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Purpose: The aetiology of metabolic syndrome (MetS) in young people involves 
a complex interplay between lifestyle, body composition, and cardiometabolic 
risk factors. The present study aimed to explore the relationships between 
anthropometric characteristics, body composition, cardiometabolic parameters 
and resting substrate metabolism in the development of MetS in severely 
adolescents with obesity.

Methods: Seven hundred and thirty adolescents with obesity (mean age: 
14.6 ± 2.1 years, BMI > 97th percentile for gender and age) were included in this 
study. Body composition analysis was obtained using tetrapolar bioelectrical 
impedance analysis (BIA), while resting substrate oxidation was measured using 
an indirect calorimeter.

Results: MetS was present in 27% of the participants. Compared to those 
without MetS, adolescents with MetS had significantly higher body mass 
(+15 kg, p < 0.001), fat-free mass (FFM; +6 kg, p < 0.001), fat mass (+9 kg, 
p < 0.001), carbohydrate oxidation at rest (CHO; +0.02 g·min−1, p = 0.015), 
and Homeostasis Model Assessment for Insulin Resistance (HOMA-IR; +0.8, 
p < 0.001). In adjusted-univariate logistic regression, HOMA-IR (OR: 1.22; 95% 
CI: 1.12–1.34, p < 0.001) was associated with higher odds of MetS. Conversely, 
higher FFM percentage (OR: 0.96; 95% CI: 0.93–0.99, p = 0.003) and HDL 
cholesterol levels (OR: 0.83; 95% CI: 0.81–0.86, p = 0.003) were protective.

Conclusion: In adolescents with severe obesity, resting carbohydrate oxidation 
and HOMA-IR emerged as independent risk factors for MetS, offering additional 
insight beyond conventional anthropometric and lipid indicators. Conversely, 
higher FFM and HDL cholesterol levels appeared to exert a protective effect. 
These findings underscore the importance of incorporating metabolic and 
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body composition variables into MetS risk models and support the promotion 
of targeted interventions, such as endurance and resistance training, to address 
modifiable risk factors and reduce the likelihood of developing MetS.

KEYWORDS

obesity, metabolic syndrome, respiratory quotient, cardiometabolic index, fat-free 
mass

Introduction

Obesity is one of the major global health problems, affecting 
millions of individuals worldwide, with a particularly alarming 
prevalence among children and adolescents (1). Its primary causes 
include sedentary behavior, unhealthy dietary patterns, and 
insufficient physical activity (2). In paediatric populations, obesity is 
frequently associated with metabolic abnormalities such as insulin 
resistance, dyslipidaemia and hypertension, hallmark features of 
metabolic syndrome (MetS) (3). Cross-sectional studies have reported 
MetS prevalence rates ranging from 10 to 38% among children and 
adolescents with obesity (4, 5).

These metabolic disturbances are primarily driven by excessive fat 
mass (FM), particularly visceral adiposity (6). Visceral fat plays a key 
role in metabolic dysfunction through the secretion of adipokines 
involved in the pathogenesis of cardiometabolic diseases (7). 
Furthermore, increased FM promotes the accumulation of lipid 
intermediates, such as ceramides and diacylglycerols, within skeletal 
muscle (8). Combined with physical inactivity, this accumulation 
contributes to reduced mitochondrial density, enhanced adipogenesis, 
and decreased activity of key enzymes involved in aerobic energy 
production and fatty acid oxidation (9, 10). As a result, fat oxidation 
(FAT) at rest may be impaired (11, 12), and the ability to shift toward 
carbohydrate oxidation (CHO) in response to insulin stimulation is 
diminished (13). This impaired capacity to adjust substrate oxidation 
according to substrate availability, known as metabolic inflexibility, is 
typically characterised by an elevated respiratory exchange ratio 
(RER) at rest, reflecting a predominant reliance on carbohydrate 
metabolism (9). This phenomenon has been observed in individuals 
with metabolically unhealthy obesity (12). Indeed, resting substrate 
oxidation may provide additional predictive value for cardiometabolic 
risk, as it reflects both mitochondrial efficiency and the ability to 
utilise fat as an energy source in basal conditions (14). An elevated 
CHO oxidation rate at rest, may suggest impaired lipid oxidation and 
insulin resistance, both of which are implicated in the pathophysiology 
of MetS (15). Moreover, alterations in substrate utilisation may 
precede clinically evident metabolic dysfunction, offering an earlier 
window for risk identification (10). Nonetheless, findings remain 
inconsistent, particularly in paediatric populations with obesity, and 
this potentially valuable marker has been largely underexplored in 
paediatric risk models (16).

These metabolic alterations may also contribute to a reduction in 
fat-free mass (FFM) (16), leading to a lower basal metabolic rate 
(BMR), as FFM is the principal determinant of BMR (17). Over time, 
this unfavourable metabolic profile may increase susceptibility to the 
development of MetS (18). Despite these associations, to the best of 
our knowledge, no studies have specifically examined the relationship 
between resting substrate oxidation (i.e., CHO and FAT oxidation) 
and MetS risk in adolescents with obesity.

Given the increasing prevalence of MetS in this population, 
several indirect indexes have been proposed for its early identification 
in both clinical and epidemiological settings. Body mass index (BMI) 
remains the most used parameter (19); however, it does not 
differentiate between FM and FFM and provides no information on 
fat distribution (20). In paediatric populations, age- and sex-adjusted 
BMI z-scores are typically used, although their association with 
cardiometabolic risk is non-linear (21). Other indexes, such as waist 
circumference (WC), which indirectly reflect both the quantity and 
distribution of adipose tissue, have been used to assess body 
composition and cardio-metabolic risk factors (22). The waist-to-
height ratio (WHR) has also emerged as a reliable screening tool to 
identify MetS in the paediatric population (23). More recently, the 
Visceral Adiposity Index (VAI), a sex-specific algorithm incorporating 
anthropometric measures (BMI and WC) and lipid profile parameters 
[triglycerides and high-density lipoprotein cholesterol (HDL-C)], has 
been proposed as a novel marker of cardiometabolic risk (24). VAI 
reflects visceral fat accumulation and dyslipidaemia, and has been 
linked to insulin resistance, impaired glucose regulation, and an 
increased cardiovascular risk. Its utility in identifying MetS has also 
been confirmed in paediatric populations (25). However, none of 
these indexes incorporates direct assessments of body composition, 
such as FM and FFM. Instead, they rely on indirect anthropometric 
parameters, such as BMI or WC. Moreover, to date, no studies have 
explored the potential role of resting substrate oxidation parameters 
in developing metabolic indexes for use in paediatric populations to 
facilitate the early identification of MetS.

Therefore, the aims of the present study were (i) to evaluate the 
differences in body composition, cardiometabolic parameters, and 
substrate oxidation at rest in a large cohort of adolescents with obesity, 
with and without MetS; (ii) to assess which of the parameters 
mentioned above act as protective or risk factors for the development 
of MetS; and (iii) to propose a novel MetS index that incorporates 
direct measures of body composition and substrate oxidation at rest.

