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Introduction: Tropomyosin (TM) is the primary allergen in Litopenaeus 
vannamei, which usually causes allergic reactions that may be health or even life-
threatening for consumers. Therefore, exploring the sensitization mechanism is 
of great significance for the prevention and treatment of tropomyosin allergy.

Methods and results: In this study, TM sensitization models were using Balb/c 
mice, Caco-2 cells and RBL-2H3 cells to reveal the sensitization effect. The results 
of ELISA and RT-qPCR showed that TM can exacerbate the allergic reaction by 
reducing the mRNA expression of tight junction (TJ) proteins (such as ZO-1, 
claudin-3, Occludin) in the jejunum, destroying the intestinal barrier function, 
increasing the permeability, and promoting the release of inflammatory factors 
(such as IL-8, TNF-α) and histamine. The pathological results of intestinal tissue 
sections showed that TM also caused an increase in intestinal inflammatory 
infiltration in mice. RNA-seq analysis revealed that key genes (CCL2, HSP1A, 
GM-CSF, etc.) and PI3K/Akt signaling pathway were involved in the sensitization 
process. In vitro experiments were conducted to construct TM sensitized Caco-
2 and RBL-2H3 cell models at a dose of 100 mg/mL. The results indicated that 
TM upregulated the expression of phosphorylated PI3K/ Akt and NFκB pathways 
in Caco-2 cells, further damaged the TJ structure of intestinal epithelial cells and 
promoted the release of inflammatory factors. The RBL-2H3 cell degranulation 
assay indicated that TM could directly stimulate the release of TNF-α from mast 
cells.

Conclusion: The above experimental results indicated that PI3K/Akt signaling 
pathways play a crucial role in the induction of TM allergic responses, which 
provides a theoretical basis for the occurrence, development and prevention of 
TM allergy.
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1 Introduction

Crustaceans are widely recognized as valuable source of high-quality 
nutrition (1, 2), particularly due to high content of proteins and fatty acids 
(3). However, they are also among the nine most common food allergens, 
with shrimp and crabs being significant contributors (4, 5). The prevalence 
of crustacean allergy is estimated to affect between 0.5 and 2.5% of the 
general population. A prior study indicated that the global prevalence of 
shrimp allergy is 8% in children and 10% in adults (6). Notably, as the 
most productive species in aquaculture, the increased consumption of 
Litopenaeus vannamei has been associated with an increase in allergy 
cases [FAO, 2024; (7)]. Tropomyosin (TM) is the primary allergen in 
L. vannamei (8). At present, most of the research on TM sensitization is 
focused on exploring its allergenic key epitopes (9). Researchers have tried 
to reduce protein sensitization by modifying known epitopes, but this 
method is difficult to be widely used in the food processing industry (10). 
Therefore, researchers have shifted their focus to investigate the 
sensitization mechanisms of TM, aiming to inhibit the critical signaling 
pathways using innovative processing techniques to decrease TM 
sensitization (11).

TM is a long, filamentous protein composed of two identical 
α-helical chains that are intertwined (12, 13). It has an average length 
of approximately 284 amino acid residues and a molecular mass 
ranging from 34 to 38 kDa (14, 15). TM allergy is a type of 
hypersensitivity mediated by Immunoglobulin E (IgE) (16, 17), which 
possesses B cell epitopes on its surface that could bind to specific 
antibodies (9). This interaction triggers the immune system to activate 
B cells, leading to the production of IgE antibodies (18), which then 
bind to the FcεRI receptor on mast cells or granulocytes (19). This 
binding induces degranulation and the release of histamine and 
cytokines (20). Various signaling pathways such as Mitogen-Activated 
Protein Kinase (MAPK) pathway (21, 22) and the Notch signaling 
pathway are reported to be  involved in the pathophysiology of 
allergies. The Notch pathway enhanced FcεRI-mediated MAPK 
phosphorylation, which significantly results in an imbalance of the 
Th1/Th2 ratio and abnormal immune responses in the body, thereby 
promoting the process of food allergy (23, 24). It is reported that 
allergens could activate ERK1/2 initiating Th2 cytokine transcription, 
ultimately leading to the manifestation of allergic symptoms (25). Xu 
et al. (26) has found that TM allergy was associated with upregulation 
of innate (cochlin) and adaptive immunomodulator (IGKV-3). 
However, at present, no studies have pointed out the key signaling 
pathways and key genes of TM sensitization, which would be not 
beneficial for the prevention and treatment of TM allergy. This study 
combined in vivo RNA-seq analysis of signaling pathways with in vitro 
investigations using Caco-2 and RBL-2H3 cell models to elucidate the 
sensitization mechanism of tropomyosin.

