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Background: Previous studies have explored the associations between obesity 
and Parkinson’s disease (PD), often using body mass index (BMI) as the main 
metric. However, findings remain inconsistent. Anthropometric indices—
quantitative measures of body shape, size, and fat distribution—offer alternative 
ways to assess adiposity. This study aimed to evaluate the associations between 
eight anthropometric indices and PD prevalence.

Methods: Data were obtained from the National Health and Nutrition 
Examination Survey (NHANES), conducted in the U.S. from 1999 to 2020. A total 
of 41,374 participants aged 20 years and older were included, among whom 354 
were diagnosed with PD. Eight anthropometric indices were analyzed: waist-
to-weight index (WWI), conicity index (CI), a body shape index (ABSI), body 
roundness index (BRI), waist-to-height ratio (WHtR), BMI, waist circumference 
(WC), and weight (WT). Weighted multivariable logistic regression models were 
used to assess the association between these indices and PD. Restricted cubic 
spline (RCS) models were employed to examine dose–response relationships. 
Subgroup and sensitivity analyses were conducted to validate the robustness of 
the findings.

Results: Significant differences were observed between the study groups, 
with positive and independent correlations identified between PD and all 
anthropometric measures, except BMI. After full adjustment, each 1-standard 
deviation increase in WWI, CI, ABSI, BRI, WHtR, WC, and WT was associated with 
an elevated PD risk by 34, 42, 36, 18, 21, 25, and 16%, respectively. RCS analysis 
revealed a linear relationship between CI, ABSI, BRI, WtHR, WC, WT, and PD 
prevalence, whereas WWI exhibited a nonlinear association. The subgroup and 
sensitivity analyses confirmed the consistency of these associations.

Conclusion: Higher values of several anthropometric indices, particularly the 
ABSI, WWI, and CI, were associated with increased PD prevalence. These findings 
highlight the potential role of fat distribution rather than overall adiposity in PD 
pathogenesis. Anthropometric measures may be valuable tools for early PD risk 
identification and targeted prevention strategies.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by motor dysfunction, primarily manifesting 
as resting tremors, rigidity, bradykinesia, and postural instability (1). 
It is currently the second most common neurodegenerative disease 
after Alzheimer’s disease, affecting over 11.77 million people 
worldwide as of 2021 (2). With increasing life expectancy and global 
population aging, the prevalence of PD is expected to increase, placing 
a substantial burden on individuals, caregivers, and healthcare systems 
globally (3–6). Despite advances in symptom management, no 
therapies currently exist that can halt or reverse the progression of PD 
(7, 8). Consequently, identifying modifiable risk factors is crucial for 
improving early detection and prevention strategies (9).

Obesity has been implicated in various chronic diseases, including 
neurodegenerative disorders. However, the relationship between obesity, 
typically assessed using body mass index (BMI), and PD risk remains 
controversial. Although some studies have suggested that a higher BMI 
may elevate the risk of PD, others have reported no significant 
association or even an inverse correlation (10–16). These inconsistencies 
may be attributed to variations in the study populations, methodologies, 
and specific anthropometric measures used to assess obesity. Although 
BMI remains widely used in clinical and epidemiological contexts, it is 
increasingly recognized as a crude indicator that does not distinguish 
fat mass from lean mass or account for fat distribution (17). Therefore, 
there is an urgent need for more precise anthropometric indices to 
better evaluate the relationship between obesity and the risk of PD.

Recently, alternative anthropometric indices, including the body 
roundness index (BRI) (18, 19), a body shape index (ABSI) (20, 21), 
conicity index (CI) (22), waist-to-height ratio (WHtR) (23), and waist-
to-weight index (WWI) (24) have been proposed to improve the 
assessment of fat distribution. These indices have been linked to 
cardiovascular diseases, type 2 diabetes, and metabolic syndrome 
(25–27), as they account for different patterns of fat accumulation. 
However, evidence regarding the association between these alternative 
anthropometric measures and PD risk remains limited.

