AUTHOR=Xu Zeyu , Han Yu , Chen Shuai , Zhao Dianbo , Yao Huanli , Hao Jiale , Li Junguang , Li Ke , Li Shengjie , Bai Yanhong TITLE=Research on non-destructive detection of chilled meat quality based on hyperspectral technology combined with different data processing methods JOURNAL=Frontiers in Nutrition VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2025.1623671 DOI=10.3389/fnut.2025.1623671 ISSN=2296-861X ABSTRACT=This study utilized hyperspectral technology in conjunction with chemometric methods for the non-destructive assessment of chilled meat quality. Average spectra were extracted from regions of interest within hyperspectral images and further optimized using seven preprocessing techniques: S-G, SNV, MSC, 1st DER, 2nd DER, S-G combined with SNV, and S-G combined with MSC. These optimized spectra were then incorporated into PLSR and BPNN models to predict TVB-N and TVC. The results demonstrated that the PLSR model employing S-G smoothing in combination with SNV preprocessing yielded optimal predictions for TVB-N (Correlation coefficient = 0.9631), while the integration of S-G smoothing with MSC preprocessing achieved the best prediction for TVC (Correlation coefficient = 0.9601). This methodology presents a robust technical solution for rapid, non-destructive evaluation of chilled meat quality, thereby highlighting the potential of hyperspectral technology for accurate meat quality monitoring through precise quantification of TVB-N and TVC.