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Objective: Xianyu capsule (XYC) is a commonly used traditional Chinese 
medicine in the clinical treatment of epilepsy, with significant curative effect 
and good safety. However, its mechanism of action remains poorly understood. 
This research employed a multi-omics approach to systematically evaluate the 
anti-epileptic efficacy of XYC and elucidate its underlying mechanisms.

Methods: Epilepsy rat model was established by lithium-pilocarpine 
hydrochloride injection. XYC was administered and the effects and mechanism 
was analyzed with H&E and Nissl staining, TUNEL assay, ELISA assay for 
inflammatory cytokines, 16S rDNA, non-targeted metabolomics and network 
pharmacology. The potential target were experimentally validated with RT-
qPCR and Western blotting analysis.

Results: XYC administration ameliorated the pathological changes and neurons 
apoptosis of brain hippocampus CA1 region, with reduced MDA and increased 
SOD and CAT levels in hippocampus, and decreased inflammation cytokine 
in serum. 16S rDNA sequencing revealed distinct gut microbial restructuring 
in XYC-treated epileptic models, characterized by phylum-level alterations 
in lipid-associated taxa (Tenericutes, Patescibacteria, Epsilonbacteraeota, 
Proteobacteria) and genus-level modulations (Lactobacillus, Ramboutsia, 
Staphylococcus). Serum metabolomics identified 149 differentially expressed 
metabolites positively correlated with XYC’s anti-epileptic effects, predominantly 
enriched in glycerophospholipid metabolic pathways. Network pharmacology 
identified AKT1, INS, and IL-6 as pivotal mediators of XYC’s therapeutic effects, 
which were subsequently validated with Western blotting and ELISA assay.

Conclusion: Our results proved that XYC exerted favorable effect on epilepsy 
by modulating the gut microbiota and serum lipid metabolic, especially 
neuroinflammation and glycerophospholipid metabolism by regulating the 
AKT1, INS and IL-6 expression levels. In addition, targeting neuroinflammatory 
pathways and modulating glycerophospholipid metabolism may represent a 
promising therapeutic strategy for epilepsy management.
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1 Introduction

As a disabling neurological condition affecting people of all ages, 
races, and geographical regions, epilepsy manifests in over 65 million 
patients worldwide, with China accounting for 15.4% of the total 
burden (10 million cases). The hallmark neuropathological feature 
involves paroxysmal cerebral network dysregulation caused by 
pathological neuronal hypersynchrony. With an annual incidence of 
approximately 650,000 new cases worldwide, this condition 
demonstrates significant etiological heterogeneity and substantial 
heritability (1–3). Epilepsy is a disease associated with various 
etiologies and risk factors, and exhibits high heritability . Clinical 
studies indicate that, nearly 30–40% epilepsy cases demonstrate 
resistance to conventional antiepileptic drugs , while 60% of epileptic 
seizures are idiopathic (4). While current clinical arsenals comprise 
more than 30 antiseizure drugs, 30–35% of epilepsy patients develop 
pharmacoresistance, with seizure recurrence rates exceeding 50% 
despite optimized antiseizure drugs regimens (5). Therefore, it is 
necessary to further explore the pathogenesis and effective treatment 
methods of epilepsy.

Accumulating evidence indicates that seizure episodes are closely 
associated with a cascade of inflammatory cytokine upregulation, 
which drives neuroinflammatory processes, exacerbates cerebral 
pathophysiology, and facilitates ictal propagation. Notably, immune 
responses have been implicated in initiating sustained 
neuroinflammatory cascades that contribute to the molecular 
mechanisms underlying epileptogenesis (6, 7). And there is a potential 
interaction between gut microbiota and neuroinflammation in central 
nervous system (CNS) disorder diseases, including Alzheimer’s 
disease, multiple sclerosis and Parkinson’s disease (8, 9). The gut 
microbiota modulates CNS activity via microbial metabolites, 
neurotransmitters, and immune-inflammatory signaling, while the 
CNS influences gut microbial composition through neuroendocrine 
pathways, conversely. This bidirectional communication system is 
termed the gut-brain axis (10). The bidirectional gut-brain axis 
communication is significantly mediated by intestinal flora 
metabolites, with short-chain fatty acids (SCFAs), lipopolysaccharides 
(LPS), and amino acids serving as critical mediators in modulating 
neuroinflammation and maintaining CNS homeostasis. These 
microbiota-generated metabolites modulate critical neural 
mechanisms including blood–brain barrier integrity maintenance, 
myelin formation, neuronal regeneration, and microglial development. 
Furthermore, they modulate various aspects of animal behavior, 
demonstrating the microbiota-brain axis’s critical role in CNS 
functionality (11–13). The gut-brain axis functions bidirectionally, 
with the CNS modulating gut physiology through autonomic 
pathways. Neural control of digestive processes—including secretion 
of intestinal peptides and mucus—along with CNS-mediated 
regulation of mucosal immunity, collectively shapes the gut 
microenvironment. These neurogenic influences create dynamic 
habitat conditions that directly affect microbial colonization and 
population dynamics (14, 15). Epileptic patients, particularly 

pharmacoresistant cases, demonstrate characteristic gut microbial 
dysbiosis and topographical reorganization relative to healthy controls 
(16, 17). These dysbiotic patterns may reflect disease-specific microbial 
signatures associated with seizure pathogenesis.

Recent studies have revealed that both individuals with epilepsy 
and preclinical animal models exhibit characteristic gut dysbiosis. 
Liu et  al. (18) demonstrated that epilepsy patients exhibit 
microbiome dysbiosis, while the clinical findings were corroborated 
in animal models, where metagenomic analysis of epileptic rats 
showed an elevated Bacteroidota-to-Firmicutes ratio compared to 
controls (19). Complementing these results, Oliveira et  al. (20) 
reported reduced microbial diversity (lower Chao1 index) in 
lithium-pilocarpine-induced epileptic rats, along with increased 
Desulfobacterota and decreased Patescibacteria abundance at the 
phylum level. The consistent dysbiosis patterns across species 
suggest intestinal microbiome emerges as a dual-function 
modulator in epilepsy pathogenesis (17, 21). Notably, fecal 
microbiota transplantation has demonstrated anti-seizure efficacy 
in human patients, canines, and rodent models (22, 23), collectively 
validating the microbiota-brain axis dysregulation hypothesis 
in epileptogenesis.