This study aimed to explore the relationship between eight 
anthropometric indices (WWI, CI, ABSI, BRI, WHtR, BMI), waist 
circumference (WC), and weight (WT) and the prevalence of PD using 
data from the National Health and Nutrition Examination Survey 
(NHANES) from 1999 to 2020. By investigating these relationships, this 
study sought to provide new insights into the role of body fat 
distribution in PD development, offering potential implications for early 
identification and prevention strategies targeting high-risk populations.

2 Materials and methods

2.1 Data source

This cross-sectional study was conducted using publicly 
available secondary data from the NHANES, administered by the 
Centers for Disease Control and Prevention (CDC) between 1999 
and 2020.1 The NHANES employs a complex, multistage 

1 https://www.cdc.gov/nchs/nhanes/about/index.html

probability sampling design to obtain a nationally representative 
sample of the non-institutionalized U.S. population. Data were 
originally collected by trained CDC personnel through mobile 
examination centers (MECs), which included structured household 
interviews, standardized physical examinations, and laboratory 
assessments. This study adhered to the Strengthening of the 
Reporting of Observational Studies in Epidemiology (STROBE) 
guidelines.

2.2 Standard protocol approval, 
registration, and patient consent

The National Center for Health Statistics Institutional Review 
Board approved the NHANES protocol, and all participants provided 
written informed consent for data collection. As this study involved 
secondary data analysis, additional Institutional Review Board 
approval was not required. The dataset is publicly available on the 
NHANES official website: https://www.cdc.gov/nchs/nhanes/
index.html.

2.3 Study design and population

The analysis included individuals aged 20 years and older who 
completed the NHANES survey and had their data available on 
anthropometric measurements and PD. Several exclusion criteria were 
applied to ensure the validity of the dataset. Participants were excluded 
if they had missing data on height, WT, WC, and PD, or lacked data 
on relevant covariates. Figure 1 illustrates the specific inclusion and 
exclusion criteria in detail.

2.4 Anthropometric index calculation

Trained examiners measured key anthropometric parameters, 
including height, WC, and WT, using standardized protocols at 
MEC. WC was measured to the nearest millimeter at the end of 
normal exhalation while the participant stood upright with feet 
25–30 cm apart. The following anthropometric indices were calculated 
using established formulas (28):

BMI = WT (kg)/height2 (m2)
ABSI = WC (cm)/[BMI2/3 (kg/m2) × height1/2 (m)]
BRI = 364.2–365.5 × {1 − [(WC (cm)/2π)/(0.5 × height (m))]2}0.5

CI = WC (m)/0.109/[WT (kg)/height (cm)]0.5

WWI = WC (cm)/WT0.5 (cm/kg0.5)
WHtR = WC (cm)/height (cm)

2.5 Assessment of PD

PD was identified based on self-reported prescription medication 
records in NHANES, specifically under the category “Anti-Parkinson 
Agents.” Only participants actively receiving antiparkinsonian 
medications were classified as having PD, whereas those without relevant 
prescriptions were categorized as non-PD. This definition is consistent 
with the previously established definitions in the literature (29–31).

https://doi.org/10.3389/fnut.2025.1621658
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.cdc.gov/nchs/nhanes/about/index.html
https://www.cdc.gov/nchs/nhanes/index.html
https://www.cdc.gov/nchs/nhanes/index.html


Hu et al. 10.3389/fnut.2025.1621658

Frontiers in Nutrition 03 frontiersin.org

2.6 Assessment of covariates

Potential confounders were selected based on prior literature and 
clinical relevance (31–33). These variables were categorized into four 
main domains: demographic, socioeconomic, lifestyle, and medical 
history. Details of the specific covariates and their classification 
criteria are summarized in Supplementary Table 1.

Briefly, demographic variables included age, sex, and race/
ethnicity. Socioeconomic factors comprised marital status, poverty-
income ratio (PIR), and educational attainment. Lifestyle variables 
included smoking status (31), alcohol consumption, and physical 
activity measured in metabolic equivalent of task (MET)-minutes 
[PA(MET-min/wk)] per week based on previously defined activity 
levels (34, 35). Medical history included physician-diagnosed 
coronary heart disease (CHD), stroke, hypertension, hyperlipidemia, 
and diabetes (all classified as yes/no). Hypertension, hyperlipidemia, 
and diabetes were defined using standard clinical and 
laboratory criteria.