Materials and methods

Study group

A retrospective cohort study was conducted on 733 adolescents 
(mean age: 14.8 ± 2.1 years; Tanner stage: 3.8 ± 1.4; height: 
1.63 ± 0.10 m; body mass: 101.6 ± 22.7 kg; BMI: 37.9 ± 6.2 kg m−2) 
with severe obesity [BMI z-score > 2, based on the Italian reference 
growth charts for age and sex (26)]. All participants were admitted to 
the Division of Auxology at the Istituto Auxologico Italiano, IRCCS, 
Piancavallo-Verbania, for a 3-week multidisciplinary body weight 
reduction program. Inclusion criteria were: (i) age between 10 and 
19 years; (ii) BMI SDS ≥ 2.0 according to sex- and age-specific Italian 
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reference charts (27); (iii) essential obesity; (iv) abstinence from 
alcohol; (v) unbalanced type 2 diabetes mellitus. Exclusion criteria 
included: (i) genetic or syndromic obesity; (ii) any alcohol 
consumption; (iii) infection with the hepatitis B or C virus; (iv) type 
1 diabetes mellitus; (v) obesity secondary to endocrine disorders (i.e., 
hypothyroidism, Cushing’s disease or syndrome). The study was 
conducted in accordance with the Declaration of Helsinki and was 
approved by the territorial Ethics Committee no. 5, Lombardy Region, 
Italy (approval number: 141/25; date of approval: March 25, 2025; 
internal order code: 01C515; acronym: OSSIGRASSIMET). At the 
hospital admission, informed assent/consent had been obtained from 
all participants and their parents.

Measurements

Physical characteristics and body composition 
measurement

At hospital admission, each subject underwent a medical history 
review and physical examination. Body mass (BM) was measured to 
the nearest 0.1 kg using an electronic scale (Selus, Italy), with 
participants wearing only light underwear. Stature was measured to 
the nearest 0.5 cm using a standardised Harpenden stadiometer 
(Holtain Ltd., UK). Body mass index (BMI) was calculated as weight 
(kg) divided by the square of height (m) (26). Waist circumference 
(WC) was measured in a standing position, midway between the 
lowest rib and the top of the iliac crest, after a gentle expiration, using 
a non-elastic, flexible measuring tape (28). Hip circumference (HC) 
was assessed at the point of greatest posterior protuberance (28).

Body composition was evaluated using a multifrequency 
tetrapolar bioelectrical impedance analyser (BIA, Human-IM Scan, 
DS-Medigroup, Milan, Italy), delivering a current of 800 μA at a 
frequency of 50 kHz. To minimise measurement error, all procedures 
were standardised to ensure validity, reproducibility, and precision. 
Measurements were conducted according to the method described in 
Lukasky et al. (29), after a 20 min rest in the supine position, with 
arms and legs relaxed and not touching each other. FFM was estimated 
using a validated prediction equation (30), and FM was calculated as 
the difference between body mass and FFM. Although BIA is a 
practical and widely used method to estimate FFM and FM in 
adolescents, its precision is limited by several factors. A systematic 
review reported that test–retest measurement error in percentage 
body fat can be as high as 7.5–13.4% in youth, with poor agreement 
with criterion methods like dual-energy X-ray absorptiometry 
(DEXA) (31). Furthermore, accuracy diminishes in adolescents with 
higher degrees of obesity: correlations with DXA remain moderate or 
low, and the ability to track changes in FM and FFM is reduced in 
individuals with severe obesity (32). Hence, while BIA is acceptable 
for group-level assessments, caution is warranted when interpreting 
individual-level data.

Basal metabolic rate
Basal metabolic rate (BMR) was assessed following an overnight 

fast using an open-circuit, indirect computerised calorimetry system 
(Vmax 29, Sensor Medics, Yorba Linda, CA, United States) equipped 
with a rigid, transparent, and ventilated canopy to ensure minimal air 
leakage and stable measurement conditions. Before each measurement 

session, the calorimeter was calibrated according to the manufacturer’s 
instructions using standard gas mixtures (i.e., 16% oxygen and 5% 
carbon dioxide) to ensure accuracy and reproducibility of gas 
exchange measurements. Energy expenditure was calculated from 
oxygen consumption (V’O2) and carbon dioxide production (V’CO2) 
using the equation of Weir (33). Data acquisition was conducted 
under controlled environmental conditions (room temperature, 
22 ± 1°C; humidity, 50–60%) to minimise variability.

The substrate oxidation rate at rest was determined from V’O2 and 
V’CO2 values using the following equations (34):
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where Pox is the protein oxidation rate. The protein oxidation rate 
was estimated by assuming that protein oxidation contributed 
approximately 12% of resting energy expenditure (34):
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Missing or inconsistent data points from the calorimetry 
recordings, such as brief signal loss or artefacts, were identified by 
visual inspection of the raw data and the software’s quality control 
flags. These segments were excluded from the analysis. If data loss 
exceeded 5% of the total recording time, the measurement was 
repeated. No imputation methods were applied; all calculations were 
performed on validated continuous data segments.

Blood pressure measurements
Diastolic and systolic blood pressure (BP) were measured using a 

standard mercury sphygmomanometer to the nearest 2 mmHg after 
5 min of rest. The average of three measurements taken on different 
days was used. Blood pressure was assessed according to the IDF 
criteria for paediatric age (35).

Laboratory analyses

Baseline blood samples were collected via venipuncture after a 
12 h overnight fast on the second day of hospitalisation. Fasting 
glucose, fasting insulin, total cholesterol, high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), 
very low-density lipoprotein cholesterol (VLDL-C), triglycerides 
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(TG), and C-reactive protein (C-RP) were measured using 
standard techniques.

The Homeostasis Model Assessment Index—Insulin Resistance 
(HOMA-IR) was calculated using the following formula (36):

 

( )
( )

1

1

Fasting glucose mmolL
HOMA IR : / 22.5

fasting insulin mUmL

−

−

 
 −  ×  

MetS indexes

According to the International Diabetes Federation (IDF) criteria 
(37), the diagnosis of MetS was made when three or more of the 
following risk factors are present: a WC ≥ 80 cm, fasting glucose 
(FPG) ≥ 100 mg/dL (5.55 mmoL/L) or on drug treatment for elevated 
glucose, systolic blood pressure (SBP) ≥ 130 mmHg or diastolic blood 
pressure (DBP) ≥ 85 mmHg or on antihypertensive drug treatment in 
a patient with a history of hypertension, fasting triglycerides 
(TG) ≥ 150 mg/dL (1.7 mmoL/L) or on drug treatment for elevated 
TG, and HDL-C < 50 mg/dL (1.3 mmoL/L) or on drug treatment for 
reduced HDL-C.

In addition, the following indexes were calculated according to the 
following formulas (22, 38–42):

 ( ) ( ) ( )− − =Waist to hip ratio WHR WC cm / HC cm

 ( ) ( ) ( )− − =Waist to height ratio WtHR WC cm / height cm
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Statistical analyses

A Shapiro–Wilk test was used to assess the normality of each 
continuous variable. Normally distributed data were presented as 
mean ± standard deviation, while non-normally distributed data 
were reported as median and interquartile range (IQR: 25th–75th 
percentile). Adjusted odds ratios (ORs) were calculated using a 
logistic regression model to evaluate the association between the 
odds of having MetS and body composition, cardiometabolic 
parameters, resting substrate oxidation, and various indexes. Age and 
sex were included as covariates to control for potential confounding 
effects. An OR greater than 1 indicates an increased likelihood of 
metabolic syndrome, while an OR less than 1 suggests a protective 
association. 95% confidence intervals (CIs), p-values and Cohen’s d 
effect sizes were reported. A metabolic syndrome risk score was 
developed using the following appropriately scaled variables: sex, age, 
BMI, FFM (in kg), FM (in kg), WHR, indirect calorimetry, CHO (%), 
and FAT (%). Variables were selected to represent distinct 
physiological domains and to minimise redundancy among 
predictors. The dataset was randomly split into a training set (70%) 
and a testing set (30%). A LASSO logistic regression model with 
metabolic syndrome as the outcome variable was applied to the 
training set and iterated 100 times on bootstrapped samples. LASSO 
logistic regression is a regularisation method that applies an L1 
penalty, and it was selected for its ability to perform variable selection 
and regularisation simultaneously. For each variable, the selection 
frequency and the mean LASSO coefficient were recorded. Variables 
with a selection frequency ≥ 60% were retained for score 
construction, based on recommendations from stability selection 
methods (43). The coefficients were then normalised to scale from 
−20 to 20. The risk score was calculated by multiplying each selected 
and scaled variable by its corresponding normalised mean coefficient. 
Youden’s index was applied to identify the optimal threshold for the 
risk score. At this cut-off, sensitivity, specificity, positive predictive 
value (PPV) and negative predictive value (NPV) were estimated with 
their 95% confidence intervals. Model performance was evaluated on 
the testing set by computing the area under the ROC curve (AUC) 
along with its 95% confidence interval.