2 Materials and methods

2.1 Reagents

L. vannamei were purchased alive from the Xiashan wholesale 
Market, Zhanjiang, China. Dithiothreitol (DTT) was obtained from 
Aladdin (Shanghai, China). 3-(4, 5)-dimethylthiahiazo (−z-y1)-3,5-di-
phenytetrazoliumromide (MTT) and 4′,6-diamidino-2-phenylindole 
(DAPI) were purchased from Sigma (MO, USA). The BCA protein assay 

kit and Trizol were purchased from Thermo Fisher (MA, USA). ELISA 
kits for IL-8 and TNF-α were acquired from R&D Systems (MN, USA). 
p-PI3K (Cat:42285), p-Akt (Cat: 4058s), P-NF-kB (Cat: 3033T) and 
NF-kB (Cat:82425) antibodies were obtained from CST (MA, USA). 
Polyvinylidene fluoride (PVDF) membranes were purchased from 
Bio-Rad (CA, USA). Fetal bovine serum and non-essential amino acids 
were purchased from Gibco (NY, USA). Minimal Essential Medium 
(MEM) were purchased from HyClone (UT, USA). All other reagents 
used in this study were of analytical grade.

2.2 Animals

Female Balb/c mice (18–22 g) were obtained from SPF 
Biotechnology Co., Ltd. (Beijing, China) and housed in a specific 
pathogen-free (SPF) animal facility. All animal experiments were 
conducted in strict accordance with the guidelines of the Animal 
Center at Yangzhou University (Approval No. 202408002). The mice 
were provided with ad libitum access to food and water.

2.3 Cell culture

The Caco-2 and RBL-2H3 cell lines were obtained from the China 
Center for Type Culture Collection (CCTCC). Caco-2 cells were 
cultured in MEM medium supplemented with 10% (v/v) FBS and 1% 
antibiotic-antimycotic, in an atmosphere of 5% CO2 at 37°C. RBL-2H3 
cells were cultured in MEM, supplemented with 10% (v/v) FBS, 1% 
antibiotic-antimycotic, and 1% NEAA in an atmosphere of 5% CO2 at 
37°C. After thawing the two cell lines, the third generation can 
be  used for modeling, and they need to be  discarded after 
30 generations.

2.4 Isolation and purification of TM

One gram of shrimp meat was mixed with 1 mL of 0.9% saline 
solution (w/v). The fat from the shrimp meat was extracted using acetone, 
at four times the volume of saline, to produce acetone powder. Total 
protein was subsequently extracted from the shrimp meat using a 
0.05 mmol/L Dithiothreitol (DTT) solution. Ten milliliters of DTT 
solution were added to 1 g of acetone powder, and the mixture was 
incubated for 4 h before centrifuging to collect the supernatant at 4°C 
(8,000 × g, 15 min). The pH of the supernatant was adjusted to 4.5 using 
1 mol/L HCl and incubated at 20°C for 1 h. The mixture was then 
centrifuged, and the supernatant was discarded. The resulting precipitate 
was dissolved in 1 mmol/L NaHCO3 and mixed with an equal volume of 
saturated ammonium sulfate solution. The mixture was allowed to 
incubate for 4 h at 4°C, and the precipitate was collected by centrifugation. 
The precipitate was dissolved in 10 mL of 20 mmol/L Tris–HCl. Finally, 
the crude protein was filtered through a dextran gel G75 column (10 mL 
column volume) to obtain a high-purity TM.