2.7 Statistical analyses

Following the NHANES analytical guidelines, survey design 
variables and appropriate sampling weights were applied to ensure 

nationally representative estimates. Sampling weights were calculated 
as follows: 1999–2002: 2/10.6 × 4-year MEC weight, 2003–2016: 
1/10.6 × 2-year MEC weight, and 2017–2020: 1.6/10.6 × PRP 
MEC weight.

The baseline characteristics are presented in Table  1, with 
continuous variables with a normal distribution reported as mean 
[standard deviation (SD)] whereas, non-normally distributed variables 
are presented as medians with interquartile ranges (IQR). Categorical 
variables were expressed as unweighted numbers (weighted 
percentages). The Kolmogorov–Smirnov test was applied to assess the 
normality of the distributions. Group comparisons were performed 
using the chi-square test for categorical variables, independent sample 
t-tests for normally distributed continuous variables, and the Mann–
Whitney U test for non-normally distributed continuous variables. 
Given the large sample size, missing data were handled by excluding 
incomplete records from the analysis. In this study, all anthropometric 
variables underwent z-score transformation using the formula: 
z-score = (index-indexmean)/indexsd (Supplementary Table 2).

To explore the associations between anthropometric indices and 
PD risk, weighted multivariable logistic regression models were 
constructed to estimate odds ratios (ORs) and 95% confidence 
intervals (CIs). The models were adjusted as follows: Model 1: 
unadjusted; Model 2: adjusted for age, sex, and race/ethnicity; Model 
3: further adjusted for marital status, family income, educational level, 

FIGURE 1

Flowchart of participants in this study.
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TABLE 1 Baseline characteristics of participants, weighted.

Characteristics Participantsa

Overall Non-PD PD p-valueb

n = 41,374 n = 41,020 n = 354

Age (years), mean (SD) 46.81(16.64) 46.73(16.63) 56.80(15.21) <0.0001

Sex, n (%) 0.014

  Male 20,828 (49.36%) 20,659 (49.43%) 169 (40.14%)

  Female 20,546 (50.64%) 20,361 (50.57%) 185 (59.86%)

Race, n (%) 0.011

  Non-Hispanic White 19,002 (70.28%) 18,786 (70.21%) 216 (79.09%)

  Non-Hispanic Black 8,669 (10.42%) 8,611 (10.44%) 58 (8.79%)

  Mexican American 6,816 (7.63%) 6,776 (7.66%) 40 (4.09%)

  Other Hispanic 3,299 (5.32%) 3,273 (5.33%) 26 (3.87%)

  Other 3,588 (6.35%) 3,574 (6.37%) 14 (4.15%)

Marital status, n (%) 0.15

  Married or living with a partner 24,991 (64.27%) 24,799 (64.32%) 192 (58.45%)

  Living alone 16,383 (35.73%) 16,221 (35.68%) 162 (41.55%)

Family income, n (%) <0.001

  ≤1.30 12,299 (20.21%) 12,168 (20.15%) 131 (28.54%)

  1.31–3.50 15,687 (35.44%) 15,551 (35.41%) 136 (40.22%)

  >3.50 13,388 (44.34%) 13,301 (44.45%) 87 (31.24%)

Education level, n (%) 0.46

  Less than 9th grade 4,327 (4.97%) 4,285 (4.96%) 42 (6.39%)

  9-11th grade (includes12th grade 

with no diploma)
5,843 (10.52%) 5,783 (10.50%) 60 (12.57%)

  High school graduate GED or 

equivalent
9,618 (23.95%) 9,540 (23.94%) 78 (25.45%)

  Some college or AA degree 12,182 (31.48%) 12,077 (31.48%) 105 (31.22%)

  College graduate or above 9,404 (29.09%) 9,335 (29.13%) 69 (24.37%)

Smoking status, n (%) 0.10

  Never 22,200 (53.59%) 22,031 (53.60%) 169 (51.74%)

  Former 10,336 (25.07%) 10,240 (25.10%) 96 (21.45%)

  Current 8,838 (21.35%) 8,749 (21.30%) 89 (26.81%)

Drinking status, n (%) <0.001

  Never 5,578 (10.60%) 5,529 (10.60%) 49 (11.18%)