Disordered lipid homeostasis constitutes a central etiological 
factor in epileptogenesis, manifesting specifically through 
dysregulated metabolism of triglycerides (TGs), cholesterol 
(CHOL), and fatty acid (FA) (24). Clinical and preclinical studies 
demonstrate that epilepsy induces lipid metabolic reprogramming 
through FA-associated signaling pathways in both pediatric 
patients and rodent models (25, 26). This metabolic disruption 
manifests as elevated TG accumulation, impaired CHOL 
homeostasis (inhibited efflux and enhanced influx), and reduced 
FA β-oxidation. These alterations promote reactive oxygen species 
(ROS) generation, exacerbating neuroinflammation and neuronal 
apoptosis (27). Additionally, epilepsy progression involves 
abnormal metabolism of SLs (crucial for neurodevelopment) and 
phospholipids (essential membrane components) (28, 29). The 
ketogenic diet (KD) has emerged as an effective therapeutic 
strategy for epileptic pharmacoresistant cases. This high-fat, 
adequate-protein, low-carbohydrate intervention induces ketone 
bodies (β-hydroxybutyrate, acetoacetate, and acetone) 
concomitant with elevated serum CHOL and TG concentrations. 
The KD demonstrates anticonvulsant efficacy via multimodal 
mechanisms: stabilizing neuronal hyperexcitability, optimizing 
mitochondrial energetics, and restructuring enteric microbial 
ecology (30, 31). These findings position lipid metabolism 
modulation as a promising therapeutic paradigm for epilepsy 
management (32).

Xianyu Capsule (XYC), a traditional Chinese medicine (TCM) 
formulation, is clinically employed as an antiepileptic therapeutic 
agent, formulated by modifying and combining two classical TCM 
prescriptions: Qianzheng San (Symmetry-Restoring Powder) and 
Tianma Gouteng Yin (Gastrodia-Uncaria Decoction), with phlegm-
resolving and consciousness-restoring, sedative and anticonvulsant, 
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wind-extinguishing and spasmolytic effect. XYC containing 16 
medicinal compounds (Hedysarum Multijugum Maxim., Codonopsis 
Radix, Radix Salviae, Radix Bupleuri, Ziziphi Spinosae Semen, Polygala 
tenuifolia Willd., Rhizom Gastrodiae, Uncariae Ramulus Cumuncis, 
Curcumae Radix, Arisaema Cum Bile, Angelicae Sinensis Radix, 
Acoritataninowii Rhizoma, Bombyx Batryticatus, Massa Medicata 
Fermentata, licorice and Typhonii Rhizoma, and Glycyrrhiza uralensis 
Fisch.). XYC has been used in the treatment of epilepsy for more than 
twenty years in clinical settings (SFDA approval number: Z20025728). 
However, the precise molecular underpinnings remain 
incompletely elucidated.

In this study, we employed a lithium-pilocarpine hydrochloride 
induced rat model of epilepsy to evaluate the neuroprotective effects 
of XYC. A multi-omics approach was implemented, combining 
untargeted serum metabolomics, gut microbiomics, and network 
pharmacology analysis to comprehensively assess XYC’s 
protective mechanisms.

2 Materials and methods

2.1 Chemical and reagents

Xianyu Capsule (XYC, Lot #20220401) was obtained from Xi’an 
Chiho Pharmaceutical Co., Ltd. (Xi’an, China). Pilocarpine 
hydrochloride (#HY-B0726) was purchased from MCE (Shanghai, 
China). Malondialdehyde (MDA, #A003-1) and Superoxide dismutase 
(SOD, #A001-3) assay kits were purchased from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China). TUNEL BrightRed 
Apoptosis Detection Kit (#A113-02) were obtained from Vazyme 
Biotech Co., Ltd. (Nanjing, China). Akt1-Specific Recombinant 
antibody (#80816-1-RR) and Alpha Tubulin polyclonal antibody 
(#11224-1-AP) were acquired from Proteintech (Wuhan, China). 
ELISA assay kit for IL-6 (#E-EL-R0015), TNF-α (#E-EL-R2856), IL-1β 
(#E-EL-R0012) were obtained from Elabscience Biotechnology Co., 
Ltd. (Wuhan, China).

2.2 UPLC-MS analysis of XYC

XYC constituents were analyzed with UPLC-Orbitrap-MS as 
previously described (33). Chromatography on Waters HSS T3 
column (100 × 2.1 mm, 1.8 μm). High-resolution mass spectrometric 
data were acquired using Q Exactive HFX Hybrid Quadrupole-
Orbitrap instrument (Thermo Fisher Scientific) equipped with a 
heated ESI source and operating in Full-ms/ddMS2 mode.

2.3 Lithium-pilocarpine 
hydrochloride-induced epileptic rat model

SD rats (180–220 g) were purchased from SLAC Laboratory 
Animal Co., Ltd. (Shanghai, China), and housed under specific 
pathogen-free (SPF) conditions at the laboratory animal center of the 
First Affiliated Hospital of Zhengzhou University, with 22 ± 2°C 
temperature, 50% humidity, 12 h light/dark cycle, and ad libitum 
access to food and water. According to clinical application, the dosage 
of XYC and CBZ is 6.6 g and 1.2 g per person per day, respectively. 

Based on the body surface area normalization from rodent-to-human 
equivalent dose conversion, the equivalent dose for rat is 0.70 g/kg 
and 0.125 g/kg per day. Thirty rats were randomly assigned to five 
groups (Control, Model, CBZ, XYC 0.35 g/kg and 0.70 g/kg group) 
using a computer-generated block randomization scheme (block 
size = 6) to ensure balanced distribution of body weights and baseline 
metabolic parameters. Randomization was performed by an 
independent researcher not involved in data collection, and group 
allocation was concealed until interventions began. After 7 days of 
adaptive feeding, the rats were administered with CBZ or XYC by 
gavage for 14 days. The dosage of CBZ was 0.125 g/kg, the high 
dosage of XYC was 0.70 g/kg, and the low dosage was 0.35 g/kg. On 
the 15th day, epilepsy was induced as previously described (34, 35). 
Following an initial intraperitoneal (i.p.) administration of lithium 
chloride (3 mmol/kg), rats received pilocarpine (35.3 mg/kg, i.p.) 
20 h post-injection. Seizures manifested 15–35 min post-induction 
and were quantified over 30 min using the established modified 
Racine scale (36). The seizures were terminated with 10% chloral 
hydrate saline solution 1 h after the seizures. The epileptic rats were 
housed with food and water available ad libitum. After 7 days of 
continuous intragastric administration, the rats were sacrificed, blood 
was collected for metabonomic detection. The cecal contents were 
collected for 16S rDNA sequencing. The hippocampal tissues were 
collected for the determination of MDA, SOD and pathological 
observation. Throughout the experiment, investigator blinding and 
outcome assessor blinding was implemented. Ethical approval (2023-
KY-1341) was granted by the Research Ethics Committee at 
Zhengzhou University First Hospital, with informed consent 
obtained following NIH guidelines for animal welfare.

