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Objective: This study aims to identify risk factors associated with postprandial 
hypertriglyceridemia (PHTG) and develop a validated predictive model for its 
assessment.
Methods: We recruited 346 volunteers from the outpatient clinic of Hebei 
Provincial People’s Hospital between January and December 2019. Participants 
were divided into a model group (January–September 2019, n = 256) and an 
external validation group (October–December 2019, n = 90). The model group 
was further categorized into a normal lipotolerance group (NFT, n = 164) and a 
PHTG group (n = 92) based on fasting triglyceride levels and 4-h postprandial 
triglyceride measurements. Univariate analysis was performed on general 
information and auxiliary test results. Predictors were selected using LASSO 
regression, and a nomogram model of PHTG risk was constructed via logistic 
regression. The model’s discriminatory ability was evaluated using the area 
under the curve (AUC). Calibration was assessed using the GiViTI calibration 
curves and the Hosmer–Lemeshow (H-L) test, while clinical utility was examined 
through decision curve analysis (DCA). Internal validation was performed using 
the Bootstrap method. The model’s predictive accuracy was validated in the 
external group.
Results: Age, fasting glucose, plasma atherogenic index (AIP), and triglyceride-
glucose index (TyG) were identified as independent predictors of PHTG. The 
developed nomogram model demonstrated strong discriminatory power, 
with an AUC of 0.894 (95% CI: 0.856–0.931) in the model group and 0.903 
(95% CI: 0.842–0.964) in the validation group. The H-L test, DCA, and GiViTI 
calibration curves confirmed excellent model calibration, demonstrating a 
robust agreement between predicted and observed outcomes, thus supporting 
the model’s clinical utility.
Conclusion: The prediction model developed in this study can serve as an 
effective tool for predicting PHTG and help identify the high-risk population of 
PHTG at an early stage.

KEYWORDS

postprandial, hypertriglyceridemia, predictive modelling, risk factor, risk prediction 
model

OPEN ACCESS

EDITED BY

Marilia Seelaender,  
University of São Paulo, Brazil

REVIEWED BY

Mostafa Vaghari-Tabari,  
Tabriz University of Medical Sciences, Iran
Suprit Malali,  
Datta Meghe Institute of Medical Sciences, 
India

*CORRESPONDENCE

Wei Gu  
 lucky1629@163.com

RECEIVED 06 May 2025
ACCEPTED 18 September 2025
PUBLISHED 01 October 2025

CITATION

Gu W, Shi L, Li X, Zheng K and Song G (2025) 
Development and validation of a nomogram 
model for predicting postprandial 
hypertriglyceridemia.
Front. Nutr. 12:1622385.
doi: 10.3389/fnut.2025.1622385

COPYRIGHT

© 2025 Gu, Shi, Li, Zheng and Song. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  01 October 2025
DOI  10.3389/fnut.2025.1622385

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1622385&domain=pdf&date_stamp=2025-10-01
https://www.frontiersin.org/articles/10.3389/fnut.2025.1622385/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1622385/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1622385/full
mailto:lucky1629@163.com
https://doi.org/10.3389/fnut.2025.1622385
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1622385