  Former 6,786 (13.33%) 6,680 (13.25%) 106 (23.95%)

  Current 29,010 (76.07%) 28,811 (76.16%) 199 (64.87%)

PA (MET-min/wk), median (IQR) 740.01 (80.00, 2,880.00) 756.00 (80.00, 2,880.00) 360.00 (0.00, 1,680.00) <0.001

Coronary heart disease, n (%) 0.009

  No 39,680 (96.61%) 39,356 (96.64%) 324 (93.35%)

  Yes 1,694 (3.39%) 1,664 (3.36%) 30 (6.65%)

Stroke, n (%) <0.001

  No 39,873 (97.34%) 39,556 (97.40%) 317 (90.39%)

  Yes 1,501 (2.66%) 1,464 (2.60%) 37 (9.61%)

Hyperlipidemia, n (%) 0.056

  No 12,558 (31.18%) 12,475 (31.24%) 83 (24.65%)

(Continued)
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smoking status, alcohol consumption, physical activity, CHD, stroke, 
hypertension, diabetes, and hyperlipidemia.

A weighted restricted cubic spline (RCS) model with three knots 
was used to assess the potential dose–response relationships. 
Additionally, smoothed curve fitting was applied to evaluate the 
linearity of the associations.

Subgroup analyses and interaction tests were conducted to 
determine whether associations varied across key demographic and 
clinical subgroups, including age (<60 vs. ≥60 years), sex (male vs. 
female), race (non-Hispanic White vs. other), marital status (married/
living with a partner vs. living alone), and the presence of hypertension 
(no vs. yes), diabetes (no vs. yes), and hyperlipidemia (no vs. yes). To 
ensure robustness, sensitivity analyses were performed by categorizing 
anthropometric indices into quartiles.

All statistical analyses were performed using R 4.2.2 (http://www.
Rproject.org; The R Foundation, Vienna, Austria) and Free Statistics 
software (version 2.1; Beijing Free Clinical Medical Technology Co., 
Ltd., Beijing, China). A two-sided p-value <0.05 was considered 
statistically significant. Data analyses were conducted between 
December 2024 and March 2025.

3 Results

3.1 Study population

The NHANES survey, conducted from 1999 to 2020, initially 
included 107,620 individuals aged 20 years or older. A total of 
66,246 participants were excluded based on the following criteria: 

55 due to missing PD data, 14,240 due to incomplete height 
measurements, 449 due to missing WT data, 3,655 due to 
unavailable WC measurements, and 47,847 due to incomplete 
covariate data. Thus, the final analysis included 41,374 participants 
(Figure 1).

3.2 Baseline characteristics

Table 1 presents the baseline characteristics of participants with 
complete data on PD and anthropometric indices. Among the 41,374 
individuals analyzed, 354 (0.86%) had PD. Compared to individuals 
without PD, participants with PD had significantly higher values for 
most anthropometric indices. Additionally, the PD group 
demonstrated a significantly lower prevalence of alcohol consumption 
and regular physical activity than the non-PD group (p < 0.05). 
Moreover, the PD group had a higher mean age at disease onset and a 
greater proportion of females. Individuals with PD are also more likely 
to live alone and report their current smoking status. Notably, the 
prevalence of comorbid conditions, such as CHD, hypertension, 
stroke, hyperlipidemia, and diabetes, was significantly higher in the 
PD group compared to the non-PD group.

3.3 Associations between eight 
anthropometric measures and PD

Most anthropometric indices were positively correlated with the 
prevalence of PD (Table 2). In the unadjusted model (Model 1), WWI 

TABLE 1 (Continued)

Characteristics Participantsa

Overall Non-PD PD p-valueb

n = 41,374 n = 41,020 n = 354

  Yes 28,816 (68.82%) 28,545 (68.76%) 271 (75.35%)

Hypertension, n (%) <0.001

  No 23,897 (63.24%) 23,755 (63.39%) 142 (44.99%)

  Yes 17,477 (36.76%) 17,265 (36.61%) 212 (55.01%)

Diabetes, n (%) <0.001

  No 34,382 (87.58%) 34,131 (87.65%) 251 (78.06%)

  Yes 6,992 (12.42%) 6,889 (12.35%) 103 (21.94%)