Results

Physical characteristics of the study group

The descriptive characteristics of the study group are shown in 
Table 1. According to the IDF criteria, the presence of MetS was found 
in 202 patients (28%). Patients with MetS+ had significantly higher 
values of BMI z-score (+11%, p < 0.001), FFM (kg) (+11%, p < 0.001), 
FM (kg) (+18%, p < 0.001), WC (+10%, p < 0.001), HC (+4%, 
p < 0.001), TG (+44%, p < 0.001), Fasting insulin (+33%, p < 0.001), 
HOMA-IR (+32%, p < 0.001), SBP (+8%, p < 0.001), basal metabolic 
rate (+13%, p < 0.001) and CHOrest (+8%, p = 0.010) (Table  2). 
Additionally, HDL-C levels were significantly lower in the MetS+ 
group (−20%, p < 0.001) (Table 2). No significant differences were 
observed between the two groups in fasting glucose, total cholesterol 
and other resting substrate oxidation parameters (Table 2). Obese 
adolescents with MetS+ showed higher values of WHR (+5%, 
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p < 0.001), WHtR BMFI (+19%, p < 0.001), VAI (+96%, p < 0.001), 
CMI (+95%, p < 0.001) and MetS z-score (+55%, p < 0.001) than 
obese adolescents without MetS (MetS−) (p < 0.001) (Table 2).

Protective and risk factors for MetS

After adjusting for age and sex, logistic regression analysis 
identified several variables significantly associated with the presence 
of metabolic syndrome (MetS) (Figures 1–4).

Figure  1 illustrates the impact of various anthropometric and 
body composition parameters on the odds of having MetS in 
adolescents with obesity. All the parameters were directly related to 
the odds of having MetS. However, among the various parameters, 
higher BMI z-scores were strongly associated with increased odds of 
MetS (OR = 2.22, 95% CI: 1.61–3.09, p < 0.001). Conversely, higher 
FFM (%) was associated with reduced odds of MetS (OR = 0.96, 95% 
CI: 0.93–0.99, p = 0.003), indicating a protective role.

Figure 2 illustrates the impact of different cardiometabolic parameters 
on the odds of having MetS in adolescents with obesity. All the parameters, 
except for the HDL-C, were directly related to the odds of having MetS. A 
stronger association was found for the HOMA-IR (OR = 1.22, 95% CI: 
1.12–1.34, p < 0.001). Conversely, HDL-C was associated with reduced 
odds of MetS (OR = 0.83, 95% CI: 0.81–0.86, p = 0.003).

Figure 3 shows how the different resting substrate oxidation data 
affected the odds of having MetS in the study group. Higher CHOrest 
values were associated with an increased risk of MetS (OR = 21.489, 
95% CI: 2.46–190.5, p = 0.006).

Figure 4 illustrates the impact of different MetS indexes on the odds 
of having MetS in adolescents with obesity. All the indexes were directly 
related to the odds of having MetS. However, this association was stronger 
for the WHR (OR = 1699.48, 95% CI: 137.2–22969.1, p < 0.001) and 
WtHR (OR = 235.9, 95% CI: 28.01–2447.42, p < 0.001) than for the other 
indexes. Supplementary file 1 provides a summary table including all 
adjusted odds ratios (ORs), 95% confidence intervals (CIs), and Cohen’s 
d values for the associations between the evaluated parameters and 
metabolic syndrome risk in adolescents with obesity.

MetS risk score

Among the ten variables considered for the score, seven were selected 
by the model with a selection frequency greater than 60%: WHR, FFM 
(kg), FAT (%), age, BMI, BMR, and sex (Table 3). The metabolic syndrome 
risk score was then constructed by multiplying the standardised variables 
by the normalised coefficients (Equation 1):

 

( )

( ) ( )

( )

47.620.95 20 10
0.08 9.88

% 65.8 14.63
12 5 5

23.2 2.07
37.92 19286 11 1  ,0  

6.24 363.5

FFM kgWHRRisk score

FAT age y

BMI BMR if female if male

−−
= × + ×

− −
− × + × +

− −
× + × + ×

 
(1)

The resulting score ranged from −70.35 to 92.14  in the training 
dataset, with a mean of 6.74 (SD: 29.6). The optimal threshold for 
identifying individuals at risk of metabolic syndrome corresponded to a 
score of 1.85. Model performance was evaluated on the testing set, 
yielding an AUC of 0.73 (95% CI: 0.66–0.81), indicating a good 
discriminative ability (Figure 5). At the optimal cut-off, the model showed 
a sensitivity of 0.83 (95% CI: 0.71–0.92), a specificity of 0.54 (95% CI: 
0.46–0.62), a positive predictive value (PPV) of 0.41 (95% CI: 0.32–0.50), 
and a negative predictive value (NPV) of 0.90 (95% CI: 0.82–0.95).

TABLE 1 Descriptive statistics for the whole study group.

Characteristics n = 733a

Female [n (%)] 440 (60%)

Age (n) 14.91 (13.08, 16.41)

Height (m) 1.63 (1.56, 1.69)

Body weight (kg) 97 (86, 116)

BMI (kg m−2) 37 (33, 41)

BMI z-score 2.99 (2.60, 3.41)

FFM (kg) 46 (41, 52)

FFM (%) 47.3 (43.3, 51.4)

FM (kg) 51 (43, 62)

FM (%) 52.7 (48.6, 56.7)

Waist circumference (cm) 114 (104, 124)

Hip circumference (cm) 121 (113, 129)

WHR 0.95 (0.90, 1.01)

Fasting glucose (mg dL−1) 81 (77, 85)

Total cholesterol (mg dL−1) 161 (142, 182)

HDL-C (mg dL−1) 42 (36, 49)

LDL-C (mg dL−1) 101 (84, 120)

VLDL-C (mg dL−1) 18 (13, 23)

Triglycerides (mg dL−1) 89 (67, 116)

C-reactive protein (mg dL−1) 0.40 (0.20, 0.70)

Fasting insulin (mU L−1) 14 (9, 19)

HOMA-IR 2.72 (1.78, 3.95)

Systolic blood pressure (mmHg) 120 (120, 130)

Diastolic blood pressure (mmHg) 80 (70, 80)

RER 0.80 (0.75, 0.86)

CHO rest (%) 36.9 (19.2, 54.1)

FAT rest (%) 66.6 (49.3, 84.4)

Basal metabolic rate (kcal day−1) 1,883 (1,669, 2,144)

Metabolic syndrome (n) 202 (28%)

Basal metabolic rate (kcal kg FFM−1) 40 (37, 44)

CHOrest (g min-1) 0.12 (0.07, 0.17)

FATrest (g min−1) 0.09 (0.06, 0.12)

BMFI (kg m−1) 22 (17, 28)

VAI (cm2) 1.85 (1.27, 2.65)

WtHR 0.70 (0.65, 0.75)

CMI 1.48 (1.02, 2.16)

MetS_zscore 1.43 (1.04, 1.84)
an (%); median (Q1, Q3).
BMI, body mass index; FFM, fat-free mass; FM, fat mass; WHR, waist-to-hip ratio; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, 
very low-density lipoprotein cholesterol; HOMA-IR, Homeostasis Model Assessment Index-
Insulin Resistance; RER, resting exchange ratio; CHOrest, carbohydrate oxidation at rest; 
FATrest, fat oxidation at rest; BMFI, body mass fat index; VAI, visceral adiposity index; 
WHtR, waist-to-height ratio; CMI, cardiometabolic index; MetS_zscore, metabolic 
syndrome z score.
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Discussion

The main findings of the present study were: (i) adolescents with 
MetS exhibited higher values of WC and HC, as well as elevated BMI, 

FM, triglycerides, fasting insulin, and HOMA-IR compared to their 
peers without MetS; (ii) FFM (%) and high-density lipoprotein 
cholesterol (HDL-C) were protective factors for MetS; (iii) higher BMI 
z-scores, HOMA-IR, and resting CHO were identified as significant 

TABLE 2 Descriptive statistics for all adolescents without metabolic syndrome (MetS−), and with metabolic syndrome (MetS+).

