge. Second, the nationally 
representative NHANES cohort employed a multistage probability 
cluster sampling design, ensuring methodological rigor and 
population generalizability. Third, comprehensive covariate 
adjustments minimized confounding biases, with sensitivity analyses 
confirming result robustness. Several limitations warrant 
consideration. First, inherent methodological constraints exist in 
DI-GM’s current formulation, particularly regarding the inclusion 
criteria for emerging dietary components requiring empirical 
validation. Second, our analysis lacked granular data on food 
preparation methods, potentially influencing microbiome interactions. 
Third, NHANES dietary recalls omitted tea subtype specifications, 
possibly affecting DI-GM scoring accuracy. Future investigations 
should prioritize validating disputed dietary-microbiome interactions, 

and elucidating microbiota-mediated dietary influences on 
metabolic outcomes.

Conclusion

The research discovered that the DI-GM score exhibits an inverse 
relationship with both all-cause mortality and cardiovascular 
mortality among individuals with diabetes or pre-diabetes. A greater 
DI-GM score has been found to correlate with enhanced diversity of 
the gut microbiota, which is associated with a lower risk of mortality. 
These results highlight the importance of consuming foods that are 
beneficial to the gut microbiota in the prevention and control of 
diabetes and its early stages.
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