2.5 TM-induced mouse food allergy model

TM-induced mouse food allergy model was established according 
to previous literature (27). Thirty-two mice were randomly assigned 
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to four groups: phosphate-buffered saline (PBS) group, TM low-dose 
(6 mg/kg) group, TM medium-dose (12 mg/kg) group, and TM high-
dose (24 mg/kg) group. The TM treatment groups received weekly 
injections for four weeks. From weeks 5 to 8, the protein dose was 
doubled, and aluminum hydroxide adjuvant was added at a 3:1 ratio 
of protein to adjuvant. After the final treatment, the mice were 
euthanized the following day. The thymus and spleen were harvested 
and weighed to calculate the thymus and spleen indices, and the 
jejunum was collected for further analysis.

2.6 Histological analyses

The intestinal tract was preserved in 4% paraformaldehyde, then 
dehydrated and embedded in paraffin. It was sectioned into 5 μm 
slices, placed on slides, and dried in an oven at 75°C for 2 h. The dried 
sections were dewaxed in xylene twice for 10 min each and then 
immersed in a series of alcohol solutions (100, 95, 85, 80, 75%) for 
5 min each. After staining with hematoxylin–eosin (H&E), periodic 
acid-Schiff (PAS), and Alcian blue, the sections were rinsed with 
running water. The sections were then dehydrated using the same 
gradient of alcohol (75, 80, 85, 95, 100%) for 5 min each and soaked 
in xylene twice for 10 min each. Micrographs were captured using 
light microscopy at a wavelength of 555 nm and viewed using 
CasViewer (Scope AI). Villus length and crypt depth were assessed 
through H&E staining, while the extent of intestinal inflammatory 
infiltration was evaluated by analyzing the distribution of goblet cells 
using PAS and Alcian blue staining.

2.7 RNA-seq analysis

The intestines of mice were frozen using liquid nitrogen and then 
grounded. RNA extraction was performed by adding the tissue to Trizol 
and incubating on ice for 10 min according to previous literature (28). 
One hundred microliters of chloroform were added to the Trizol mixture 
and left on ice for 5 min before centrifugation to remove the supernatant 
at 4°C (12,000 × g, 15 min). The same volume of isopropyl alcohol was 
then added, mixed thoroughly, and left at 20°C for 10 min. The 
supernatant was discarded by centrifugation at 4°C (12,000 × g, 15 min). 
The RNA was washed with 1 mL of 75% ethanol to remove excess 
impurities, and the precipitate was collected by centrifugation at 4°C 
(12,000 × g, 15 min). The centrifuge tubes containing sediment were 
placed in a clean fume hood to allow the alcohol to evaporate. After 
drying, the precipitate was dissolved in 30 μL of 0.1% DEPC-treated 
water. The extracted RNA was examined for purity and quantity using 
RNA agarose gel, after which the RNA was used for subsequent 
experiments. Gene expression levels were quantitatively determined using 
RNA-seq by Expectation–Maximization (RSEM). Differentially expressed 
genes between the two groups were identified using a rigorous algorithm 
(DEGseq). Gene Ontology (GO) and pathway annotation, as well as 
enrichment analysis, were conducted based on the OmicShare.

2.8 Cell viability

The cell viability was determined using MTT assay (29). Cells 
were seeded into 96-well plates at a density of 3 × 104 cells per well and 

cultured overnight (37°C, 5% CO2). The cells were treated with various 
concentrations (25, 50, 100 μg/mL) of TM for 24 h. Following 
treatment, 100 μL of MTT solution (0.5 mg/mL) was added, and the 
cells were incubated at 37°C for 4 h. Subsequently, MTT stop solution 
was added, and the cells were incubated overnight. The absorbance 
was measured at 550 nm, and the cell viability was calculated.

2.9 IL-8, TNF-α and histamine release

The eyeball blood of the mouse was centrifuged at 4°C (2,500 rpm, 
5 min), and the supernatant was stored at −80°C for future use. IL-8, 
histamine in mouse serum, and TNF-α in the supernatant of RBL-2H3 
cells were detected using commercial ELISA kits (D8000C; E-EL-
0032; MTA00B-1; R&D Systems), following the 
manufacturer’s instructions.