MetS− MetS+ p-valueb

(n = 531a) (n = 202a)

Female [n (%)] 339 (64%) 101 (50%) 0.001

Age (n) 14.58 (12.75, 16.00) 15.66 (14.00, 16.83) <0.001

Height (m) 1.61 (1.55, 1.67) 1.67 (1.61, 1.73) <0.001

Body weight (kg) 94 (84, 109) 112 (96, 129) <0.001

BMI (kg m−2) 36 (33, 40) 39 (36, 43) <0.001

BMI z-score 2.91 (2.54, 3.30) 3.24 (2.88, 3.54) <0.001

FFM (kg) 45 (40, 50) 50 (44, 60) <0.001

FFM (%) 47.5 (43.6, 51.6) 46.6 (42.4, 50.8) 0.035

FM (kg) 49 (42, 59) 58 (49, 69) <0.001

FM (%) 52.5 (48.4, 56.4) 53.4 (49.2, 57.6) 0.035

Waist circumference (cm) 111 (103, 121) 122 (113, 132) <0.001

Hip circumference (cm) 119 (112, 127) 124 (118, 132) <0.001

WHR 0.94 (0.88, 0.99) 0.99 (0.93, 1.04) <0.001

Fasting glucose (mg dL−1) 81 (77, 85) 81 (78, 86) 0.497

Total cholesterol (mg dL−1) 160 (142, 181) 164 (139, 185) 0.621

HDL-C (mg dL−1) 44 (40, 51) 35 (32, 38) <0.001

LDL-C (mg dL−1) 99 (83, 119) 106 (85, 126) 0.024

VLDL-C (mg dL−1) 16 (13, 21) 24 (18, 31) <0.001

Triglycerides (mg dL−1) 82 (64, 104) 118 (89, 156) <0.001

C-reactive protein (mg dL−1) 0.40 (0.20, 0.70) 0.30 (0.20, 0.70) 0.672

Fasting insulin (mU L−1) 12 (8, 18) 16 (12, 22) <0.001

HOMA-IR 2.44 (1.64, 3.72) 3.23 (2.38, 4.45) <0.001

Systolic blood pressure (mmHg) 120 (120, 130) 130 (130, 140) <0.001

Diastolic blood pressure (mmHg) 80 (70, 80) 80 (80, 90) <0.001

RER 0.80 (0.75, 0.86) 0.80 (0.76, 0.85) 0.370

CHO rest (%) 36.9 (19.2, 54.1) 40.3 (22.8, 54.1) 0.444

FAT rest (%) 66.6 (49.3, 84.4) 66.6 (49.3, 84.4) 0.256

Basal metabolic rate (kcal day−1) 1,835 (1,635, 2,064) 2,065 (1,768, 2,330) <0.001

Basal metabolic rate (kcal kg FFM−1) 41 (37, 45) 40 (36, 44) 0.111

CHOrest (g min-1) 0.12 (0.07, 0.16) 0.13 (0.08, 0.19) 0.010

FATrest (g min−1) 0.09 (0.06, 0.12) 0.10 (0.07, 0.13) 0.142

BMFI (kg m−1) 21 (17, 26) 25 (20, 31) <0.001

VAI (cm2) 1.57 (1.18, 2.16) 3.08 (2.13, 4.20) <0.001

WtHR 0.69 (0.64, 0.74) 0.73 (0.68, 0.78) <0.001

CMI 1.29 (0.92, 1.78) 2.51 (1.82, 3.48) <0.001

MetS_zscore 1.24 (0.89, 1.58) 1.92 (1.61, 2.23) <0.001

an (%); median (Q1, Q3).
bPearson’s Chi-squared test; Wilcoxon rank sum test.
BMI, body mass index; FFM, fat-free mass; FM, fat mass; WHR, waist-to-hip ratio; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very 
low-density lipoprotein cholesterol; HOMA-IR, Homeostasis Model Assessment Index-Insulin Resistance; RER, resting exchange ratio; CHOrest, carbohydrate oxidation at rest; FATrest, fat 
oxidation at rest; BMFI, body mass fat index; VAI, visceral adiposity index; WHtR, waist-to-height ratio; CMI, cardiometabolic index; MetS_zscore, metabolic syndrome z score.
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risk factors for the development of MetS. Moreover, this paper 
proposed a novel predictive index for MetS that incorporates direct 
measures of body composition and resting substrate oxidation, which 
demonstrated good discriminative ability in identifying the presence 
of MetS.

Our findings revealed that 202 participants (28%) in our sample met 
the diagnostic criteria for MetS. This prevalence aligns with previous 
cross-sectional studies in paediatric populations with obesity, where 

rates of MetS range from 10 to 38% (4, 5). WC was significantly higher 
in adolescents with MetS, reinforcing its role as an indirect marker of 
visceral adipose tissue (VAT) accumulation (20). Consistent with prior 
research (39, 44, 45), adolescents with MetS exhibited a higher 
prevalence of metabolic abnormalities, including elevated triglycerides, 
hyperinsulinemia, insulin resistance, and reduced levels of HDL-C. These 
data suggest that increased central adiposity, reflected by greater WC, 
may contribute to the development of insulin resistance and 

FIGURE 1

Forest plot of adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for body composition parameters and metabolic syndrome risk in 
adolescents with obesity. Each row displays a specific index, with the square dot representing the adjusted-for-age odds ratio and the horizontal line 
extending from the dot indicating the 95% confidence interval. The plot includes a vertical reference line at an OR of 1.0, representing no effect. 
Predictors with confidence intervals that do not cross this line suggest a statistically significant association with obesity risk. The numerical values of 
the odds ratio and their CI are placed next to each index. FFM, free fat mass; FM, fat mass.

FIGURE 2

Forest plot of adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for blood parameters and metabolic syndrome risk in adolescents with 
obesity. Each row displays a specific index, with the square dot representing the adjusted-for-age odds ratio and the horizontal line extending from the 
dot indicating the 95% confidence interval. The plot includes a vertical reference line at an OR of 1.0, representing no effect. Predictors with 
confidence intervals that do not cross this line suggest a statistically significant association with obesity risk. The numerical values of the odds ratio and 
their CI are placed next to each index. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-
density lipoprotein cholesterol; HOMA-IR, Homeostasis Model Assessment Index-Insulin Resistance.
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hyperinsulinemia through several well-established mechanisms (46). 
VAT is highly metabolically active and exhibits increased lipolytic 
activity, leading to elevated circulating free fatty acids (47). Free fatty 
acids, in turn, impair insulin-mediated glucose uptake in peripheral 
tissues partially by the secretion of pro-inflammatory cytokines, which 
interfere with insulin signalling pathways (47, 48). All together, these 
alterations contribute to impaired insulin action and may promote early 
metabolic dysfunction, although this mechanistic pathway was not 
directly assessed in the present study.