BMI [kg/m2, mean (SD)] 28.789 (6.670) 28.782 (6.670) 29.712 (6.662) 0.0446

WC (cm), mean (SD) 98.537 (16.329) 98.498 (16.331) 103.372 (15.277) <0.001

WT (kg), mean (SD) 82.452 (21.144) 82.444 (21.154) 83.521 (19.810) 0.5226

ABSI, mean (SD) 0.081 (0.005) 0.081 (0.005) 0.084 (0.005) <0.001

BRI, mean (SD) 5.254 (2.262) 5.248 (2.261) 6.018 (2.276) <0.001

WWI, mean (SD) 10.906 (0.822) 10.902 (0.821) 11.370 (0.767) <0.001

WHtR, mean (SD) 0.580 (0.097) 0.584 (0.096) 0.618 (0.094) <0.001

CI, mean (SD) 1.299 (0.092) 1.299 (0.092) 1.349 (0.084) <0.001

aNormally distributed continuous variables are described as means (SD), and continuous variables without a normal distribution are presented as medians (interquartile ranges). Categorical 
variables are presented as unweighted numbers (weighted percentages).
bWilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & Scott’s second-order correction. p-values < 0.05 are presented in bold.
PD, Parkinson’s disease; WWI, weight-adjusted waist index; CI, conicity index; ABSI, a body shape index; BRI, body roundness index; WHtR, waist-to-height ratio; BMI, body mass index; 
WC, waist circumference; WT, weight.
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FIGURE 2

Smooth curve fitting models evaluated the correlation between eight anthropometric indices and PD. Adjusted smooth curve fitting models adjusted 
for age, sex, race, marital status, family income, educational level, smoking status, alcohol drinking status, physical activity, coronary heart disease, 
stroke, hypertension, diabetes, and hyperlipidemia. The blue line illustrates the smoothed curve that fits the data points, while the light blue shaded 
areas indicate the 95% CI around the fit. (A) Smooth curve fitting model of WWI. (B) Smooth curve fitting model of CI. (C) Smooth curve fitting model 
of ABSI. (D) Smooth curve fitting model of BRI. (E) Smooth curve fitting model of WHtR. (F) Smooth curve fitting model of BMI. (G) Smooth curve fitting 
model of WC. (H) Smooth curve fitting model of WT.

showed the strongest association per 1-SD increment (OR: 1.76; 95% 
CI: 1.56–1.99; p < 0.001).

After adjusting for potential confounders, including age, sex, race, 
marital status, income, education, smoking, alcohol consumption, 
physical activity, and comorbidities, the associations remained 
significant for seven anthropometric indices in Model 3: WWI (OR: 
1.34; 95% CI: 1.13–1.60; p < 0.001), CI (OR: 1.42; 95% CI: 1.23–1.63; 
p < 0.001), ABSI (OR: 1.36; 95% CI: 1.17–1.58; p < 0.001), BRI (OR: 
1.18; 95% CI: 1.05–1.34; p = 0.006), WHtR (OR: 1.21; 95% CI: 1.06–
1.38; p = 0.005), WC (OR: 1.25; 95% CI: 1.12–1.40; p < 0.001), and 
WT (OR: 1.16; 95% CI: 1.03–1.31; p = 0.015).

Compared to other anthropometric indices, BMI exhibited only 
a weak association with PD in the unadjusted model and Model 2, and 

this association became non-significant after full adjustment in 
Model 3.

3.4 Dose–response relationships based on 
RCS

An additive generalized model and smoothed curve fitting were 
applied to examine the relationship between PD prevalence and 
anthropometric indicators (Figure  2). The analysis revealed a 
nonlinear association between WWI and PD prevalence (P for 
nonlinearity = 0.01, Figure 2A), with an inflection point identified at 
11.46 cm/√kg (Table 3). In contrast, CI, ABSI, BRI, WHtR, BMI, WC, 

TABLE 2 Weighted logistic regression analysis of anthropometric indices and PD.