2.4 Biochemical analysis

The catalase activity analysis was added here: “Catalase (CAT) 
activity was quantified by measuring the absorbance at 405 nm of a 
yellow-colored complex formed between residual H₂O₂ and 
ammonium molybdate, which reflects the remaining H₂O₂ after 
catalase-mediated decomposition.”

2.5 ELISA

The serum concentrations of proinflammatory cytokines (IL-6, 
TNF-α, and IL-1β) were determined via ELISA according to 
manufacturer protocols. Absorbance measurements at 450 nm were 
performed on a Varioskan LUX multimode microplate reader.

2.6 Hematoxylin and eosin and Nissl 
staining

Following intervention, hippocampal specimens were 
immediately immersion-fixed in 4% paraformaldehyde. Gradient 
ethanol dehydration preceded paraffin embedding. Serial coronal 
sections (5 μm thickness) were obtained for subsequent histological 
processing, including hematoxylin & eosin (H&E) and cresyl violet-
based Nissl staining (37). Histopathological scoring was performed by 
two independent pathologists blinded to treatment conditions.
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2.7 16S rDNA sequencing

The isolation of total DNA from intestinal microbiota, followed 
PCR reaction and sequencing were performed as described before 
(38). RDP classifier1 was used to annotate the representative 
sequences after clustering, and a threshold of 70% was set against the 
Silva database (SSU128/16 s bacteria). Using the R language tool to 
draw the community histogram, we  determined the structural 
composition of different groups of the bacterial community at the 
phylum and generic levels.

2.8 Ultra high performance liquid 
chromatography quadrupole time-of-flight 
mass spectrometry for untargeted 
metabolomics in serum

For metabolomics analysis, serum were collected after treatment. 
The chromatographic conditions in UHPLC system and the QExactive 
high-resolution system for mass spectrometry systems were conducted 
as previously described (39, 40).

Briefly, Serum were vortexed with methanol/acetonitrile (1:1, v/v), 
centrifuged (4°C 14,000 × g for 20 min), and the resultant supernatant 
lyophilized before reconstitution in acetonitrile/water (1:1, v/v).

UHPLC system (Vanquish, Thermo) with HILIC column were 
used. Mobile phase: A = 25 mM ammonium acetate/hydroxide, 
B = acetonitrile. Gradient: 98% B (1.5 min) to 2% B (10.5 min), held 
2 min, rapidly restored to 98% B (0.1 min) with 3 min re-equilibration 
in both ESI modes.

Processed raw MS data (ProteoWizard) using XCMS with centWave 
(peakwidth = 10–60, m/z = 10 ppm) and grouping parameters 
(mzwid = 0.025, bw = 5). CAMERA annotated isotopes/adducts. 
Metabolites were identified via m/z (<10 ppm) and MS/MS matching 
against an authentic standards database. Normalized data underwent 
multivariate analysis (Pareto-scaled PCA/OPLS-DA) via ropls. Model 
robustness was verified by 7-fold cross-validation/permutation tests.

2.9 Network pharmacology analyze

Bioactive constituents of XYC’s constituent herbs were systematically 
curated from the Traditional Chinese Medicine Systems Pharmacology 
(TCMSP, https://tcmspw.com/tcmsp.php) or BATMN-TCM2 using the 
keywords “Hedysarum Multijugum Maxim.,” “Codonopsis Radix,” 

1 http://rdp.cme.msu.edu/

2 http://bionet.ncpsb.org.cn/batman-tcm

“Radix Salviae,” “Radix Bupleuri,” “Ziziphi Spinosae Semen,” “Polygala 
tenuifolia Willd.,” “Rhizom Gastrodiae,” “Uncariae Ramulus Cumuncis,” 
“Acoritataninowii Rhizoma,” “Arisaema Cum Bile,” “Angelicae Sinensis 
Radix,” “Bombyx Batryticatus,” “Massa Medicata Fermentata,” 
“Curcumae Radix,” “licorice” and “Typhonii Rhizoma.” Then screen the 
retrieved compounds by ADME parameters (oral bioavailability 
(OB) ≥ 30%, drug-likeness (DL) ≥ 0.18) (41). Epilepsy-related disease 
targets were obtained from OMIM,3 DisGeNET,4 and GeneCards 
databases.5 Then XYC-epilepsy-related target screening and PPI network 
construction were obtained as previously described (42).

2.10 RT-qPCR

Total RNA from hippocampal tissues were isolated using TRIzol 
and reversed into cDNA. RT-qPCR was conducted using SYBR qPCR 
Master Mix (#A57155, Applied Biosystems, MA, United  States). 
Primers sequences were listed in Table 1.

2.11 Western blotting assay

Hippocampal protein was extracted using ice-cold RIPA lysis 
buffer (#R0010, Solarbio) supplemented with 1% protease/
phosphatase inhibitor cocktail (#P1260, Solarbio, Beijing, China), and 
then separated with SDS-PAGE, and PVDF membranes were used for 
the incubation of primary antibodies followed by secondary 
antibodies, and ECL substrate for visualizing the results.

2.12 Statistical analysis

Statistical analyses were conducted with SPSS Statistics (v19.0, 
IBM Corp.) using the mean ± standard error of mean (SEM). The 
significance between three or more groups was determined by 
one-way ANOVA, with p < 0.05 considered statistically significant.

3 Results

3.1 Chemical components of XYC

The chemical constituents of XYC were identified by UPLC-MS 
analysis. Our study revealed that XYC contains abundant 

3 https://www.omim.org/

4 https://www.disgenet.org/

5 https://www.genecards.org/

TABLE 1 Primer sequences used in RT-qPCR.

Target Forward (5′-3′) Reverse (5′-3′)

Il-6 CACTTCACAAGTCGGAGGCT TCTGACAGTGCATCATCGCT

Ins CAGGACAGGCTGCATCAGAA TTCCCCGCACACTAGGTAGA

Akt1 ATGAACGACGTAGCCATTGTG TTGTAGCCAATAAAGGTGCCAT

Gapdh ACGGGAAACCCATCACCATC ACGACATACTCAGCACCAGC
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constituents, including organic oxygen compounds, 
phenylpropanoids and polyketides, benzenoids, organoheterocyclic 
compounds and lipids and lipid-like molecules. A total of 904 
compounds were identified, the positive and negative ion flow 
chromatography were shown in Figure 1 and the top ten anionic 
and cationic constituents, ranked by peak area, were presented in 
Table 2.