The second key finding of our study was the identification of 
several significant risk and protective factors associated with the 
development of MetS in a large cohort of adolescents with obesity. 
Notably, our analysis highlighted two main protective factors. The 
first is FFM (%). FFM plays a crucial protective role in the 
development of MetS in adolescents with obesity. Indeed, higher 
FFM is associated with improved insulin sensitivity, enhanced 
glucose uptake, and increased resting energy expenditure, all of 
which contribute to a more favourable cardiometabolic profile. 

FIGURE 3

Forest plot of adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for resting energy expenditure parameters and metabolic syndrome risk in 
adolescents with obesity. Each row displays a specific index, with the square dot representing the adjusted-for-age odds ratio and the horizontal line 
extending from the dot indicating the 95% confidence interval. The plot includes a vertical reference line at an OR of 1.0, representing no effect. 
Predictors with confidence intervals that do not cross this line suggest a statistically significant association with obesity risk. The numerical values of 
the odds ratio and their CI are placed next to each index. RER, respiratory exchange ratio; CHO, resting carbohydrate oxidation; FAT, resting fat 
oxidation.

FIGURE 4

Forest plot of adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for body composition parameters and metabolic syndrome risk in 
adolescents with obesity. Each row displays a specific index, with the square dot representing the adjusted-for-age odds ratio and the horizontal line 
extending from the dot indicating the 95% confidence interval. The plot includes a vertical reference line at an OR of 1.0, representing no effect. 
Predictors with confidence intervals that do not cross this line suggest a statistically significant association with obesity risk. The numerical values of 
the odds ratio and their CI are placed next to each index. BMFI, body mass fat index; VAI, visceral adiposity index; WHtR, waist-to-height ratio; CMI, 
cardiometabolic index; MetS_zscore, metabolic syndrome z score.
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This is partially supported by our findings, which revealed 
significant differences in body composition parameters between 
adolescents with and without MetS. Moreover, skeletal muscle, the 
main component of FFM, serves as a primary site for glucose 
disposal and lipid oxidation, playing a central role in maintaining 
metabolic homeostasis (49, 50). Regular physical activity, 
particularly resistance and aerobic training, promotes muscle 
hypertrophy and mitochondrial adaptations, thereby increasing 
FFM (10, 51). These physiological changes enhance substrate 
utilisation efficiency and may substantially lower the risk of 
developing MetS later in life (52). The second protective factor 
identified is HDL-C. Higher levels of HDL-C were associated with 
a significantly reduced risk of MetS (OR < 1), underscoring the 
well-established protective role of HDL in metabolic health. 

Beyond its role in reverse cholesterol transport, HDL also exerts 
anti-inflammatory and antioxidant effects that may enhance 
insulin sensitivity and lower cardiometabolic risk (53). These 
findings underscore the importance of comprehensive metabolic 
profiling in adolescents with obesity to detect early metabolic 
alterations. Identifying both risk and protective factors can inform 
personalised prevention strategies aimed at improving long-term 
metabolic health and reducing the progression of MetS into 
adulthood. Among the most relevant risk factors, a higher rate of 
resting CHO emerged as a novel and independent predictor of 
MetS. This observation suggests that adolescents with obesity who 
predominantly rely on carbohydrates as an energy source at rest 
may display impaired metabolic flexibility, potentially indicating 
early alterations in mitochondrial efficiency or insulin signalling 
(10, 14). From a physiological perspective, elevated resting CHO 
oxidation may reflect a reduced capacity for lipid oxidation, 
possibly linked to diminished mitochondrial oxidative function or 
a blunted response to insulin (10, 14). Such metabolic shifts may 
favour glycolytic pathways even in the absence of acute energy 
demand. Moreover, several studies showed that resting metabolic 
inflexibility and elevated resting CHO are not features of obesity 
per se, but rather distinctive traits of youth with metabolically 
unhealthy obesity (13, 54). As previously suggested, these 
individuals also exhibit poorer insulin sensitivity compared to 
their peers with metabolically healthy obesity, findings that are 
partially supported by our results. In our adolescent sample, those 
with MetS displayed a worse glycaemic profile than those without 
MetS, despite both groups being affected by obesity. Nonetheless, 
several confounding factors may influence substrate utilisation at 
rest, including habitual diet, recent food intake, cardiorespiratory 
fitness, and physical activity levels (17, 55). These variables can 
affect insulin sensitivity and substrate availability, thereby 
modulating the balance between fat and carbohydrate oxidation. 

TABLE 3 Variables selected for the novel metabolic syndrome index.

Variables Selection 
frequency

Mean 
coefficient

Normalized 
coefficient

WHR 100% 0.54 20

FFM (kg) 93% 0.26 10

FAT (%) 86% −0.31 −12

Age 79% 0.13 5

BMI (kg m−2) 77% 0.14 5

BMR 

(kcal day−1)
72% 0.16 6

Female sex 65% 0.29 11

Each row represented the variables selected from the model for the novel index. The table 
shows the selection frequency (percentage of times selected across 100 resampled models) 
for each variable, the mean estimated coefficient, and the normalised coefficient. WHR, 
waist-to-hip ratio; FAT, resting fat oxidation; BMR, basal metabolic rate; FFM, fat-free mass; 
FM, fat mass; BMI, body mass index.

FIGURE 5

The receiver operating characteristic (ROC) curve of the novel index in predicting metabolic syndrome in adolescents with obesity in the testing set. 
The ROC curve illustrates the trade-off between sensitivity (true positive rate) and 1-specificity (false positive rate) across different cut-offs. The model 
is based on a risk score created by the LASSO logistic regression trained on 70% of the dataset and tested on the remaining 30% of participants. The 
area under the curve (AUC) was 0.73 (95% CI: 0.66–0.81), indicating a good discriminatory ability of the index in differentiating between adolescents 
with and without metabolic syndrome.
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While some of these aspects were not directly accounted for in the 
present analysis, they warrant consideration in future investigations 
to clarify the underlying mechanisms and strengthen the 
interpretability of resting CHO oxidation as a marker of 
cardiometabolic risk. However, the strength of our model lies in 
having adjusted the odds ratio for age, sex, and the presence 
of MetS.

However, current findings in paediatric populations remain 
inconsistent, partly due to the limited consideration of 
confounding factors such as cardiorespiratory fitness and substrate 
utilisation during aerobic exercise (56). Elevated BMI z-scores and 
higher values of the HOMA-IR were also significantly associated 
with the presence of MetS, in line with previous literature 
emphasising the central role of excess adiposity and insulin 
resistance in the pathogenesis of metabolic dysfunction (57, 58). 
The ORs for these variables indicated a markedly increased 
likelihood of developing MetS, reinforcing their relevance in early 
clinical risk stratification.

The last important finding of our study was the development of 
a novel predictive index for MetS, which integrates WHR, FFM, 
resting FAT (%), age, BMI, BMR, and sex. This composite index 
yielded an AUC of 0.73, indicating moderate to good discriminative 
ability for identifying individuals at risk of MetS. The inclusion of 
BMR, FFM, and resting FAT (%) represents a key innovation of this 
model, as these parameters reflect essential aspects of metabolic 
function that are typically overlooked in standard clinical 
assessments. Both BMR and FFM are major determinants of total 
energy expenditure (17) while resting FAT (%) is closely related to 
metabolic flexibility (12). Moreover, reduced resting FAT (%) has 
been associated with an increased risk of developing metabolic 
dysregulation and insulin resistance later in life (13). However, in our 
cohort, we did not observe significant differences in resting FAT (%) 
between adolescents with and without MetS. In comparison, 
commonly used indexes such as BMFI, VAI, WtHR, CMI, and the 
MetS z-score have demonstrated AUC values ranging from 0.55 to 
0.77 in paediatric populations (39, 45). While these indexes provide 
practical screening tools, they do not account for metabolic and 
bioenergetic resting parameters. In contrast, our model incorporates 
both structural components (e.g., FFM, BMI, WHR) and resting 
energetics parameters (e.g., BMR, resting FAT oxidation), offering a 
more integrated approach to metabolic risk assessment. Although the 
predictive performance of our index is comparable to that of existing 
models, its inclusion of physiologically relevant variables may 
enhance early risk stratification when used in conjunction with 
traditional markers. Further validation in larger and more diverse 
cohorts is warranted to optimise its predictive value and explore its 
clinical applicability in preventive care. Notably, while the model 
demonstrated good sensitivity, its specificity was low, suggesting that 
further investigation and external validation are necessary to improve 
its ability to accurately exclude individuals without metabolic 
syndrome and enhance its overall clinical performance. Moreover, 
external replication studies are necessary to confirm the model’s 
stability, particularly to investigate the wide confidence intervals 
observed for some predictors (55).