Variables Model 1 Model 2 Model 3

OR (95%CI) P-valuea OR (95%CI) P-value OR (95%CI) P-value

WWI Z-score 1.76 (1.56, 1.99) <0.001 1.45 (1.25, 1.68) <0.001 1.34 (1.13, 1.60) 0.001

CI Z-score 1.73 (1.53, 1.97) <0.001 1.49 (1.30, 1.71) <0.001 1.42 (1.23, 1.63) <0.001

ABSI Z-score 1.76 (1.55, 1.99) <0.001 1.47 (1.27, 1.70) <0.001 1.36 (1.17, 1.58) <0.001

BRI Z-score 1.33 (1.21, 1.46) <0.001 1.23 (1.10, 1.37) <0.001 1.18 (1.05, 1.34) 0.006

WHtR Z-score 1.38 (1.24, 1.53) <0.001 1.25 (1.11, 1.42) <0.001 1.21 (1.06, 1.38) 0.005

BMI Z-score 1.14 (1.01, 1.28) 0.030 1.14 (1.00, 1.29) 0.048 1.11 (0.99, 1.26) 0.078

WC Z-score 1.31 (1.17, 1.48) <0.001 1.28 (1.13, 1.45) <0.001 1.25 (1.12, 1.40) <0.001

WT Z-score 1.05 (0.91, 1.22) 0.513 1.16 (1.01, 1.34) 0.042 1.16 (1.03, 1.31) 0.015

Model 1: unadjusted model. Model 2: adjust for gender, age, race. Model 3: adjust for age, sex, race, marital status, family income, educational level, smoking status, alcohol drinking status, physical 
activity, coronary heart disease, stroke, hypertension, diabetes, and hyperlipidemia. OR, odds ratio; CI, confidence interval; PD, Parkinson’s disease; WWI, weight-adjusted waist index; CI, conicity 
index; ABSI, a body shape index; BRI, body roundness index; WHtR, waist-to-height ratio; BMI, body mass index; WC, waist circumference; WT, weight. ap-values < 0.05 are presented in bold.
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and WT exhibited a positive linear association with the prevalence of 
PD (P for nonlinearity > 0.05, Figures 2B–H).

3.5 Subgroup analyses

Subgroup analyses showed consistent positive associations 
between several anthropometric indices and PD prevalence. The 
association between CI and PD is presented in the main manuscript 
(Figure 3). Additional associations for WWI and ABSI are detailed in 
Supplementary Figure 1, for BRI and WHtR in Supplementary Figure 2, 
and for WC and WT in Supplementary Figure 3. Across all stratified 
analyses (by age, sex, race, marital status, and comorbidities), no 
significant interaction effects were observed.

3.6 Sensitivity analysis

To further assess the robustness of our findings, the 
anthropometric indices were categorized into quartiles. 
Participants in the highest quartile of WWI, CI, ABSI, BRI, 
WHtR, WC, and WT exhibited a significantly higher risk of PD 
compared to those in the lowest quartile: WWI (OR: 3.22; 95% CI: 
1.77–5.85; p < 0.001), CI (OR: 2.74; 95% CI: 1.67–4.49; p < 0.001), 
ABSI (OR: 2.61; 95% CI: 1.53–4.43; p < 0.001), BRI (OR: 1.74; 95% 
CI: 1.05–2.88; p = 0.031), WHtR (OR: 1.74; 95% CI: 1.05–2.88; 
p = 0.031), WC (OR: 2.10; 95% CI: 1.31–3.37; p = 0.002), and WT 
(OR: 1.74; 95% CI: 1.14–2.66; p = 0.011) (Supplementary Table 3).

When BMI was analyzed as a categorical variable, no 
significant association with PD was observed across all models.

These findings reinforce the robustness of the observed 
associations and demonstrate that the associations between 
central obesity-related indices and PD remain consistent across 
different statistical modeling approaches.

4 Discussion

In this nationally representative study, seven of the eight 
anthropometric indices examined were significantly associated 
with a higher prevalence of PD, with BMI being the only index 
that did not demonstrate a significant association. These findings 
highlight the relevance of fat distribution rather than general 
adiposity in PD pathogenesis. Traditional measures, such as BMI, 
may underestimate neurodegenerative risk by failing to capture 
visceral fat accumulation, which is more closely linked to 
metabolic dysfunction and inflammation (36–39).