3.2 XYC treatment alleviated seizure in 
lithium-pilocarpine-induced acute epilepsy 
rat model

To delineate XYC’s anti-epileptic pharmacodynamics, 
we  established a lithium-pilocarpine rat model of acute 
epileptogenesis. A schematic overview of the treatment regimen and 
experimental workflow is presented in Figure 2A. Treatment with 
CBZ and XYC significantly prolonged the seizure latency and reduced 
the seizure frequency induced by pilocarpine in rat models of epilepsy 
(Table 3). H&E staining results found that, the hippocampal CA1 
region tissues in the control group exhibited normal cellular 
morphology with neatly arranged cells, abundant cytoplasm, and 
large, round nuclei. In contrast, the model group showed a noticeable 
reduction in cell count, accompanied by a loose and disorganized 
arrangement. The cytoplasm appeared deeply stained, with evident 
nuclear dissolution and fragmentation, along with vacuolated 
manifestations. Both the CBZ and XYC groups demonstrated 
improved hippocampal cellular characteristics compared to the model 
group. Specifically, these groups exhibited increased cell density, 
gradual restoration of normal cellular morphology, and better-
organized cellular alignment. Furthermore, the pathological 
manifestations of nuclear fragmentation and pyknosis were 
significantly alleviated (Figure 2B).

As shown in Figure 2C, Nissl staining revealed morphological 
changes of hippocampal CA1 neurons. Neurons in control group 
showing neatly arranged with intact morphology and clearly 
discernible Nissl bodies. While, model group exhibited a significant 
neuronal loss accompanied by disorganized cellular alignment and 
enlarged intercellular spaces. However, the CBZ and XYC treatment 
groups exhibited partial preservation of neuronal architecture in the 
hippocampal CA1 region, though with distinct pathological features. 

While neurons in these groups maintained relatively intact cellular 
morphology with preserved structural integrity, mild disorganization 
in cellular alignment was observed. Notably, Nissl body staining 
intensity demonstrated moderate attenuation, coupled with 
discernible enlargement of intercellular spaces. Despite these 
morphological alterations, the majority of neurons retained detectable 
viability and functional capacity. Quantitative analysis of TUNEL-
positive cells combined with nuclear counterstaining revealed that 
both CBZ and XYC treatments significantly reduced apoptosis in CA1 
neurons compared to the Model group (Figure 2D). Furthermore, the 
H&E staining of the liver and kidneys of each group were observed, 
and found that CBZ and XYC treatment did not changed the tissue 
morphology and showing no toxicity on liver and kidney (Figure 2E). 
These consistent findings across multiple staining techniques 
demonstrate that XYC pretreatment effectively mitigates seizure-
induced neuronal injury in the hippocampal CA1 region.

3.3 Effect of XYC on lipid peroxidation and 
inflammation in lithium-pilocarpine-induced 
acute epilepsy rats

Neuroinflammation and oxidative stress represent pivotal 
mechanisms underlying epileptogenesis, with their 
pathophysiological contributions being linked to elevated disease 
susceptibility (43). Consequently, interventions that targeting these 
dual pathological processes may provide effective therapeutic 
strategies for mitigating epileptogenesis. As shown in Figure  3, 
biochemical analyses revealed that epilepsy induction significantly 
elevated MDA levels while reducing SOD activity and CAT content 
in hippocampal tissues, indicating pronounced oxidative stress. 
Both CBZ and XYC treatments effectively attenuated these 
pathological changes, demonstrating significant reductions in MDA 
content and restoration of SOD activity and CAT contents 
compared to untreated epileptic controls (Figure 3A). Furthermore, 
ELISA assay found that IL-6, TNF-α and IL-1β pro-inflammation 
cytokine levels were significantly increased in epileptic rats, while 
both CBZ and XYC treatments effectively reversed this upward 
trend (Figure 3B). These findings demonstrate that XYC treatment 
not only induced anti-oxidant but also anti-inflammatory properties 
in epilepsy rats.

FIGURE 1

Total ion chromatograms of XYC in negative (A) and positive (B) ion modes.
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3.4 Effect of XYC on gut microbiota profiles 
in lithium-pilocarpine-induced acute 
epilepsy rats

Emerging research has revealed that sophisticated interactions 
between gut microbiota and cerebral functions are mediated 
through an integrated network of cellular signaling mechanisms 
and neural communication circuits, collectively termed the 
“bidirectional microbiota-gut-brain axis” (44). Elucidating the 
microbiota’s dual role in both epileptogenesis processes and 
anticonvulsant therapeutic interventions could fundamentally 
advance our understanding of the neurobiological foundations 
underlying seizure disorders.

To elucidate the impact of XYC on intestinal homeostasis, 16S 
rDNA were amplified followed by bioinformatic analysis. Alpha 

diversity analysis (Chao1 index, Shannon index, and Observed 
OTUs) demonstrated significant microbial community changes 
following epilepsy induction and XYC treatment. While rank 
abundance curves and diversity indices showed comparable bacterial 
composition patterns among Control, Model, and XYC 0.7 groups 
(Figures 4A–C), quantitative analysis revealed distinct differences. 
The Model group exhibited significantly reduced species richness 
(Chao1 index, p < 0.05) compared to controls, consistent with 
established microbiota depletion in epilepsy (45). XYC treatment 
effectively restored microbial diversity, significantly increasing both 
the Chao1 index and Shannon diversity (p < 0.05 versus Model 
group, Figure  4D). Beta diversity analysis using PLS-DA 
demonstrated clear separation of gut microbiota communities among 
the three groups (Figure 4E). Venn diagram analysis at the OTU level 
identified 2067, 1,591, and 1972 operational taxonomic units in 

TABLE 2 Characterization of components in XYC by UHPLC Q/Exactive HFX MS.