Our study has several limitations that should be acknowledged. 
First, longitudinal research is necessary to evaluate the ability of our 
index to predict the progression of MetS over time in adolescents 
with obesity. Second, we  did not employ dual-energy X-ray 

absorptiometry (DEXA), the gold standard for body composition 
analysis, due to the large sample size, cost constraints, and concerns 
related to radiation exposure in paediatric populations. Instead, 
we used WC as a surrogate marker of central obesity. Although WC 
is widely adopted in clinical research, it may be  subject to 
measurement variability. To mitigate this, all anthropometric 
assessments were conducted by trained and experienced healthcare 
professionals, enhancing data consistency and reliability.

Moreover, although BIA is less accurate than DEXA (which 
represents the gold standard), it offers a feasible, non-invasive, and 
scalable method for estimating body composition, particularly in large 
cohorts and standard clinical settings. Its affordability and ease of use 
make it especially valuable in paediatric obesity management, where 
access to advanced imaging modalities is often constrained. Similarly, 
although indirect calorimetry is not the gold standard for assessing 
substrate oxidation, it remains a validated and widely adopted method. 
Together, these tools offer a pragmatic yet scientifically sound 
approach, striking an important balance between methodological 
rigour and practical applicability. Emphasising this balance strengthens 
the translational relevance of the study, supporting its implementation 
in real-world settings where resources and time are often limited.

In conclusion, our study identified FFM and HDL-C as 
significant protective factors against the development of MetS in 
adolescents with obesity. In contrast, increased WC, BMI, 
HOMA-IR, and resting RER emerged as key risk factors. These 
findings emphasise the critical role of body composition, both as 
a protective and risk-related component, in the pathogenesis of 
MetS. Moreover, they underscore the importance of promoting 
regular aerobic and resistance exercise in this population as a 
targeted strategy to modify risk factors and reduce the likelihood 
of developing MetS. Importantly, we propose a novel predictive 
index that incorporates WHR, FFM, resting FAT (%), BMI, BMR, 
and sex, which demonstrates good discriminatory power and 
provides a more comprehensive assessment of metabolic risk 
compared to traditional anthropometric-based indexes. Future 
longitudinal studies are, however, necessary to understand how 
changes in this novel predictive index over time might be usefully 
employed in guiding personalised therapeutic interventions for 
this clinical condition in a more effective manner.

Data availability statement

The datasets analyzed in this study cannot be made publicly 
available as they include sensitive information, but they can be made 
available upon reasonable request of interested researchers to the 
corresponding author, who will forward a data transfer agreement 
request to the relevant Ethical Committee. Requests can be addressed 
to Dr. Alessandro Sartorio (sartorio@auxologico.it).

Ethics statement

The studies involving humans were approved by Ethics Committee 
no. 5, Lombardy Region, Italy (approval number: 141/25; date of 
approval: March 25, 2025; internal order code: 01C515; acronym: 
OSSIGRASSIMET). The studies were conducted in accordance with 
the local legislation and institutional requirements. Written informed 

https://doi.org/10.3389/fnut.2025.1624696
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
mailto:sartorio@auxologico.it


D’Alleva et al. 10.3389/fnut.2025.1624696

Frontiers in Nutrition 11 frontiersin.org

consent for participation in this study was provided by the participants’ 
legal guardians/next of kin.

Author contributions

MD’A: Writing – original draft, Formal analysis, Writing – review 
& editing, Conceptualization. SL: Conceptualization, Validation, 
Writing  – review & editing. MM: Writing  – review & editing, 
Writing – original draft, Formal analysis. LM: Visualization, Writing – 
review & editing. ER: Writing – review & editing, Validation. SZ: 
Visualization, Writing – review & editing. JS: Visualization, Writing – 
review & editing. MI: Visualization, Formal analysis, Writing – review 
& editing. AB: Data curation, Writing  – review & editing. DC: 
Writing – review & editing, Data curation. FF: Writing – review & 
editing, Data curation. LA: Writing – review & editing, Data curation. 
EV: Data curation, Writing  – review & editing. AS: Supervision, 
Conceptualization, Funding acquisition, Writing – review & editing, 
Data curation.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Italian Ministry of Health-Ricerca Corrente.

Acknowledgments

The authors would like to thank all the children and adolescents, 
as well as their families, for their participation in the study. They also 

extend their gratitude to the physicians and nurses of the Division of 
Auxology at the Istituto Auxologico Italiano, IRCCS, Piancavallo, 
Verbania, Italy, for their valuable assistance during the clinical study.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnut.2025.1624696/
full#supplementary-material

References
 1. Martin A, Booth JN, Laird Y, Sproule J, Reilly JJ, Saunders DH. Physical activity, 

diet and other behavioural interventions for improving cognition and school 
achievement in children and adolescents with obesity or overweight. Cochrane Database 
Syst Rev. (2018) 1:CD009728. doi: 10.1002/14651858.CD009728.pub3

 2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory 
fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy 
Men and women: a meta-analysis. Available online at: www.jamaarchivescme.com

 3. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv 
Exp Med Biol. (2017). 960:1–17. doi: 10.1007/978-3-319-48382-5_1

 4. Zaki ME, El-Bassyouni HT, El-Gammal M, Kamal S. Indicators of the metabolic 
syndrome in obese adolescents. Arch Med Sci. (2015) 11:92–98. doi: 10.5114/aoms.2015.49214

 5. Magge SN, Goodman E, Armstrong SC, Daniels S, Corkins M, De Ferranti S, et al. The 
metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk 
factor clustering. Pediatrics. (2017) 140. doi: 10.1542/peds.2017-1603

 6. Kelishadi R, Mirmoghtadaee P, Najafi H, Keikha M. Rtcle systematic review on the 
association of abdominal obesity in children and adolescents with cardio-metabolic risk 
factors. J Res Med Sci. (2015) 20:294–307. doi: 10.4103/1735-1995.156179

 7. Ruiz-Castell M, Samouda H, Bocquet V, Fagherazzi G, Stranges S, Huiart L. 
Estimated visceral adiposity is associated with risk of cardiometabolic conditions in a 
population-based study. Sci Rep. (2021) 11:9121. doi: 10.1038/s41598-021-88587-9

 8. Fucho R, Casals Ń, Serra D, Herrero L. Ceramides and mitochondrial fatty acid 
oxidation in obesity. FASEB J. (2017) 31:1263–72. doi: 10.1096/fj.201601156R

 9. Galgani JE, Fernández-Verdejo R. Pathophysiological role of metabolic flexibility 
on metabolic health. Obes Rev. (2021) 22:e13131. doi: 10.1111/obr.13131

 10. Georgiev A, Granata C, Roden M. The role of mitochondria in the pathophysiology 
and treatment of common metabolic diseases in humans. Am J Physiol Cell Physiol. 
(2022) 322:C1248–59. doi: 10.1152/ajpcell.00035.2022