2.10 Real-time qRT-PCR

RNA was extracted using the Trizol method, and cDNA was 
synthesized using a reverse transcription kit (Takara, Japan). The 
samples were stored at −20°C for future use. Specific primers listed 
in Table 1 were designed with SnapGene 4.2.4 and their specificities 
were confirmed by blasting against the genome using http://www.
ncbi.nlm.nih.gov/tools/primer-blast. All primers for qRT-PCR were 
synthesized by Shanghai Bioengineering Co., Ltd. (Shanghai, 
China). The relative expression levels were evaluated using the 
2 − ΔΔCt method.

2.11 Immunofluorescence staining

Caco-2 cells were seeded into a 12-well plate at a density of 5 × 105 
cells per well. After 24 h, the cells were treated with 100 μg/mL TM for 
12 h. Subsequently, the cells were incubated overnight with 300 μL of 
primary antibodies: occludin (1:2500) and claudin-1 (1:250). 
Following this, 300 μL of goat anti-rabbit Alexa 488 and goat anti-
mouse Alexa 555 (1:1200) secondary antibodies were incubated for 
1 h. Ten-microliters of 1 mg/mL 4′,6-Diamidino-2′-phenylindole 
(DAPI) solution were added before sealing the wells. Images were 
captured using fluorescence microscopy Nikon Ts2.

2.12 Western blotting

The tissues were ground with liquid nitrogen and then lysed in 
lysis buffer containing protease inhibitors and the content was 
quantified using a BCA kit. The proteins were separated by 10% w/v 
polyacrylamide gel electrophoresis and transferred onto PVDF 
membranes. The membranes were then blocked and incubated 
overnight at 4°C with 1 mL of primary antibodies against p-PI3K, 
p-Akt, PI3K, and Akt (diluted 1:1000). Samples were rinsed three 
times with 1 × Tris Buffered Saline with Tween 20 (TTBS) for 10 min. 
After washing, HRP-conjugated secondary antibodies were applied at 
a dilution of 1:2500. Protein bands were visualized using an ECL 
detection kit and captured with a Tanon 5,200 multi gel 
imaging system.
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2.13 Statistical analysis

All analyses were carried out in triplicate, and the results were 
expressed as means ± standard deviation (SD). The graphpad prism 
software 10.1.2 was utilized for plotting and conducting one-way 
analysis of variance. p < 0.05 was considered statistically significant.

3 Results and discussion

3.1 Phenotypic characteristics of 
TM-sensitized mice

Strategies for experimental design in mice were showed in 
Figure  1A. Firstly, the construction of the sensitization model is 
generally divided into two stages, namely the sensitization stage and 

the excitation stage. The sensitization stage is when the allergen acts 
on the body for the first time through certain pathways. The body 
develops a specific immunity to this substance and reaches a certain 
level, thus being in a hypersensitive state. The excitation stage refers to 
the specific pathological immune response that occurs when the body 
is exposed to the substance again. After the body first comes into 
contact with an allergen, there is an incubation period. Generally 
speaking, the incubation period is relatively short, sometimes taking 
3 to 4 weeks or even longer. Referring to the mouse sensitization 
model constructed by Zhang et al. (30) and Luo et al. (31), the first 
four weeks were selected as the sensitization stage in this study. During 
the excitation stage, a doubled dose was injected into the mice. The 
mice would show changes such as scratching, rough fur, and weight 
loss. The symptoms of the mice were observed after each injection, 
and the weight of the mice was measured the day after the injection. 
At the eighth week, it was found that most of the mice had lost weight 

TABLE 1 Primer sets for RT-qPCR

Primers Sequences (5’-3’)