Gu et al.� 10.3389/fnut.2025.1622385

Frontiers in Nutrition 02 frontiersin.org

1 Introduction

The prevalence of hypertriglyceridemia (HTG) has risen with 
improvements in living standards, reaching 10.4% according to the most 
recent National Health and Nutrition Examination Survey (NHANES) 
(1). Clinically, HTG is diagnosed based on fasting triglyceride (TG) 
levels, however, some individuals exhibit abnormal postprandial TG 
elevations despite normal fasting levels, a condition known as 
postprandial hypertriglyceridemia (PHTG). The pathophysiological 
significance of PHTG is primarily attributed to the impaired clearance 
of triglyceride-rich lipoproteins (TRLs), including chylomicrons and 
VLDL remnants, during the postprandial period. This dysfunction 
involves several key mechanisms: (1) reduced lipoprotein lipase (LPL) 
activity due to genetic variations or acquired factors; (2) overexpression 
of apolipoprotein C-III (apoC-III), a potent inhibitor of LPL; and (3) 
delayed hepatic uptake of remnant particles mediated by apolipoprotein 
E (apoE) receptors (2–4). These metabolic abnormalities lead to 
prolonged circulation of atherogenic TRL remnants, which can infiltrate 
the arterial intima, promote foam cell formation, and trigger 
pro-inflammatory responses—all critical steps in atherogenesis (5, 6). 
Several prospective studies have demonstrated that elevated non-fasting 
serum TG levels increase the risk of atherosclerosis, ischemic stroke, and 
are an independent risk factor for coronary artery disease (7–10). Since 
individuals spend the majority of their time in a postprandial state, early 
detection and intervention for PHTG are crucial. However, the lipid 
tolerance test remains underdeveloped in clinical practice, with issues 
such as non-standardized high-fat meals and lengthy examination times. 
Given these pathophysiological mechanisms and the technical 
limitations of current diagnostic approaches, there is an urgent need to 
develop more efficient and standardized methods for PHTG 
identification. The development of a machine learning-based predictive 
model represents a scientifically rational approach because: (1) ML 
algorithms can integrate multiple clinical and biochemical variables that 
collectively reflect the complex pathophysiology of TRL metabolism; (2) 
they can identify non-linear relationships and interactions among risk 
factors that traditional statistical methods might miss; and (3) they offer 
the potential for developing personalized risk assessment tools that 
account for the multifactorial nature of PHTG (11, 12). Machine learning 
(ML) algorithms represent a novel approach to constructing predictive 
models for disease onset and progression (13). In this study, the PHTG 
population was screened out through the high-fat meal test in the healthy 
population to identify the independent risk factors for its occurrence. 
The ML method was applied to establish a predictive model, and the 
model was internally and externally validated, with the expectation that 
the application of this predictive model in clinical practice can enable 
earlier detection or early warning of PHTG and provide active lifestyle 
intervention and treatment. Avoiding the adverse outcomes thus caused 
plays an important role of moving the port forward in chronic 
disease management.

2 Materials and methods

2.1 Study design

Volunteers were recruited from the outpatient clinic of the 
Department of Endocrinology at Hebei Provincial People’s Hospital 
between January and December 2019. Inclusion criteria: (1) age 

≥18 years; (2) fasting triglyceride (TG) levels <1.7 mmol/L within the 
past month; (3) ability to comply with the study requirements; and (4) 
signed informed consent. Exclusion criteria: (1) vegetarian diet; (2) 
history of chronic conditions including hypertension, dyslipidemia, 
diabetes mellitus, cardiovascular or cerebrovascular diseases, thyroid 
disorders, malignancies, or related treatments; (3) pregnancy. The final 
analysis included 256 participants (90 males and 146 females). The 
sample size was determined based on a power calculation conducted 
prior to participant recruitment. Using GPower software (version 
3.1.9.7), with an effect size of 0.3, alpha error probability of 0.05, and 
power of 0.90, the minimum required sample size was estimated to 
be 210 participants. To account for potential attrition and missing data, 
we increased the target sample size by 20%, resulting in a final target of 
252 participants. Our enrolled sample of 256 participants therefore meets 
and slightly exceeds this requirement, ensuring adequate statistical 
power for the primary analyses. The external validation group consisted 
of 90 participants, including 57 males and 33 females. The model group 
was divided into the NFT group (n = 164) based on the 2019 Expert 
Panel Statement on PHTG (14), with fasting TG < 1.7 mmol/L and 
postprandial TG at 4 h < 2.5 mmol/L, and the PHTG group (n = 92), 
with fasting TG < 1.7 mmol/L but postprandial TG at 4 h ≥ 2.5 mmol/L 
(Figure 1). The study adhered to the Declaration of Helsinki and was 
approved by the Ethics Committee of Hebei Provincial People’s Hospital 
(approval number: 2018 no. 2). The study was registered with the China 
Clinical Trial Registry (registration number: ChiCTR1800019514).