 11. Lanzi S, Codecasa F, Cornacchia M, Maestrini S, Salvadori A, Brunani A, et al. Fat 
oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test 
in lean and obese adults. PLoS One. (2014) 9:e88707. doi: 10.1371/journal.pone.0088707

 12. Pujia A, Gazzaruso C, Ferro Y, Mazza E, Maurotti S, Russo C, et al. Individuals 
with metabolically healthy overweight/obesity have higher fat utilization than 
metabolically unhealthy individuals. Nutrients. (2016) 8. doi: 10.3390/nu8010002

 13. Gebara NY, Kim JY, Bacha F, Lee SJ, Arslanian S. Metabolic inflexibility in youth 
with obesity: is it a feature of obesity or distinctive of youth who are metabolically 
unhealthy? Clin Obes. (2022) 12:e12501. doi: 10.1111/cob.12501

 14. Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an 
adaptation to energy resources and requirements in health and disease. Endocr Rev. 
(2018) 39:489–517. doi: 10.1210/er.2017-00211

 15. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the 
pathogenesis of insulin resistance. Physiol Rev. (2007) 87:507–20. doi: 
10.1152/physrev.00024.2006

 16. Córdoba-Rodríguez DP, Iglesia I, Gomez-Bruton A, Rodríguez G, Casajús JA, 
Morales-Devia H, et al. Fat-free/lean body mass in children with insulin resistance or 
metabolic syndrome: a systematic review and meta-analysis. BMC Pediatr. (2022) 22. 
doi: 10.1186/s12887-021-03041-z

 17. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors 
influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and 
circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr. 
(2005) 82:941–48. doi: 10.1093/ajcn/82.5.941

 18. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. 
Physiol Rev. (2013) 93:359–404. doi: 10.1152/physrev.00033.2011

 19. August GP, Caprio S, Fennoy I, Freemark M, Kaufman FR, Lustig RH, et al. Prevention 
and treatment of pediatric obesity: an Endocrine Society clinical practice guideline based 
on expert opinion. J Clin Endocrinol Metab. (2008) 93:4576–99. doi: 10.1210/jc.2007-2458

https://doi.org/10.3389/fnut.2025.1624696
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnut.2025.1624696/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2025.1624696/full#supplementary-material
https://doi.org/10.1002/14651858.CD009728.pub3
http://www.jamaarchivescme.com
https://doi.org/10.1007/978-3-319-48382-5_1
https://doi.org/10.5114/aoms.2015.49214
https://doi.org/10.1542/peds.2017-1603
https://doi.org/10.4103/1735-1995.156179
https://doi.org/10.1038/s41598-021-88587-9
https://doi.org/10.1096/fj.201601156R
https://doi.org/10.1111/obr.13131
https://doi.org/10.1152/ajpcell.00035.2022
https://doi.org/10.1371/journal.pone.0088707
https://doi.org/10.3390/nu8010002
https://doi.org/10.1111/cob.12501
https://doi.org/10.1210/er.2017-00211
https://doi.org/10.1152/physrev.00024.2006
https://doi.org/10.1186/s12887-021-03041-z
https://doi.org/10.1093/ajcn/82.5.941
https://doi.org/10.1152/physrev.00033.2011
https://doi.org/10.1210/jc.2007-2458


D’Alleva et al. 10.3389/fnut.2025.1624696

Frontiers in Nutrition 12 frontiersin.org

 20. Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M, et al. Energy 
balance and obesity: what are the main drivers? Cancer Causes Control. (2017) 
28:247–58. doi: 10.1007/s10552-017-0869-z

 21. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for 
child overweight and obesity worldwide: international survey. BMJ. (2000) 320:1240–3. 
doi: 10.1136/bmj.320.7244.1240

 22. World Health Organization. Waist circumference and waist-hip ratio: Report of a 
WHO expert consultation, Geneva, (2008). Available online at: https://apps.who.int/iris/
handle/10665/44583

 23. Ochoa Sangrador C, Ochoa-Brezmes J. Waist-to-height ratio as a risk marker for 
metabolic syndrome in childhood. A meta-analysis. Pediatr Obes. (2018) 13:421–32. doi: 
10.1111/ijpo.12285

 24. Petta S, Amato M, Cabibi D, Cammà C, Di Marco V, Giordano C, et al. Visceral 
adiposity index is associated with histological findings and high viral load in patients 
with chronic hepatitis C due to genotype 1. Hepatology. (2010) 52:1543–52. doi: 
10.1002/hep.23859

 25. Ejtahed HS, Kelishadi R, Hasani-Ranjbar S, Angoorani P, Motlagh ME, Shafiee G, 
et al. Discriminatory ability of visceral adiposity index as an indicator for modeling 
cardio-metabolic risk factors in pediatric population: the CASPIAN-V study. J 
Cardiovasc Thorac Res. (2019) 11:280–86. doi: 10.15171/jcvtr.2019.46

 26. Deurenberg P, Weststrate JA, Seidell JC. Body mass index as a measure of body 
fatness: age- and sex-specific prediction formulas. Br J Nutr. (1991) 65:105–14. doi: 
10.1079/bjn19910073

 27. Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, et al. Italian cross-
sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Investig. 
(2006) 29:581–93. doi: 10.1007/BF03344156

 28. Kagawa M, Byrne NM, Hills AP. Comparison of body fat estimation using 
waist:height ratio using different “waist” measurements in Australian adults. Br J Nutr. 
(2008) 100:1135–41. doi: 10.1017/S0007114508966095

 29. Lukaski HC. Methods for the assessment of human body composition: traditional 
and new. Am J Clin Nutr. (1987) 46:537–56. doi: 10.1093/ajcn/46.4.537

 30. Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A. Comparison of 
dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical 
impedance analysis for the assessment of body composition in severely obese Caucasian 
children and adolescents. Br J Nutr. (2008) 100:918–24. doi: 10.1017/S0007114508922558

 31. Talma H, Chinapaw MJM, Bakker B, Hirasing RA, Terwee CB, Altenburg TM. 
Bioelectrical impedance analysis to estimate body composition in children and 
adolescents: a systematic review and evidence appraisal of validity, responsiveness, 
reliability and measurement error. Obes Rev. (2013) 14:895–905. doi: 10.1111/obr.12061

 32. Thivel D, Verney J, Miguet M, Masurier J, Cardenoux C, Lambert C, et al. The 
accuracy of bioelectrical impedance to track body composition changes depends on the 
degree of obesity in adolescents with obesity. Nutr Res. (2018) 54:60–8. doi: 
10.1016/j.nutres.2018.04.001

 33. Weir JB, De V. New methods for calculating metabolic rate with special reference 
to protein metabolism. J Physiol. (1949) 109:1–9. doi: 10.1113/jphysiol.1949.sp004363

 34. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl 
Physiol Respir Environ Exerc Physiol. (1983) 55:628–34. doi: 10.1152/jappl.1983.55.2.628

 35. Zimmet P, Alberti GKMM, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The 
metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr 
Diabetes. (2007) 8:299–306. doi: 10.1111/j.1399-5448.2007.00271.x

 36. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. 
Homeostasis model assessment: insulin resistance and β-cell function from fasting 
plasma glucose and insulin concentrations in man. Diabetologia. (1985) 28:412–19. doi: 
10.1007/BF00280883

 37. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. 
Harmonizing the metabolic syndrome: a joint interim statement of the international 
diabetes federation task force on epidemiology and prevention; national heart, lung, and 
blood institute; American heart association; world heart federation; international 
atherosclerosis society; and international association for the study of obesity. Circulation. 
(2009) 120:1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644

 38. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio 
as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could 
be  a suitable global boundary value. Nutr Res Rev. (2010) 23:247–69. doi: 
10.1017/S0954422410000144