Caludin-3*
Forward TCATCGTGGTGTCCATCCTGCT

Reverse AGAGCCGCCAACAGGAAAAGCA

Caludin-1
Forward AGCACCGGGCAGATACAGT

Reverse GCCAATTACCATCAAGGCTCG

ZO-1*
Forward TGGTGTCCTACCTAATTCAACTC

Reverse CGCCAGCTACAAATATTCCAACA

ZO-1
Forward ACCCGAAACTGATGCTGTGGATAG

Reverse AAATGGCCGGGCAGAACTTGTGTA

Occludin*
Forward ACAGAGCAAGATCACTATGAGACA

Reverse TGTTGATCTGAAGTGATAGGTGGA

Occludin
Forward ATGTCCGGCCGATGCTCTC

Reverse TTTGGCTGCTCTTGGGTCTGTAT

OCLN*
Forward TTGGATAAAGAATTGGATGAC

Reverse ACTGCTTGCAATGATTCTTCT

JAM-1*
Forward AACACACTGGGACATACACTT

Reverse CGATGAGCTTGACCTTGACCT

IGHV3-23
Forward GAGGTGCAGCTGTTGGAGTC

Reverse TGAGGAGACAGTGACCAGGG

HSP1A
Forward GGTGGTGCAGTCCGACATG

Reverse TTGGGCTTGTCGCCGT

CD36
Forward TGGTCAAGCCAGCTAGAAA

Reverse TCCCAAGTAAGGCCATCTC

GM-CSF
Forward GGCTAAGGTCCTGAGGAGGAT

Reverse ACCTCTTCATTCAACGTGACA

CCL2
Forward TCCCAATGAGTAGGCTGGAG

Reverse TCTGGACCCATTCCTTCTTG

GAPDH*
Forward TCCACCACCCTGTTGCTGTA

Reverse ACCACAGTCCATGCCATCAC

GAPDH
Forward CCATCTTCCAGGAGCGAGAC

Reverse GGTCATGAGCCCTTCCACAA

*This symbol indicates the primers are derived from the human homologous, while the others are from the murine sequence.
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and were restless. According to the symptoms of the mice, they were 
sacrificed after injection at the eighth week.

After IgE binding of antibodies in serum, the FCεR receptor 
stimulates mast cells and basophils to degranulation, releasing 
histamine and other substances to promote allergy (32). In this 
experiment, indirect ELISA was used to detect the IgE binding 
ability of TM. As shown in Figure 1B, the IgE binding ability of TM 
protein in the serum of TM group was 1.3–1.8, which was 
significantly higher than that of the control group (0.35) 
(p < 0.0001). This indicates that IgE binding is active in allergic 
mice, thus promoting the occurrence of allergic reactions. 
Histamine levels mediate allergic reactions, increase capillary 
permeability, and act as a neurotransmitter to regulate pain and 
itchy nerves, which is an important indicator to evaluate the severity 
of allergies (33). Ando et al. (34) study found that histamine can 
interact with some IgE molecules to amplify intestinal inflammation, 
this experiment, the TM mice after high dose sensitization of 
histamine release quantity increased from 42 ng/mL to 85 ng/mL 
(Figure 1C), which is similar to his research.

Previous studies have proposed the “epithelial barrier 
hypothesis” of allergy, which suggests that the intestinal barrier is 
closely related to food allergy (35–37). Mice with a protected 
intestinal barrier had less infiltration of neutrophils in the gut and 
fewer food allergies (38). In contrast, downregulation of TJ proteins 
expression and increased epithelial permeability led to a significant 
increase in allergy (39). In this study, RT-qPCR and intestinal 
histopathological sections were used to further elaborate the effects 
of TM on the intestinal tract of mice. The results of RT-qPCR were 
shown in Figure  1D. After TM treatment, mRNA levels of TJ 
proteins ZO-1, OCC, and Claudin-3  in mouse jejunum were 
significantly decreased (p < 0.0001). In general, mRNA levels are 
positively correlated with protein levels. Therefore, the results 
indicated that TJ in the gut of mice is reduced. These findings align 
with Jia et  al. (35). However, different from his focus only on 
occludin, this study focused on occludin, Claudin and the 
perimembrane protein family (ZO proteins), demonstrating that 
the reduction of TJ is related to a variety of proteins from a more 
comprehensive perspective, which provides a new perspective for 
the damage of intestinal barrier in allergic mice.

Intestinal histopathological sections are the most intuitive way 
to diagnose intestinal diseases (40). Different from previous 
pathological sections, this study not only used H&E to pay attention 
to the changes in villus length and inflammatory infiltration of 
mouse jejunum tissue, but also used PAS and Alcian blue staining 
to observe the changes in the number of goblet cells. The staining 
results were shown in Figure 1E. Compared with the control group, 
H&E results showed that the length of jejunal villi was significantly 
shortened, and inflammatory infiltration was increased in the TM 
group. PAS and Alcian blue results showed that the number of 
goblet cells in the jejunum of the TM group was significantly 
increased. Intestinal villi are related to normal physiological 
functions such as nutrient absorption (41). The shortened villi 
showed that TM treatment disrupted the normal absorption and 
metabolism of intestinal substances, promoted the occurrence of 
intestinal inflammation and accelerated the occurrence of allergic 
reactions. Goblet cells respond to cytokines during intestinal 
inflammation and proliferate to secrete more mucus (42). Therefore, 
the increase in the number of goblet cells in the TM group indicates 

that TM can promote the release of intestinal inflammatory factors 
in mice, thus promoting intestinal inflammation, which is also 
consistent with the results in Figure 1C.