2.2 Data collection

Two professional doctors collected and organized basic data such 
as weight, waist circumference (WC), body mass index (BMI), systolic 
blood pressure (SBP), and diastolic blood pressure (DBP), and the 
hospital’s physical examination center drew blood to test indicators 
such as blood lipids, blood sugar, and liver function.

2.3 High-fat meal tolerance test

Eligible volunteers received dietary guidance to avoid high-calorie 
and high-fat foods for 1 week prior to the high-fat meal tolerance test. 
The night before the test, participants were instructed to avoid oily 
foods for dinner and to refrain from drinking water after 22:00. On 
the morning of the test, volunteers fasted overnight and arrived at the 
hospital between 7:00 and 8:00 for fasting blood collection. 
Subsequently, they consumed a high-fat meal within 10 min. The 
meal, consisting of 1,500 kcal with a carbohydrate:fat:protein ratio of 
2:6:2, was prepared based on previous study protocols (15). Volunteers 
were permitted to drink water during the test, and the time of meal 
initiation was recorded. Blood samples were collected again 4 h post-
meal. During the test, participants were instructed not to consume any 
other food and to avoid strenuous physical activity.

2.4 Laboratory tests

Biochemical assays were performed using the Hitachi 7600 
automatic biochemical analyzer (Hitachi, Japan). Fasting blood 
glucose (FBG) was measured using the glucose oxidase method, total 
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cholesterol (TC) via the CHOD-PAP method, triglycerides (TG) using 
the GPO-PAP method, and low-density lipoprotein cholesterol 
(LDL-C) and high-density lipoprotein cholesterol (HDL-C) via the 
direct peroxidase method. Liver enzymes, including alanine 
transaminase (AST), aspartate transaminase (ALT), and gamma-
glutamyl transpeptidase (GGT), were also assessed.

2.5 Calculation of lipid-related indices in 
the fasting state

The triglyceride-glucose index (TyG) was calculated as: TyG = Ln 
[TG (mg/dL) × FBG (mg/dL)/2]. The visceral adiposity index (VAI) was 
calculated as: For males: VAI = WC(cm)/[39.68 + 1.88 × BMI (kg/
m2)] × [TG (mmol/L)/1.03] × [1.31/HDL-C (mmol/L)]; For females: 
VAI = WC (cm)/[36.58 + 1.89 × BMI (kg/m2)] × [TG (mmol/L)/0.81] ×  
[1.52/HDL-C (mmol/L)]. The atherogenic index of plasma (AIP) was 
calculated as: AIP = log [TG (mmol/L)/HDL-C (mmol/L).

2.6 Statistical methods

Data analysis and model construction were performed using SPSS 
26.0 and R Studio 2024.12.0 + 467 software. Normality of the data was 
assessed using the Shapiro–Wilk test (p > 0.05 indicating normal 
distribution). Normally distributed variables were expressed as mean 
± standard deviation (Mean ± SD), and group comparisons were 

performed using the independent samples t-test. Non-normally 
distributed data were expressed as median (interquartile range) [M 
(IQR)], and differences between groups were analyzed using the 
Mann–Whitney U test. Categorical data were presented as counts (%), 
and comparisons between groups were conducted using the chi-square 
test for unordered categorical data or the rank sum test for ordered 
categorical data.

Least Absolute Shrinkage and Selection Operator (LASSO) 
regression was employed to select predictors and determine the 
optimal λ value. Logistic regression (LR) was applied using the 
Bootstrap method (with 1,000 iterations) to establish a predictive 
model. Based on the results of the logistic regression, column-line 
graphs for predicting PHTG were constructed (16, 17).