 39. Radetti G, Fanolla A, Grugni G, Lupi F, Sartorio A. Indexes of adiposity and body 
composition in the prediction of metabolic syndrome in obese children and adolescents: 
which is the best? Nutr Metab Cardiovasc Dis. (2019) 29:1189–96. doi: 
10.1016/j.numecd.2019.06.011

 40. Wakabayashi I, Daimon T. The “cardiometabolic index” as a new marker 
determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin 
Chim Acta (2015) 438:274–278. doi: 10.1016/j.cca.2014.08.042

 41. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. 
Visceral adiposity index: a reliable indicator of visceral fat function associated with 
cardiometabolic risk. Diabetes Care. (2010) 33:920–2. doi: 10.2337/dc09-1825

 42. Gurka MJ, Ice CL, Sun SS, DeBoer MD. A confirmatory factor analysis of the 
metabolic syndrome in adolescents: an examination of sex and racial/ethnic differences. 
Cardiovasc Diabetol. (2012) 11. doi: 10.1186/1475-2840-11-128

 43. Meinshausen N, Bühlmann P. Stability selection. J R Stat Soc Series B Stat Methodol. 
(2010) 72:417–73. doi: 10.1111/j.1467-9868.2010.00740.x

 44. Mari L, Lazzer S, Gatti A, D’Alleva M, Zaccaron S, Stafuzza J, et al. Visceral 
adiposity, anthropometric and liver function indexes for identifying metabolic 
dysfunction associated Steatotic liver disease (MASLD) in adolescents with obesity: 
which performs better? J Clin Med. (2025) 14. doi: 10.3390/jcm14062085

 45. Vizzuso S, Del Torto A, Dilillo D, Calcaterra V, Di Profio E, Leone A, et al. Visceral 
adiposity index (VAI) in children and adolescents with obesity: no association with daily 
energy intake but promising tool to identify metabolic syndrome (MetS). Nutrients. 
(2021) 13. doi: 10.3390/nu13020413

 46. Ritchie SA, Connell JMC. The link between abdominal obesity, metabolic 
syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. (2007) 17:319–26. 
doi: 10.1016/j.numecd.2006.07.005

 47. Kelsey MM, Forster JE, Van Pelt RE, Reusch JEB, Nadeau KJ. Adipose tissue 
insulin resistance in adolescents with and without type 2 diabetes. Pediatr Obes. (2014) 
9:373–80. doi: 10.1111/j.2047-6310.2013.00189.x

 48. Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A. Tumor necrosis factor 
α-induced phosphorylation of insulin receptor Substrate-1 (IRS-1). J Biol Chem. (1995) 
270:23780–4. doi: 10.1074/jbc.270.40.23780

 49. Murray B, Rosenbloom C. Fundamentals of glycogen metabolism for coaches and 
athletes. Nutr Rev. (2018) 76:243–59. doi: 10.1093/NUTRIT/NUY001

 50. Purdom T, Kravitz L, Dokladny K, Mermier C. Understanding the factors that 
effect maximal fat oxidation. J Int Soc Sports Nutr. (2018) 15:3–10. doi: 
10.1186/s12970-018-0207-1

 51. Men J, Zou S, Ma J, Xiang C, Li S, Wang J. Effects of high-intensity interval training 
on physical morphology, cardiorespiratory fitness and metabolic risk factors of 
cardiovascular disease in children and adolescents: a systematic review and metaanalysis. 
PLoS One. (2023) 18:e0271845. doi: 10.1371/journal.pone.0271845

 52. Weihrauch-Blüher S, Schwarz P, Klusmann J-H. Childhood obesity: increased risk 
for cardiometabolic disease and cancer in adulthood. Metabolism. (2019) 92:147–52. doi: 
10.1016/j.metabol.2018.12.001

 53. Denimal D. Antioxidant and anti-inflammatory functions of high-density 
lipoprotein in type 1 and type 2 diabetes. Antioxidants. (2024) 13. doi: 
10.3390/antiox13010057

 54. Vinciguerra F, Tumminia A, Baratta R, Ferro A, Alaimo S, Hagnäs M, et al. 
Prevalence and clinical characteristics of children and adolescents with metabolically 
healthy obesity: role of insulin sensitivity. Life. (2020) 10. doi: 10.3390/life10080127

 55. D’Alleva M, Lazzer S, Tringali G, De Micheli R, Bondesan A, Abbruzzese L, et al. 
Effects of combined training or moderate intensity continuous training during a 3-week 
multidisciplinary body weight reduction program on cardiorespiratory fitness, body 
composition, and substrate oxidation rate in adolescents with obesity. Sci Rep. (2023) 
13:17609. doi: 10.1038/s41598-023-44953-3

 56. Rodríguez-Gómez I, Martín-García M, Alegre LM, García-Cuartero B, González-
Vergaz A, Carcavilla A, et al. Fat oxidation rates during exercise in pre-pubertal children: 
the role of obesity, fitness and lean mass. Med Sci Sports Exerc. (2025) 57:1333–41. doi: 
10.1249/MSS.0000000000003690

 57. Chung YL, Rhie Y-J. Metabolic syndrome in children and adolescents. The Ewha 
Medical Journal. (2022) 45. doi: 10.12771/emj.2022.e13

 58. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. 
Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. (2004) 
350:2362–74. doi: 10.1056/NEJMoa031049

https://doi.org/10.3389/fnut.2025.1624696
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.1007/s10552-017-0869-z
https://doi.org/10.1136/bmj.320.7244.1240
https://apps.who.int/iris/handle/10665/44583
https://apps.who.int/iris/handle/10665/44583
https://doi.org/10.1111/ijpo.12285
https://doi.org/10.1002/hep.23859
https://doi.org/10.15171/jcvtr.2019.46
https://doi.org/10.1079/bjn19910073
https://doi.org/10.1007/BF03344156
https://doi.org/10.1017/S0007114508966095
https://doi.org/10.1093/ajcn/46.4.537
https://doi.org/10.1017/S0007114508922558
https://doi.org/10.1111/obr.12061
https://doi.org/10.1016/j.nutres.2018.04.001
https://doi.org/10.1113/jphysiol.1949.sp004363
https://doi.org/10.1152/jappl.1983.55.2.628
https://doi.org/10.1111/j.1399-5448.2007.00271.x
https://doi.org/10.1007/BF00280883
https://doi.org/10.1161/CIRCULATIONAHA.109.192644
https://doi.org/10.1017/S0954422410000144
https://doi.org/10.1016/j.numecd.2019.06.011
https://doi.org/10.1016/j.cca.2014.08.042
https://doi.org/10.2337/dc09-1825
https://doi.org/10.1186/1475-2840-11-128
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.3390/jcm14062085
https://doi.org/10.3390/nu13020413
https://doi.org/10.1016/j.numecd.2006.07.005
https://doi.org/10.1111/j.2047-6310.2013.00189.x
https://doi.org/10.1074/jbc.270.40.23780
https://doi.org/10.1093/NUTRIT/NUY001
https://doi.org/10.1186/s12970-018-0207-1
https://doi.org/10.1371/journal.pone.0271845
https://doi.org/10.1016/j.metabol.2018.12.001
https://doi.org/10.3390/antiox13010057
https://doi.org/10.3390/life10080127
https://doi.org/10.1038/s41598-023-44953-3
https://doi.org/10.1249/MSS.0000000000003690
https://doi.org/10.12771/emj.2022.e13
https://doi.org/10.1056/NEJMoa031049

	The role of body composition, cardiometabolic parameters, and resting substrate oxidation in protecting against metabolic syndrome in adolescents with obesity
	Introduction
	Materials and methods
	Study group
	Measurements
	Physical characteristics and body composition measurement
	Basal metabolic rate
	Blood pressure measurements
	Laboratory analyses
	MetS indexes
	Statistical analyses

	Results
	Physical characteristics of the study group
	Protective and risk factors for MetS
	MetS risk score

	Discussion

	References