These showed that TM treatment could increase the inflammatory 
factors in the serum of mice, leading to pruritus and other allergic 
phenomena in mice. In addition, TM treatment also resulted in 
decreased expression of tight binding proteins in the digestive tract of 
mice, so that more inflammatory factors could pass through the 
intestinal wall into the body, and intestinal inflammatory infiltration 
increased, which also aggravated allergic reactions.

3.2 Analysis of the jejunum transcriptome 
following sensitization and challenge to 
TM in mice

One of the most common applications of RNA-seq data is 
Differentially expressed genes (DEGs) analysis (43). In this study, the 
transcriptome changes of mouse jejunum sensitized by tropomyosin 
were detected, and more than 200 DEGs were selected. The pathway 
data of DEGs were sorted out, and 20 signaling pathways with the 
highest degree of enrichment were finally obtained (Figure 2A). All 
enrichment pathways are summarized and classified according to 
secondary structure, they are more enriched in the immune system 
and signal transduction (Figure 2B). Fisher algorithm was used to 
analyze the enrichment of biological process, cellular component 
and molecular function of differential genes, which showed the GO 
nodes of gene enrichment more intuitively. The results show that 
cellular process enriched the most significant differential genes 
(Figure 2C).

3.3 Exploration of key sensitizing genes 
and pathways in the jejunum of mice after 
TM sensitization and challenge

According to the results of DEGs, Gene Ontology (GO) 
enrichment results and Kyoto Encyclopedia of genes and Genomes 
(KEGG) enrichment results, combined with literature review, five 
DEGs were finally obtained, including Heat Shock Protein Family 
A (HSP1A), Granulocyte-Macrophage Colony-Stimulating Factor 
(GM-CSF), Immunoglobulin Heavy Variable 3–23 (IGHV3-23) 
(44), Platelet glycoprotein 4 (CD36), and C-C motif chemokine 
ligand 2 (CCL2). When CCL2 binds to the receptor Chemokine 
receptor 2 (CCR2), it will activate PI3K/Akt and MAPK/p38. CCL2 
participates in calcium ion influx by activating these signaling 
pathways and plays a crucial role in immune defense (45). CD36 
has the function of signal transduction. In response to extracellular 
signals, CD36 assembles and interacts with other membrane 
receptors to form different signal complexes. The signal complex 
then transmits the signal to various downstream effect molecules, 
including MAPK and AMPK. The activation of these effector 
factors leads to the generation of ROS and the activation of NF-κB, 
resulting in different cellular responses, such as inflammation, 
immune activation, and cell death (46). HSP1A stimulates 
neutrophils to release chemokines CD14 and TLR2. The activation 
of TLR2 upregulates the level of IFN-γ in the body, thereby 
promoting allergic reactions (47). GM-CSF particularly promotes 
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FIGURE 1

TM leads to the increase of serum inflammatory cytokines and the destruction of the intestinal barrier. (A) Mice allergy test protocol. (B) Serum levels of 
IgE in mice. (C) Histamine levels in serum of mice. (D) The relative expression of TJ proteins in mouse jejunum. (E) H&E, PAS, Alcian Blue of the 
intestinal of mice. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

https://doi.org/10.3389/fnut.2025.1623971
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2025.1623971

Frontiers in Nutrition 07 frontiersin.org

the proliferation and maturation of neutrophils, and these cells can 
produce pro-inflammatory cytokines such as TNF-α, IL-6 and 
IL-12 (48). To detect the relationship between the changes of these 
five key genes and TM sensitization, RT-qPCR was used to reveal 
the changes of mRNA expression levels of key genes in the jejunum 
of mice after TM treatment. The results showed that the expressions 
of CCL2, HSP1A, GM-CSF, IGHV3-23 and CD36 in the TM group 
were significantly up-regulated (Figure 3A), which was consistent 
with the results of RNA-seq, indicating that CCL2, HSP1A, 

GM-CSF, IGHV3-23 and CD36 were the key genes of TM 
sensitization. This provided a new target for the prevention and 
treatment of TM allergy.