The discriminatory ability of the predictive model was 
evaluated by the area under the receiver operating characteristic 
(ROC) curve (AUC). Model calibration was assessed using GiViTI 
calibration curves and the Hosmer–Lemeshow (H-L) test, which 
compares the predicted probabilities to actual observations. A 
p-value < 0.05 indicated significant deviation between the 
predicted and observed values, suggesting poor model calibration. 
Conversely, a p-value ≥ 0.05 indicated good calibration. Decision 
curve analysis (DCA) was used to assess the clinical utility of the 
model (18).

The model was further validated using an external validation 
dataset, and the AUC was calculated from the ROC curve. Model 
consistency and clinical utility were assessed through a combination 
of the GiViTI calibration curve, the H-L test, and the DCA.

FIGURE 1

Flow chart of the study.
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3 Result

3.1 Comparison of clinical data between 
the NFT and PHTG groups in the model 
group

Comparison of clinical parameters, including age, gender, BMI, 
WC, ALT, GGT, ALP, TC, TG4h, HDL-C, LDL-C, FBG, VAI, TyG, 
AIP, SBP, and DBP between the NFT and PHTG groups showed 
statistically significant differences (p < 0.05). However, the differences 
in AST levels between the two groups were not statistically significant 
(p > 0.05) (Table 1).

3.2 Screening of predictors for PHTG in a 
healthy population

To minimize the impact of multicollinearity among variables, 17 
variables with statistically significant differences in the univariate 
analysis were included in the LASSO regression (Figure 2A). Ten-fold 
cross-validation was applied, resulting in the identification of eight 
clinically significant predictors: gender, age, SBP, ALT, GGT, FPG, 
TyG, and AIP (Figure 2B).

3.3 Logistic regression model for predicting 
PHTG in a healthy population

Eight clinical variables—gender, age, SBP, ALT, GGT, FPG, TyG, 
and AIP—were included in the logistic regression model. Based on the 
results of multivariate analysis (Table 2), variables with p < 0.05 were 
selected for inclusion in the model, resulting in the following logistic 

regression equation: Logit(P) = −31.769 + 0.041 × Age − 0.910 ×  
FPG + 0.048 × AIP + 0.040 × TyG. The predictive model for PHTG 
occurrence in a healthy population was represented as a nomogram. 
Scores for each predictor were assigned according to specific scales on 
the column-line diagram, which are associated with their respective 
risk factors. These individual scores were then summed to generate an 
overall score, used to estimate the likelihood of PHTG. The overall 
score ranges from 0 to 200, with associated risk levels varying between 
10% and 90%. An elevated overall score indicates a higher risk of 
PHTG (Figure 3).

3.4 Assessing the discriminative ability and 
consistency of the model

The discriminative ability of the logistic regression model was 
evaluated using the ROC curve, resulting in an AUC of 0.894 (95% CI: 
0.856–0.931). The model demonstrated a Youden’s index of 64.8%, a 
sensitivity of 71.3%, a specificity of 93.5%, and an optimal cutoff value 
of 0.236 (Figure 4). Calibration of the model was assessed using the 
Hosmer–Lemeshow goodness-of-fit test, which yielded a Chi-square 
value of 11.308, with 8 degrees of freedom (df) and a p-value of 0.1849 
(p > 0.05). These results suggest that the model exhibits good 
predictive ability and high diagnostic value for predicting the 
occurrence of PHTG in a healthy population.

3.5 Assessing the clinical utility of the 
model

The DCA for the model was plotted. When the threshold probability 
exceeded 0, the model curve was positioned above the two extreme 

TABLE 1  Comparison of clinical data between the two groups of patients in the modeling group.