No. Metabolite Formula Rt/
min

Mass 
Error 
(ppm)

m/z Mode Adducts Pubchem_
ID

Class

1 Parishin E C19H24O13 4.06 −1.25 459.11 neg M-H 91,973,797 Organooxygen 

compounds

2 Salvianolic acid A C26H22O10 6.71 −1.51 493.11 neg M-H, 2 M-H 5,281,793 Stilbenes

3 4-Hydroxyphenylpyruvic 

acid

C9H8O4 2.08 1.18 197.05 neg M-H, M-H + H2O 979 Benzene and 

substituted derivatives

4 Danshensu C9H10O5 2.08 −2.26 395.10 neg 2 M-H 11,600,642 Phenylpropanoic acids

5 Citric acid C6H8O7 0.95 −1.85 191.02 neg M-H

6 Parishin C C32H40O19 4.94 −0.76 727.21 neg M-H 10,676,408 Organooxygen 

compounds

7 3-Furfuryl 

2-pyrrolecarboxylate

C10H9NO3 2.23 −2.15 236.06 neg M + HCOO 189,695 Pyrroles

8 Cryptochlorogenic acid C16H18O9 3.62 −1.77 353.09 neg M-H 9,798,666 Organooxygen 

compounds

9 Licoricesaponin G2 C42H62O17 8.04 −0.89 837.39 neg M-H 14,891,565 Prenol lipids

10 Neoagarobiose C12H20O10 1.08 −2.19 323.10 neg M-H, 2 M-H 54,758,702 Organooxygen 

compounds

11 Dihydroobovatin C20H20O4 5.16 −0.81 342.17 pos M + NH4 73,554,083 Flavonoids

12 glycocholic acid C26H43NO6 8.16 −0.79 430.29 pos M + H-2H2O, 

M + H, M + Na, 

2 M + H, M + K, 

M + H-H2O, 

M + NH4

10,140 Steroids and steroid 

derivatives

13 Hirsuteine C22H26N2O3 7.65 −0.83 367.20 pos M + H

14 Maltol C6H6O3 1.98 −4.81 145.05 pos M + H2O + H 8,369 Pyrans

15 Corynoxeine C22H26N2O4 6.55 −1.11 383.20 pos M + H 10,475,115 Indolizidines

16 Hypoxanthine C5H4N4O 1.20 −3.82 136.06 pos M + NH4-H2O 135,398,638 Imidazopyrimidines

17 Octadecyl caffeate C27H44O4 11.22 −2.00 496.34 pos M + CH3CN + Na 5,320,237 Cinnamic acids and 

derivatives

18 Allo-Yohimbine C21H26N2O3 7.26 −1.01 355.20 pos M + H

19 8-Acetyl-7-

Hydroxycoumarin

C11H8O4 7.43 7.51 309.09 pos M + 2CH3CN + Na 5,411,574 Coumarins and 

derivatives

20 Citrulline C6H13N3O3 1.00 −0.30 158.09 pos M + H-H2O 9,750 Carboxylic acids and 

derivatives
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FIGURE 2

XYC treatment alleviated seizure in lithium-pilocarpine-induced acute epilepsy rats. (A) Schematic of the rat epilepsy model construction and XYC 
administration. (B–D) Hippocampus CA1 region tissues were collected and the histological changes were assessed using H&E and Nissl staining. 
(B) Representative images of H&E staining (Scale bar = 50 μm). (C) Representative images of Nissl staining (Scale bar = 50 μm in CA1 region, Scale 
bar = 100 μm in CA3 region). (D) Representative images and quantitative analysis results of TUNEL staining (Scale bar = 50 μm). (E) Pathological 
changes in the liver and kidney tissues were examined with H&E staining (scale bar = 100 μm).
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FIGURE 3

XYC treatment reduced lipid peroxidation and inflammation response in lithium-pilocarpine-induced acute epilepsy rats. (A) Effects of CBZ (0.125 g/kg) 
and XYC (0.35 and 0.70 g/kg) on lipid peroxidation and oxidative/nitrosative stress, specifically MDA, SOD and CAT in the hippocampus tissues. 
(B) Effect of CBZ and XYC on serum IL-6, TNF-α and IL-1β levels. Data are shown as mean±SEM (n = 6). # p < 0.05 vs. Control group; * p < 0.05 vs. 
Model group.

Control, Model, and XYC groups respectively, revealing both shared 
and group-specific microbial signatures (Figure 4F).

Microbiome profiling demonstrated marked taxonomic 
restructuring of gut microbial architecture across phylum and genus 
hierarchies post-epileptogenesis and XYC intervention. At the phylum 
level, epileptic rats exhibited marked reductions in Tenericutes, 
Patescibacteria, Epsilonbacteraeota, and Proteobacteria abundance 
compared to controls (p < 0.05). XYC treatment substantially restored 
these depleted phyla to near-normal levels (Figures 5A,B). Genus-level 
analysis demonstrated that XYC effectively counteracted epilepsy-
induced dysbiosis, significantly preserving populations of beneficial 
taxa including Lactobacillus, Ramboutsia, Staphylococcus, and 
Lachnospiraceae NK4A136 group (Figures 5C,D).

Microbial community differences among the three experimental 
groups were visualized through LEfSe analysis, generating a cladogram 
that highlights taxonomically distinct features at multiple phylogenetic 
levels (Figure 6A). Using stringent criteria (LDA score > 2, p < 0.05), 
we  identified group-specific microbial signatures: Staphylococcus, 
Ruminococcaceae_UCG_008 and Blautia abundance characterized the 
Control, Model and XYC group, respectively (Figure 6B).

3.5 XYC altered serum metabolites in 
lithium-pilocarpine-induced acute epilepsy 
rats

Serum metabolite profiling was conducted using UHPLC-
QTOF-MS/MS, revealing distinct metabolic patterns among 
experimental groups. OPLS-DA demonstrated clear separation among 
groups (R2X = 0.35, R2Y = 0.952, Q2 = 0.512 for negative ion mode, 
R2X = 0.566, R2Y = 0.993, Q2 = 0.532 for positive ion mode, 
Figure 7A). Using stringent criteria (VIP > 1, p < 0.05), we identified 
970 significantly altered metabolites. Metabolomic profiling showed 
157 differentially expressed metabolites between groups (FC ≥ 2 or ≤ 
0.5, p < 0.05), with Model specimens exhibiting 73 upregulated versus 
84 downregulated species relative to Controls. Notably, XYC treatment 
modulated 149 metabolites compared to the Model group, including 
72 elevated and 77 reduced species (Figure 7B). Hierarchical clustering 

TABLE 3 Effect of XYC on lithium-pilocarpine-induced acute epilepsy 
determined as seizure latency and numbers of seizure.