As shown in Figure 2A, PI3K is one of the important enriched 
pathways during sensitization. It is reported that the PI3K signaling 
pathway is involved in OVA-induced food allergy models (49). 
However, there is no clear research showing that TM sensitization 
is related to PI3K. Western blot, which can use specific antibodies 
to detect the expression level and post-translational modification 

FIGURE 2

DEG identification and KEGG enrichment information analyses between the C and TM groups. (A) The KEGG bubble maps of 20 pathways with the 
highest differential gene enrichment in mouse jejunum were mapped by RNA-seq technique. (B) KEGG pathway annotation diagram. (C) GO 
hierarchical diagram.
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status of target proteins, was used in this paper to reveal changes in 
the expression of proteins related to the PI3K/Akt signaling 
pathway. As shown in Figure 3B, compared with the control group, 
the expression of p-PI3K, p-Akt, Akt protein in the TM group 
showed a dose-dependent increase, reaching the maximum at 
240 μg/mL, indicating that TM can up-regulate the expression of 
PI3K/Akt signaling pathway protein, thus accelerate the occurrence 
of inflammation.

3.4 TM induces inflammation RBL-2H3 cells

RBL-2H3 cells are extensively utilized in allergy and 
immunology research (50), which exhibit characteristics of both 
mucosal mast cells and basophils, playing a crucial role in 
simulating cell degranulation during allergic responses (51). Cell 
viability test data showed that the survival rate of RBL-2H3 
remained higher than 90% under high dose of TM treatment, 

FIGURE 3

TM causes hypersensitivity in mice by regulating the PI3K/Akt signaling pathway. (A) Relative expression levels of HSP1A, GM-CSF, IGHV3-23, CD36 and 
CCL2 in mouse jejunum. (B) Western blot analysis of p-PI3K, p-Akt expression in mice intestinal after different treatments. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.
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indicating that TM treatment had little effect on cell viability 
(Figure 4A). RBL-2H3 can also be activated by IgE, leading to 
degranulation and release of cytokines such as TNF-α (52). In 
this study, the amount of TNF-α released by RBL-2H3 after 
different doses of TM was measured by indirect ELISA. As shown 
in Figure  4B, compared with group C, the release of TNF-α 
increased from 40 pg./mL to 200 pg./mL after medium dose TM 
treatment, indicating that TM treatment could promote cell 
degranulation and produce inflammatory factors, thereby 
accelerating allergy.

3.5 TM induces impaired tight junctions in 
Caco-2 cells

Cell viability is an important index to determine the overall health 
of cells and optimize experimental conditions (53). As shown in 
Figure 5A, the cell viability of Caco-2 cells after treatment with different 
concentrations of TM was all higher than 90%, indicating that TM was 
safe for Caco-2 cells within the concentration of 100 μg/mL. Therefore, 
100 μg/mL was used to treat cells in the subsequent experiment. IL-8 is 
a typical pro-inflammatory factor, which can target neutrophils in 
intestinal inflammation, promote degranulation, and aggravate 
pro-inflammatory response (54). In this experiment, IL-8 released from 
Caco-2 significantly increased after treatment with medium and high 
doses of TM (p < 0.0001) (Figure 5B), indicating that TM could enhance 
the release of pro-inflammatory factor IL-8, thus promoting intestinal 
inflammation and exacerbating allergic reactions. This indicates that 
TM allergy might be alleviated by inhibiting IL-8.