Variant NFT group (n = 164) PHTG group (n = 92) t or z or x 2

Age 30.00 (26.00, 52.00) 51.00 (35.25, 58.75) 4.598**

Gender 48.00 (29.3%) 42.00 (35.2%) 8.682*

BMI 23.50 (20.70, 26.08) 25.50 (23.58, 27.50) 4.251**

WC 80.11 ± 12.10 86.87 ± 9.34 4.637**

SBP 118.80 ± 14.67 125.92 ± 15.18 3.679**

DBP 74.43 ± 9.11 77.01 ± 9.35 2.158*

FPG 5.21 ± 0.50 5.40 ± 0.52 2.754*

TG 0.84 (0.67, 1.02) 1.29 (1.08, 1.50) 9.718**

TG4h 1.54 (1.17, 1.94) 3.27 (2.81, 3.80) 13.271**

HDL-C 1.38 ± 0.31 1.24 ± 0.26 3.669**

LDL-C 2.63 (2.18, 3.13) 2.93 (2.58, 3.56) 3.873**

TC 4.33 (3.70, 4.94) 4.55 (4.13, 5.34) 2.758*

TyG 8.15 ± 0.32 8.60 ± 0.25 12.450**

VAI 1.10 ± 0.46 1.71 ± 0.51 9.803**

AIP −0.20 ± 0.17 0.02 ± 0.13 11.766**

ALT 14.00 (10.00, 20.00) 17.00 (13.00, 23.00) 2.380*

AST 19.00 (17.00, 22.00) 19.50 (17.00, 23.00) 1.043

GGT 14.00 (11.00, 20.00) 19.00 (14.00, 26.00) 4.164**

ALP 64.42 ± 17.01 70.50 ± 18.98 2.631*

*p < 0.05, **p < 0.01; data in the table are expressed as cases (%), M (P25, P75), or ±x s.
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value lines (Figure 5), indicating that the model predicts the benefits of 
timely clinical interventions. This suggests that the model holds good 
clinical value in guiding interventions for patients at risk of PHTG.

3.6 Internal validation of the model

The model was internally validated using the Bootstrap method 
with 1,000 repeated samplings. The mean area AUC obtained from 
these samplings was 0.900 (95% CI: 0.841–0.920), with an AUC 
greater than 0.7, indicating that the model effectively differentiates the 
PHTG population within the healthy population. The GiViTI 
calibration curve, shown in Figure 6, demonstrates that the model 
maintains high accuracy after calibration. The calibration curves 
indicate that the original and calibrated curves closely align, both 
effectively predicting PHTG in the healthy population (Figure 6).

3.7 External validation of the model

The data from the external validation group were applied to the 
previously constructed logistic regression model to calculate the risk 
values for the occurrence of PHTG in the healthy population. Based on 
a critical risk threshold of 0.389, individuals in the validation group were 

classified as at risk for PHTG if their risk value was ≥0.236, and not at 
risk if the risk value was <0.236. The model’s discriminatory ability and 
calibration were evaluated using the ROC curve and the Hosmer–
Lemeshow goodness-of-fit test. The results showed an AUC of 0.903 
(95% CI: 0.842–0.964), with a sensitivity of 85.2%, specificity of 84.2%, 
and a Youden’s index of 69.4% (Figure 7). The Hosmer–Lemeshow test 
showed a Chi-square value of 13.326, with 8 degrees of freedom (df) and 
a p-value of 0.101 (p > 0.05). These results indicate that the model has 
strong predictive power and high diagnostic value for PHTG occurrence 
in the healthy population. The GiViTI calibration curve, shown in 
Figure 8, demonstrates that the original curve aligns closely with the 
calibrated curve, suggesting both models effectively predict PHTG in the 
healthy population. Additionally, the DCA curve, shown in Figure 9, 
suggests that the model provides clinically meaningful predictions of 
PHTG risk, with timely clinical interventions being beneficial.