Group Dose 
(g/kg)

Latency to the 
first seizures (min)

Numbers of 
seizure

Control – – –

Model – 23.12 ± 8.28 2.37 ± 0.23

CBZ 0.125 43.62 ± 10.85# 1.15 ± 0.12#

XYC 0.35 34.30 ± 7.31* 1.57 ± 0.24*

XYC 0.70 44.84 ± 8.13* 1.09 ± 0.17*
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analysis and fold-change distributions further illustrated these 
metabolic shifts (Supplementary Figures S1, S2).

3.6 Regulation of XYC on the 
glycerophospholipid metabolism pathway 
of epilepsy rats

KEGG pathway enrichment analysis demonstrated that XYC 
treatment significantly modulated multiple metabolic pathways in 
epileptic rats (Figure  8A). The most affected pathways included 
glycerophospholipid metabolism, pyrimidine metabolism, ABC 
transporters, proximal tubule bicarbonate reclamation, choline 
metabolism, and mineral absorption. The relative content of 
metabolites in the glycerophospholipids pathway were shown in 
Supplementary Table S1. Targeted analysis of glycerophospholipid 
metabolism revealed three significantly elevated metabolites in the 
Model group compared to controls: glycerophosphate (log2FC = 1.05, 
p = 0.004), glycerophosphocholine (log2FC = 0.89, p = 0.003), and 
sn-glycerol-3-phosphoethanolamine (log2FC = 1.01, p = 0.021). XYC 
treatment effectively normalized these aberrant metabolite levels 
(p < 0.05 vs. Model group; Figure 8B).

3.7 Correlation between gut microbes and 
metabolites

To investigate potential microbiota-metabolite interactions, 
spearman correlation analysis was performed to examine 
associations between the 19 most abundant bacterial genera and 9 
differentially expressed metabolites. Figure 9 delineates statistically 
robust associations between specific microbial taxa and 
glycerophospholipid metabolites: Candidatus_Saccharimonas 
exhibited negative correlations with glycerophosphate, 
glycerophosphocholine and sn-Glycerol 3-phosphoethanolamine; 
Bacteriovorax showed positive correlations with glycerophosphate 
and glycerophosphocholine; and Ruminococcaceae_UCG_008 
demonstrated a distinct pattern, correlating positively with 
sn-glycerol 3-phosphoethanolamine.

3.8 Network pharmacology of XYC against 
epilepsy

Using the TCMSP database, we systematically screened herbal 
components for the XYC formulation based on pharmacokinetic 
properties, while excluding compounds lacking biological targets. The 
analysis identified bioactive constituents from 16 medicinal herbs: 
Glycyrrhiza uralensis (88 compounds), Salvia miltiorrhiza (46), 
Astragalus membranaceus (17), Uncaria rhynchophylla (32), 
Bupleurum chinense (13), Gastrodia elata (14), Polygala tenuifolia 
(18), Codonopsis pilosula (16), Ziziphus jujuba var. spinosa (7), Acorus 
tatarinowii (4), along with fewer components from Angelica sinensis 
(2), Arisaema erubescens (3), Aconitum coreanum (3), Curcuma 
aromatica (3), Bombyx batryticatus (1), and Massa Medicata 
Fermentata (2). Target integration and deduplication yielded 773 
unique protein targets, representing the potential therapeutic target 
space of the XYC formulation.

Through comprehensive integration of disease target databases 
(GeneCards, OMIM, and DisGeNET), we identified 9,615 epilepsy-
associated targets, which were subsequently normalized using UniProt 
identifiers. Comparative analysis revealed 558 overlapping targets 
between these epilepsy-related genes and the XYC’s potential 
therapeutic targets (Figure 10A), representing the putative molecular 
targets through which the formulation may exert its anti-
epileptic effects.

Ingredient-target network (283 active ingredients from XYC and 
588 targets in epilepsy) was constructed with Cytoscape (version 
3.10.3) (Supplementary Figure S3), and the PPI network was shown 
in Supplementary Figure S4. Topological analysis the top 10 targets 
as shown in Figure 10B, and the protein–protein interaction (PPI) 
network was constructed using Cytoscape, with the top 25 hub genes 
identified by node degree analysis (Figure  10C). KEGG pathway 
enrichment analysis of these hub genes revealed the top  30 
significantly enriched pathways (Figure  10D), among which 
neuroactive ligand-receptor interactions, pathways in cancer, and 
lipid metabolism/atherosclerosis were most prominent. Notably, 
AKT1, INS, and IL-6 emerged as central nodes, which were 
functionally associated with lipid metabolic and inflammation 
processes, particularly glycerophospholipid metabolism, suggesting 
their potential as key therapeutic targets of XYC for epilepsy treatment.

To investigate the targets underlying the anti-epileptic effects of 
XYC, we performed RT-qPCR and Western blot analyses. RT-qPCR 
revealed elevated mRNA levels of Il-6, Ins, and Akt1 in the 
hippocampal tissues of model groups compared to controls. Notably, 
XYC intervention significantly attenuated these increases 
(Figure 10E). Consistent with the mRNA findings, immunoblotting 
showed upregulated AKT1 protein expression in the epileptic models. 
Importantly, this elevated expression was normalized by XYC 
treatment (Figure 10F).

These findings suggest that XYC effectively alleviated seizure in 
lithium-pilocarpine-induced acute epilepsy by preserved neuro-
inflammatory and glycerophospholipid metabolism.

4 Discussion

Epilepsy constitutes a persistent neurological condition 
characterized by unprovoked seizure episodes stemming from 
dysregulated neuronal hyperexcitability (47). Growing evidence 
implicates neuroinflammation triggered by brain injury in 
epileptogenesis. Preclinical and human studies consistently show 
post-seizure events like gliosis, elevated pro-inflammatory 
mediators, blood–brain barrier disruption, and activated 
inflammatory pathways. Disrupted lipid homeostasis also act as a 
potential contributor to epileptogenesis through multifaceted 
mechanisms involving neuroinflammation, membrane instability, 
and metabolic dysfunction (48). The complex metabolic network 
governing lipids-including TG, cholesterol fractions, and fatty 
acids—regulates critical neuronal processes ranging from 
membrane integrity to energy metabolism. Recent studies have 
identified that particular metabolic derangements, such as impaired 
fatty acid β-oxidation and aberrant cholesterol metabolism, 
demonstrate strong epidemiological associations with epilepsy 
susceptibility (49). This correlation appears particularly pronounced 
in pediatric populations with inborn disorder of fatty acid 
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metabolism (50). So, understanding these processes identifies 
potential therapeutic targets and diagnostic/prognostic biomarkers 
for epilepsy.