TJ is an important component to maintain the normal physiological 
function of the intestinal barrier and an important index to evaluate 
allergenic sensitization (55). In this section, immunofluorescence and 
RT-qPCR were used to further reveal the relationship between TM 
treatment and reduced TJ proteins expression. Immunofluorescence 
results are shown in Figure 5C. Compared with the control group, TM 

treatment reduced the fluorescence intensity of Caludin-3 and Occludin, 
decreased the continuity of TJ proteins, increased the permeability of the 
intestinal barrier, and caused more inflammatory factors to pass through 
the barrier into the blood, promoting the occurrence of systemic 
inflammatory response. TJ proteins consists of occludin and members 
of the claudin family and junctional adhesion protein (JAM). To explore 
whether other components are affected (56), qRT-PCR was adopted and 
the results showed that TM treatment significantly reduced mRNA 
expression of ZO-1, JAM-1, claudin-3, occludin, and OCLN related to 
cell TJ proteins (p < 0.01) (Figure 5D).

Ma et al. (39) first found that the increase of Caco-2 permeability 
was related to the change of ZO-1 protein binding location and 
down expression, and the change of ZO-1 was mediated by the 
activation of NFκB. Later, Fuentes et al. (57); Roselli et al. (58) and 
Song et  al. (59) found that Caco-2 would release NFκB when 
stimulated by specific signals. NFκB subsequently translocated to 
the nucleus, ultimately enhanced the inflammatory response of 
Caco-2 cells. Compared with the control group, TM treatment for 
15 min can significantly increase the expression of P-NFκB, and the 
expression level of P-NFκB tends to be  consistent after 15 min, 
while TM treatment has little effect on NFκB (Figure 5E), which 
indicated that TM treatment could lead to NFκB activation and 
rapid nuclear entry, aggravating the allergic phenomenon 
(Figure 5).

PI3K/ Akt is the upstream pathway of NFκB. Akt activates the 
Inhibitor of Kappa B kinase (IKK) directly or indirectly through other 
molecules, promoting the phosphorylation and degradation of 
Inhibitor of NF-κB (IΚB), which releases NF-κb into the nucleus and 
activates transcription of target genes. Zhao et al. (60) determined that 
PI3K/Akt could promote allergy in combination with NFκB through 
network pharmacology and transcriptomic analysis. Wu et al. (49) 
found that PI3K signaling pathway was involved in sensitizing 
response by establishing an OVA-induced food allergy model. In this 
study, in order to explore whether TM can cause changes in PI3K/Akt 
signaling pathway, western blot was used to detect proteins related to 

FIGURE 4

Effect of TM on inflammatory release of RBL-2H3. (A) Cell viability. (B) TNF-α level in the supernatant of RBL-2H3 cell culture. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.
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PI3K/Akt signaling pathway. As shown in Figure 5F, p-PI3K increased 
significantly at 30 min, while Akt significantly decreased at 15 min, 
indicating that both PI3K signaling pathway and Akt signaling 
pathway were involved in the TM sensitization process and promoted 
the generation of allergies.

4 Conclusion

This study examined the role of PI3K/Akt in the context of TM 
allergy. The findings suggest that TM modulates the expression of 
intestinal TJ proteins via the PI3K signaling pathway in murine 
models, up-regulating key genes CCL2, HSP1A, etc., leading to 
increased intestinal permeability and a subsequent heightened risk of 
allergic responses. In cell models, TM can reduce the TJ between 
Caco-2 cells, increase the degranulation of RBL-2H3 cells, release 
more inflammatory factors, and promote allergy. This discovery 
provides a new idea and a new target for the prevention and treatment 
of TM allergy. In the future, the key structure of TM sensitization can 
be further explored, the processing method of TM desensitization can 
be  innovated, and effective drugs can be  developed to treat TM 
sensitization, to reduce the incidence of TM allergy.
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FIGURE 5

TM activates PI3K/Akt/NF-κB pathway of Caco-2 and decreases TJ proteins expression. (A) Cell viability. (B) IL-8 level in Caco-2 cell culture 
supernatant. (C) Effect of TM treatment on TJ proteins Occludin and Claudin in Caco-2 cells. (D) mRNA relative expression of ZO-1, Occludin, OCLN, 
JAM-1 and Claudin-3 in Caco-2 cells. (E) Western blot analysis of p-PI3K and p-Akt expression in Caco-2 after different treatments. (F) Western blot 
analysis of P-NF-κB and NFκB expression in Caco-2 after different treatments. * p < 0.05; ** p < 0.01;*** p < 0.001;**** p < 0.0001; ns p > 0.05.
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