4 Discussion

PHTG refers to a metabolic state characterized by abnormally 
elevated TG levels following a meal, reflecting the body’s 
insufficient ability to regulate lipid metabolism after fat intake. 
PHTG is closely associated with insulin resistance and visceral 

FIGURE 2

Risk factor screening for PHTG in a healthy population. (A) Lasso regression model cross-validation plot. (B) Plan of predictor coefficients.

TABLE 2  Results of logistic regression analysis for predicting PHTG in a healthy population.

Variant β SE p-value OR 95% CI

Gender −0.416 0.439 0.343 0.660 0.317–1.353

Age 0.041 0.014 0.004 1.042 1.018–1.067

SBP 0.009 0.013 0.486 1.009 0.988–1.030

ALT −0.038 0.020 0.055 0.963 0.930–0.991

GGT 0.031 0.023 0.185 1.032 0.994–1.074

FPG −0.910 0.424 0.032 0.403 0.197–0.799

AIP 0.048 0.022 0.031 1.049 1.012–1.089

TyG 0.040 0.012 0.001 1.041 1.021–1.063
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fat accumulation (19). Following a meal, TG levels gradually 
increase, peak at 3–4 h, and slowly return to baseline within 
6–8 h (20). Given that most of the day is spent in the postprandial 
state, with a relatively short fasting period, individuals are 
frequently exposed to the postprandial TG cycle. Non-fasting/
postprandial TG levels are independent risk factors for coronary 
artery disease, stroke (7), and all-cause mortality in type 2 
diabetes (8). Elevated postprandial TG accelerates atherosclerosis 
progression by promoting endothelial dysfunction, LDL 
oxidation, and inflammatory responses (21). PHTG induces 
chronic inflammation in adipocytes through lysosomal 

dysfunction triggered by TG-rich lipoproteins and impaired 
autophagic flow in an mTOR-dependent manner (9). Moreover, 
PHTG is associated with increased hepatic VLDL overproduction 
and lipoprotein lipase dysfunction (22). Consequently, early 
detection and intervention for PHTG are critical. The assessment 
and diagnosis of PHTG typically rely on the lipid tolerance test, 
but this approach is not widely used in clinical practice for 
several reasons: (1) the test requires blood sample collection after 
consuming a high-fat diet, followed by dynamic postprandial 
lipid assessments, which is complex, time-consuming, and 
difficult for patients to adhere to; and (2) there is no standardized 
high-fat meal, and the fat content and calorie values in study 
meals vary, complicating quality control. Therefore, how to assess 
the risk of PHTG through more convenient methods has become 
a research hotspot. From a clinical standpoint, the challenges in 
implementing lipid tolerance tests limit the early identification 
of individuals with PHTG, who remain undiagnosed under 
current fasting-based screening protocols. This gap is particularly 

FIGURE 3

PHTG early prediction model nomogram.

FIGURE 5

DCA curves for establishing a predictive model for the occurrence of 
PHTG in the healthy population of the model group.

FIGURE 4

ROC curves for the modeling group.
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concerning given that postprandial dyslipidemia contributes to 
residual cardiovascular risk even in statin-treated patients (23). 
Clinicians are often faced with patients who have normal fasting 
lipids yet present with premature atherosclerosis, suggesting 
underlying postprandial abnormalities. Therefore, a practical and 
reliable tool for identifying PHTG could significantly enhance 
risk stratification and allow timely intervention through lifestyle 
modification or pharmacological treatments such as fibrates or 
omega-3 fatty acids, which specifically target postprandial 
hypertriglyceridemia (24).