TCM has served as a clinically validated therapeutic modality 
for epilepsy management through multimodal mechanisms, 
including neurotransmitter modulation, anti-inflammatory action, 
and neuroprotection (51). However, existing mechanistic research 
primarily focuses on neurotransmitter systems, immune 
dysfunction, and glial cell activity. Recently, accumulating evidence 
implicates gut dysbiosis and lipid metabolic disturbances in 
epileptogenesis (32, 52). Nevertheless, whether TCM interventions 

can ameliorate epilepsy by targeting these pathways remains 
systematically underexplored.

In this study, 16S rDNA sequencing revealed that XYC treatment 
significantly increased the relative abundance of four bacterial phyla 
(Tenericutes, Patescibacteria, Epsilonbacteraeota, and Proteobacteria) in 
epileptic rats. Intriguingly, Patescibacteria, a phylum found in human 
adipose tissue, may regulate fatty acid metabolism, proposing a novel 
gut-lipid-brain axis mechanism for XYC’s antiepileptic action (53, 54). 
At the genus level, XYC treatment effectively counteracted epilepsy-
associated microbial alterations, significantly restoring the abundances 
of Lachnospiraceae NK4A136 group, Lactobacillus, Staphylococcus, and 

FIGURE 4

XYC improved the composition of the gut microbiota in lithium-pilocarpine-induced acute epilepsy rats. (A) Rank-abundance curves analysis at the 
OTU classification level. (B) Rarefaction curve of Chao1. (C) Dilution curve analysis: the Shannon index of the sample sequence at the OTU level. 
(D) Alpha diversity includes the Chao1 index, Shannon indices, and Observed OTUS. (E) PCoA obtained from LEfSe analysis. (F) Venn diagram analysis: 
counting the number of shared and unique OTUs in each group. Data are shown as mean±SEM (n = 6). # p < 0.05 vs. Control group; * p < 0.05 vs. 
Model group.
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Romboutsia, which were diminished in epileptic rats. Notably, these 
genera play crucial roles in maintaining gut homeostasis, with 
Lactobacillus and Romboutsia being particularly recognized for their 
anti-inflammatory properties and short-chain fatty acid production. 
Previous clinical studies have identified a significant reduction in 
Lactobacillus abundance in epileptic patients (55). Lactobacillus species 
biosynthesize gamma-aminobutyric acid (GABA), the principal 
inhibitory neurotransmitter (56). Increased colonic GABA bioavailability 
demonstrates neurochemical coupling with central GABAergic tone, 
suggesting microbiota-mediated gut-brain signaling contributes to 
seizure pathophysiology (57). Lactobacillus species also play critical roles 
in lipid metabolism and obesity regulation by modulating gut microbiota 

composition to enhance food digestion and nutrient absorption (58, 59). 
Suppressing Lactobacillus proliferation attenuates intestinal lipid 
absorption and inhibits adipose deposition, highlighting its dual role in 
metabolic and neurological disease (59). Notably, Romboutsia, a SCFA 
producing genus, was significantly increased in abundance following 
XYC treatment, with its levels showing a positive correlation with seizure 
severity scores (46). These data demonstrate that XYC mediates seizure 
suppression exerts via bidirectional modulation of gut microbial ecology 
and systemic metabolomic networks, by restoring epilepsy-depleted 
beneficial genera (e.g., Lactobacillus, Lachnospiraceae NK4A136) while 
enhancing SCFA-producing taxa (Romboutsia) and reconciling lipid 
metabolism dysregulation.

FIGURE 5

XYC treatment altered the gut microbiota disturbance in lithium-pilocarpine-induced acute epilepsy rats. (A,B) Dominant phylum-level microbiota 
distribution (top 10 taxa) was compared between groups, while genus-specific abundance variations among each group were quantified. (C,D) 
Dominant genus distributions (top 10 taxa) were compared between groups, while LEfSe analysis identified differential abundance patterns among 
each group. Data are shown as the mean±SEM (n = 6). # p < 0.05 compared to the Control group; * p < 0.05 compared to the Model group.

https://doi.org/10.3389/fnut.2025.1625533
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yu et al. 10.3389/fnut.2025.1625533

Frontiers in Nutrition 12 frontiersin.org

The brain exhibits unique metabolic features characterized by 
high mitochondrial density, enrichment of polyunsaturated fatty 
acids (PUFAs), and elevated oxygen consumption, rendering it 
particularly susceptible to metabolic disturbances. These metabolic 
peculiarities underlie the growing recognition of metabolite-trait 

associations in neurological disorders. For instance, altered levels 
of glycerophosphocholines (GPCs)-key phospholipid metabolites 
involved in membrane integrity and neurotransmission-are linked 
to synaptic dysfunction in Alzheimer’s disease (60). Epileptic 
seizures are marked by transient surges in neuronal energy 

FIGURE 6

Taxonomic biomarkers identification via LEfSe. (A) Cladogram illustrating phylogenetic distribution of discriminative taxa across three experimental 
groups, with radiating circles denoting taxonomic hierarchy. Node diameters reflect relative abundance. (B) Linear discriminant analysis (LDA) scores 
highlight group-specific biomarkers.
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demand, necessitating dynamic metabolic adaptations. This 
cyclical interplay between energy expenditure and compensatory 
mechanisms underscores the pivotal role of metabolic dysfunction 
in epilepsy, a disorder primarily characterized by recurrent 
seizures. Notably, perturbations in glycerophospholipid 
metabolism have been implicated not only in epilepsy but also in 
neuropsychiatric disorders. Studies across murine, rodent, and 
non-human primate models of depression consistently report 
dysregulated glycerophospholipid profiles (61–63). For instance, 
D-ribose administration induces depressive-like behaviors in 
rodents by disrupting gut microbiota homeostasis, thereby altering 
glycerophospholipid metabolism (64). AnGong NiuHuang Pill 
ameliorates traumatic brain injury via modulation of 
glycerophospholipid metabolism (65). These findings position 
glycerophospholipid pathways as promising targets for metabolic 
intervention in neurological diseases, but its role in epileptogenesis 
and disease progression remains unelucidated.

In this study, we  discovered that XYC administration 
significantly attenuated seizure severity and frequency in a rat 
model of epilepsy. Untargeted serum metabolomics profiling 
further identified XYC-mediated suppression of key intermediates 
in the glycerophospholipid metabolic pathway, with pronounced 
reductions in glycerophosphate, GPC, and sn-glycerol 

3-phosphoethanolamine levels. These results indicate that XYC 
exerts its anti-seizure effects through normalizing hyperactivated 
glycerophospholipid metabolism, and reestablishing 
neurochemical homeostasis-potentially via restoring membrane 
phospholipid balance.