Although WC and WHtR are widely accepted indicators of 
central obesity, other indices evaluated in this study, including 

WWI, CI, ABSI, and BRI, also reflect central fat deposition. Prior 
research has established strong correlations between these 
alternative indices, visceral adiposity and both metabolic and 
neurological health (37, 40–43). Unlike BMI, these indices 
account for variations in body composition and fat distribution 
and have demonstrated superior predictive value in identifying 
individuals with central obesity. Therefore, the consistent 
associations observed across these measures provide further 
support for a shared pathophysiological mechanism linking 
central obesity and PD.

Our findings align with those of several previous studies that 
have reported a positive association between abdominal adiposity 
and PD risk. For instance, a large-scale cohort study in Asia 
involving 6.9 million individuals with an 8.35-year follow-up 
reported a significant association between higher WC and 
increased PD risk (OR = 1.09; 95% CI: 1.07–1.12; p < 0.001) (43). 
Similarly, a meta-analysis conducted by Fang et al. suggested that 
being overweight may contribute to increased susceptibility to PD 
(44). Additionally, a recent NHANES-based study demonstrated 
that the ABSI was positively associated with PD prevalence, 
particularly in younger male adults (45). Collectively, these results 
support the hypothesis that central obesity is a critical component 
in neurodegenerative risk profiling.

However, our findings differ from those of several previous 
studies, which reported inverse associations between BMI and PD 
(11, 14, 15, 16). In our analysis, although BMI showed a weak 
association with PD in the unadjusted and partially adjusted 
models, this association became non-significant after full 
adjustment for demographic, lifestyle, and clinical factors. This 
attenuation may be attributed to several reasons. First, BMI lacks 
specificity in distinguishing fat mass from muscle mass and fails 
to capture fat distribution (42, 46). In contrast, indices such as 
WWI, CI, and WHtR are more sensitive to the visceral fat content, 
which is metabolically active and implicated in neuroinflammation. 
Second, sample heterogeneity across the studies may contribute 
to the divergent outcomes. Our study included a racially and 
socioeconomically diverse cohort, whereas other investigations 
may have included more homogeneous groups. Third, 
survivorship bias in longitudinal cohorts may obscure the true 
associations, as individuals with higher BMI may die prematurely 
from cardiovascular diseases or diabetes before developing 
PD. Lastly, statistical power and variable-covariate adjustments 
across studies may influence the detection of associations. These 
factors underscore the importance of methodological rigor and 
index selection in studies examining adiposity and the risk of PD.

Several biological mechanisms may explain the observed 
associations. First, central obesity promotes systemic chronic 
inflammation. Adipose tissue in individuals with excess visceral 
fat produces proinflammatory cytokines, such as tumor necrosis 

TABLE 3 Threshold effect analysis of the relationship of WWI with PD.

WWI Adjusted model

OR (95%CI) P-valuea

<11.46 1.77 (1.20, 2.61) 0.004

≥11.46 1.20 (0.81, 1.76) 0.360

WWI, weight-adjusted waist index; OR, odds ratio; CI, confidence intervals; PD, Parkinson’s disease. ap-values < 0.05 are presented in bold.
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factor-alpha (TNF-α), interleukin-6 (IL-6), and C-reactive protein 
(CRP). These mediators can impair the integrity of the blood–
brain barrier (47–50), activate microglial cells, and promote 
neuroinflammation, which collectively may contribute to 
dopaminergic neuron degeneration in the substantia nigra, 
ultimately increasing PD risk (51, 52).

Second, central adiposity is closely linked to insulin resistance 
(IR), a metabolic state known to contribute to neurodegenerative 

processes. IR may lead to mitochondrial dysfunction, increase 
oxidative stress, and promote the aggregation of α-synuclein, a 
pathological hallmark of PD (51, 53–55). Moreover, IR can 
disrupt key intracellular signaling pathways, such as polo-like 
kinase 2 (PLK2), which are involved in neuronal survival and 
function. These alterations may accelerate the degeneration of 
dopaminergic neurons and exacerbate disease progression (36, 
53, 56, 57). Given that central obesity is a well-established 

FIGURE 3

Subgroup analyses to determine the correlation of CI and PD. Except for the stratification factor itself, the stratifications were adjusted for all variables 
(age, sex, race, marital status, family income, educational level, smoking status, alcohol drinking status, physical activity, coronary heart disease, stroke, 
hypertension, diabetes, hyperlipidemia).
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predictor of IR, it may serve as a key metabolic link between 
obesity and PD (58).