Recent advancements in lipid metabolism research have led 
to the use of lipid-related indices as practical and effective tools 
for predicting and screening metabolic syndrome, insulin 
resistance, and cardiovascular diseases (25, 26). Our previous 
study identified significant increases in the TyG, VAI, and AIP in 
PHTG patients, all of which were positively correlated with 
fasting TG and 4-h TG levels after a high-fat meal. These indices 

showed high predictive value for PHTG. The TyG index, 
proposed by Guerrero-Romero in 2010 (27), assesses insulin 
resistance by combining fasting TG and glucose levels. It is highly 
correlated with the “gold-standard” insulin clamp test and can 
predict the risk of metabolic syndrome and type 2 diabetes (28). 
In the context of PHTG, the TyG index serves as an important 
reference for early screening, reflecting the impact of insulin 
resistance on lipid metabolism. In this study, incorporating TyG 
provided the model with multidimensional information on 
visceral lipid metabolism, significantly enhancing its ability to 
assess PHTG risk. The VAI, developed by Amato in 2010 (29), is 
a composite index combining waist circumference, BMI, TG, and 
HDL-C, initially used as a surrogate for visceral obesity (30). It 
has since been shown to be associated with insulin resistance, 
metabolic syndrome, cardiovascular risk (31), and the 
development of non-alcoholic fatty liver disease (NAFLD), with 
high VAI levels increasing NAFLD risk (32). The AIP, proposed 
by Dobiásová in 2000 (33), reflects lipid metabolism disorders by 
assessing both elevated TG and decreased HDL-C levels, serving 
as a marker for atherosclerosis (34). Studies have shown that AIP 
is positively correlated with the proportion of small, dense LDL 

FIGURE 6

GiViTI calibration curves for modeling group logistic regression 
models.

FIGURE 7

ROC curve for external validation group.

FIGURE 8

GiViTI calibration curves of logistic regression model for external 
validation group.

FIGURE 9

DCA curves of the predictive model for the occurrence of PHTG in 
the healthy population of the external validation group.
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particles, a major risk factor for atherosclerosis (35). AIP is 
widely used to assess cardiovascular risk in patients with 
coronary heart disease, chronic kidney disease, and metabolic 
syndrome (36–38). The integration of these indices into a 
nomogram model offers a clinician-friendly tool that can 
be  readily applied in outpatient settings without requiring 
postprandial testing. For example, a patient with elevated TyG 
and AIP values—even in the presence of normal fasting TG—
should raise suspicion of PHTG and prompt further evaluation 
or preventive measures. This approach aligns with recent 
guidelines emphasizing non-traditional risk markers for 
comprehensive cardiovascular risk assessment (39). Moreover, 
identifying high-risk individuals early allows for tailored 
interventions, such as dietary counseling focused on low-glycemic 
and low-fat intake, which has been shown to ameliorate 
postprandial lipemia (40).

In this study, logistic regression analysis of variables such as 
age, gender, SBP, ALT, GGT, FPG, TyG, and AIP revealed 
significant differences between the PHTG and normal lipid 
groups. A risk nomogram model was developed, including age, 
FPG, TyG, and AIP as predictors. The model was internally and 
externally validated, demonstrating excellent differentiation 
ability, with an AUC of 0.894 (95% CI: 0.856–0.931) for the model 
group and 0.903 (95% CI: 0.842–0.964) for the validation group. 
The GiViTI calibration curve and Hosmer–Lemeshow test 
confirmed that the model had good calibration and consistency, 
suggesting its potential for predicting PHTG risk in healthy 
populations. The DCA indicated high clinical utility, making it 
valuable for screening high-risk patients and aiding in the 
prevention and treatment of PHTG.

Limitations: (1) The study lacks multicenter data, and the overall 
sample size is small, highlighting the need for larger studies; (2) The 
outcome variable for PHTG was not dichotomized (i.e., progressed to 
PHTG vs. not progressed), and future research should stratify this 
variable; (3) The study design is retrospective, which may introduce 
bias. Future prospective validation studies with extended follow-up 
are planned to improve the model.

5 Conclusion

This study developed a predictive model for PHTG designed to 
help distinguish affected individuals from those with normal lipid 
levels. As a practical alternative to more complex lipid tolerance tests, 
this tool may support early identification and personalized 
intervention in high-risk populations, potentially contributing to 
improved preventive strategies for PHTG-related 
cardiometabolic diseases.
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