Integrated network pharmacology analysis identified 558 
overlapping targets between XYC’s putative therapeutic targets and 
epilepsy-associated genes. AKT1 (a hub node in phosphatidylinositol 
3-kinase (PI3K)/Akt signaling), INS (insulin, regulating neuronal 
glucose metabolism), and IL-6 (a pro-inflammatory cytokine) 
emerged as the top three prioritized targets based on topological 
centrality, suggesting XYC may exert anti-epileptic effects by 
synergistically modulating neuroinflammatory cascades, metabolic 
homeostasis, and survival signaling pathways.

The PI3K/Akt signaling pathway, a central regulator of cellular 
survival and proliferation, is ubiquitously expressed in the central 
nervous system. In experimental models of epilepsy, activation of this 
pathway has been shown to modulate neuronal apoptosis and mitigate 
seizure severity, suggesting its dual role in neuroprotection and seizure 
suppression (66, 67). And AKT1 directly phosphorylates voltage-gated 
sodium channel NaV1.1, attenuating peak sodium currents (68), a 
pivotal mechanism regulating GABAergic neuronal excitability 
and ictogenesis.

FIGURE 7

XYC treatment altered the serum metabolites in lithium-pilocarpine-induced acute epilepsy rats. (A) OPLS-DA of the negative and positive ion mode. 
(B) Volcano plot of the differential metabolites.

https://doi.org/10.3389/fnut.2025.1625533
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yu et al. 10.3389/fnut.2025.1625533

Frontiers in Nutrition 14 frontiersin.org

Proinflammatory cytokines (PIC), including IL-1β, IL-6, and 
TNF-α, play pivotal roles in neuroinflammation and epileptogenesis by 
exacerbating neuronal hyperexcitability. Elevated PIC levels are 
consistently observed during epileptic seizures, with IL-6 
demonstrating persistent upregulation across diverse epilepsy 
subtypes- even during interictal and postictal phases (69). Clinically, 

heightened serum IL-6 concentrations correlate with disease 
progression and may serve as a prognostic biomarker for 
epileptogenesis (70, 71).

Insulin functions as a critical neurotrophic factor, regulating 
synaptic plasticity, neurogenesis, and metabolic homeostasis within the 
central nervous system. Mounting evidence implicates cerebral 

FIGURE 8

XYC altered the metabolites levels in glycerophospholipid metabolism pathway. (A) KEGG analysis of differential metabolites. (B) Diagram of relative 
abundance of different metabolites in serum. Data are shown as mean±SEM (n = 6). #p < 0.05 vs. Control group; *p < 0.05 vs. Model group.
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metabolic syndrome—particularly insulin resistance—in the 
pathogenesis of neurodegenerative disorders and acute neurological 
injuries, including cerebral ischemia and epilepsy (72). And recent 
evidence suggests pediatric populations with obesity-driven insulin 
resistance exhibit a increased risk of developing epilepsy compared to 

metabolically healthy cohorts (73). This bidirectional interplay between 
metabolism and epilepsy is further exemplified by the metabolic 
sequelae of antiepileptic drugs: long-term valproate therapy induces 
hyperinsulinemia and insulin resistance in both adults and children, 
concomitant with elevated adiposity and dysregulated adipocytokine 

FIGURE 9

Gut microbiota-metabolite interaction network. Spearman correlation heatmap illustrating significant associations between the top 19 genus-level 
microbial taxa and 9 XYC modulated dysregulated metabolites. Red/blue hues denote positive/negative correlations.
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profiles (74). Our results indicating that, XYC could alleviate seizures 
in epileptic rats by affecting the expression of inflammatory cytokines 
and insulin resistance in central nervous system.

Based on the above findings, we have preliminarily elucidated the 
role and mechanisms of XYC in ameliorating hepatic lipid metabolism 

in NAFLD mice. However, it is important to acknowledge the 
limitations of translating these results to clinical applications. For 
instance, although lithium-pilocarpine-induced acute epilepsy rats 
models are well-established to simulating human epileptic seizures, 
their inability to fully recapitulate human pathophysiology, combined 

FIGURE 10

Network pharmacology analysis and validation of XYC. (A) Network pharmacology analysis revealed 558 overlapping nodes between XYC’s bioactive 
compounds and epileptogenesis-associated pathways, delineating therapeutic target convergence. (B) The PPI network of targets. (C) The ‘Compound-
Target-Pathway-Disease’ network delineates polypharmacological interactions among XYC’s phytochemicals, epileptogenesis-associated targets, and 
dysregulated signaling axes. (D) KEGG pathway enrichment analysis of top 30 dysregulated metabolic routes, with lipid metabolism and inflammation 
showing highest significance. (E) Il-6, Ins and Akt1 mRNA levels were quantified by RT-qPCR. (F) Hippocampal Akt1 protein levels were validated via 
immunoblotting. Data are shown as the mean±SEM (n = 6). #p < 0.05 compared to the Control group; *p < 0.05 compared to the Model group.
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with the absence of clinical data, limits the direct clinical translation 
of our findings. Additionally, to further elucidate the molecular 
mechanisms by which XYC ameliorates the epileptic state in rats, 
subsequent studies will employ hippocampus-specific gene knockout 
models for in-depth investigation.

5 Conclusion

In this study, a multi-omics integrative approach (16S rDNA 
sequencing, untargeted metabolomics, and network pharmacology) was 
employed to elucidate the anti-epileptic mechanisms of XYC in a rat 
model. Metabolomic profiling identified glycerophospholipid 
metabolism as the predominant pathway modulated by XYC, with 
significant elevation of phosphatidylcholine (PC) and 
phosphatidylethanolamine (PE) levels. Gut microbiota analysis revealed 
that epilepsy-induced dysbiosis was partially reversed by XYC treatment, 
particularly through enrichment of SCFA producing Lactobacillus and 
suppression of pro-inflammatory Enterobacteriaceae. Network 
pharmacology further prioritized three core targets—AKT1, INS, and 
IL-6 —exhibiting strong binding affinities to XYC’s active compounds. 
Crucially, these targets functionally converge on glycerophospholipid 
homeostasis, mechanistically linking lipid remodeling (via AKT1/
INS-mediated phospholipid biosynthesis) and neuroinflammation 
resolution (via IL-6 pathway inhibition) to XYC’s therapeutic efficacy.
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