Third, obesity is associated with decreased levels of brain-
derived neurotrophic factor (BDNF), a protein essential for 
neuronal development, plasticity, and survival (59, 60). Decreased 
levels of BDNF expression have been observed in individuals with 
obesity and may impair the maintenance and function of 
dopaminergic neurons. This deficiency in neurotrophic support 
further contributes to the pathology of PD (61, 62).

These biological mechanisms, including inflammation, IR, 
and impaired neurotrophic signaling, highlight the biological 
plausibility of the link between central obesity and PD. A 
simplified schematic is presented in Supplementary Figure  4, 
summarizing how central obesity may contribute to PD 
pathogenesis through three interconnected mechanisms.

From a clinical perspective, these findings have important 
clinical implications for the early detection and targeted 
prevention strategies. Alternative anthropometric indices could 
serve as practical tools for early identification of individuals at 
increased risk of PD, particularly in populations where BMI fails 
to reflect the true metabolic burden. These indices can 
be incorporated into routine screening protocols to inform the 
development of preventive strategies.

This study has several strengths. First, it was based on a large 
nationally representative sample, which enhanced the 
generalizability of the findings. Second, it incorporated 
standardized anthropometric measurements and employed 
rigorous statistical adjustments for a wide range of potential 
confounders. Third, the robustness of the associations was verified 
using subgroup and sensitivity analyses.

Despite these strengths, several limitations of this study must 
be  acknowledged. As this was a cross-sectional study, causal 
relationships could not be  established. To address this, future 
research should employ prospective cohort designs to clarify the 
temporal and potentially causal relationships between central 
obesity and PD. Second, consistent with previously published 
research (33, 63, 64), PD identification based on antiparkinsonian 
medication use may not distinguish PD from other forms of 
parkinsonism. This could lead to potential misclassification and 
underestimation of true PD prevalence, particularly among 
untreated individuals. Future studies should incorporate multiple 
diagnostic approaches, such as clinical interviews, neurological 
examinations, and biomarker assessments, to enhance 
classification accuracy. Additionally, the use of secondary data 
limited our ability to fully account for all confounding variables, 
thereby introducing the possibility of residual bias. Lastly, 
although the NHANES dataset is representative of the 
U.S. population, these findings may not be generalizable to other 
geographic or ethnic populations. Future validation studies in 
more diverse international populations are warranted to confirm 
and extend these results.

5 Conclusion

This study provided strong evidence that central obesity, as 
reflected by alternative anthropometric indices such as CI, WHtR, 

and WWI, is significantly associated with PD prevalence, whereas 
BMI is not. These results highlight the importance of using 
alternative anthropometric tools for identifying individuals at an 
elevated PD risk. Future longitudinal studies should explore whether 
interventions targeting central obesity reduce the incidence and 
progression of PD.
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Glossary

NHANES - National Health and Nutrition  
Examination Survey

PD - Parkinson’s disease

WC - waist circumference

WT - weight

WWI - weight-adjusted waist index

CI - conicity index

ABSI - a body shape index

BRI - body roundness index

WHtR - waist-to-height ratio

BMI - body mass index

CDC - Centers for Disease Control and Prevention

MEC - mobile examination centers

STROBE - Strengthening the Reporting of Observational Studies 
in Epidemiology

NCHS - National Center for Health Statistics

MET - metabolic equivalent of task

CHD - coronary heart disease

IRB - Institutional Review Board

PIR - poverty income ratio

TG - triglycerides

LDL-C - low-density lipoprotein cholesterol

HDL-C - high-density lipoprotein cholesterol

SD - standard deviation

IQR - interquartile ranges

OR - odds ratio

CI - confidence interval

RCS - restricted cubic spline

TNF-α - tumor necrosis factor-alpha

IL-6 - interleukin-6

CRP - C-reactive protein

BBB - blood–brain barrier

PLK2 - Polo-Like Kinase 2

SNCA - α-synuclein

BDNF - brain-derived neurotrophic factor
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