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The pathogenesis of functional dyspepsia (FD) is closely associated with intestinal 
microecological alterations. Dietary microorganisms, capable of modulating gut 
microecology and thereby influencing gastrointestinal function, are being explored 
as a promising therapeutic strategy against FD. However, the precise mechanisms 
underlying how dietary microbes exert beneficial effects through microecological 
modulation, along with therapeutic protocols, remain incompletely defined. This 
article systematically reviews the manifestations of intestinal microecological 
imbalance in FD and its proposed pathogenic mechanisms. We critically examine 
the role of dietary microorganisms in mitigating FD through microecological 
regulation, addressing their potential mechanisms of action and clinical impacts. 
Integrating advances in emerging diagnostic technologies, we further discuss 
feasible approaches and potential targets for personalized FD management. Current 
controversies and challenges within this research domain are analyzed, alongside 
perspectives for translating these findings into clinical practice. Collectively, this 
review aims to provide a comprehensive theoretical framework and inspire insights 
for both in-depth research and improved therapeutic strategies for FD.

KEYWORDS

gut microbiota, probiotics, prebiotics, dietary microbiota, functional dyspepsia

1 Introduction

Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder, it represents 
significant global health burden characterized by chronic upper abdominal pain, epigastric 
burning, postprandial fullness, or early satiation (1). Notably, approximately 80% of patients 
presenting with dyspeptic symptoms receive an FD diagnosis following exclusion of organic 
gastrointestinal pathology, with epidemiological studies reporting a general population 
prevalence approaching 16% (1). Emerging evidence has established a pivotal role of gut 
microbial dysbiosis in FD pathogenesis (2, 3). Mechanistic studies have revealed that gut 
microbiota disorders are not only associated with dysregulated immune responses and 
impaired mucosal barrier function in the gastrointestinal tract, but one of their central roles 
is also manifested in the interference with bidirectional communication in the gut-brain axis 
(4, 5). This interference is manifested by the dysbiotic flora through a variety of pathways such 
as altering the signaling of the enteric nervous system, affecting vagal tone, stimulating the 
release of inflammatory factors, and interfering with the metabolism of neurotransmitters, 
which ultimately leads to an abnormal transmission of information between the gut and the 
brain, amplifying the perception of nociception and affecting gastrointestinal dynamics 
regulation (4). In light of these findings, strategies based on modulation of the gut microbiota, 
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particularly dietary microbial interventions such as probiotic 
supplementation, are increasingly becoming a promising therapeutic 
approach in FD clinics.

Gut microecology comprises a diverse ecosystem of microorganisms 
including bacteria, viruses, fungi, protozoa, and bacteriophages, with 
bacterial populations constituting over 90% of the total microbial 
community (6). Predominant bacterial phyla include Firmicutes, 
Bacteroidetes, Proteobacteria, Actinobacteria, with Firmicutes and 
Bacteroidetes representing the most abundant groups (6–8). These 
microbial communities exert profound effects on human physiology 
through nutrient metabolism, vitamin biosynthesis, immunomodulation, 
and maintenance of intestinal epithelial barrier integrity (9).

Dietary microorganisms exhibit modulatory effects on gut 
microbiota composition and ameliorate the symptoms of FD through 
multiple pathways, including competitive exclusion, production of 
bioactive metabolites, and immunomodulation (10). Researches have 
established that probiotic supplementation, such as Lactobacillus gasseri 
LG21, Bacillus coagulans MY01 and Bacillus subtilis MY02, can restore 
microbial equilibrium, fortify intestinal barrier integrity, and enhance 
mucosal immunity—mechanisms that collectively mitigate intestinal 
inflammation and ameliorate FD-related symptoms (5, 11, 12). 
Consequently, targeted modulation of gut microbiota structure through 
dietary microorganisms represents a promising therapeutic approach. 
This strategy may offer novel intervention pathways for FD treatment.

Over the past 2 years, Tziatzios et  al. and Shen et  al. have 
systematically reviewed the mechanisms of action of probiotics in FD, 
respectively (13, 14). Tziatzios and colleagues conducted a 
comprehensive analysis of clinical trials investigating probiotic 
interventions for FD, concluding that current evidence remains 
insufficient to substantiate the clinical efficacy of probiotics in FD 
management (13). Concurrently, Shen’s team elucidated the 
mechanistic pathways through which probiotics may influence FD 
pathophysiology and symptom manifestation (14). Furthermore, Lacy 
et al. (15) have synthesized current therapeutic approaches for FD, 
including dietary modification, probiotic supplementation, antibiotic 
therapy, acid suppression, and neuromodulation. However, two key 
aspects remain unclear: the precise mechanisms by which dietary 
microorganisms modulate FD through gut microecological 
alterations, and the potential application of dietary microorganisms 
in FD diagnosis and treatment strategy.

This comprehensive review explores the impact and mechanisms 
of various dietary microorganisms on FD through their role in 
modulating the gut micro-ecological environment. It further 
investigates personalized treatment approaches and identifies 
potential therapeutic targets for FD, integrating advanced diagnostic 
technologies. We  posit that systematic evaluation and clinical 
implementation of these multidisciplinary approaches will 
significantly enhance prognostic outcomes in FD management.

2 Epidemiologic characteristics of FD 
in association with intestinal 
microecology

2.1 Epidemiological characteristics of FD

FD exhibits a substantial global prevalence, with notable 
regional variations in its epidemiological profile. Among the general 

population, the overall prevalence of FD ranges from 10 to 20% (16). 
A multinational cross-sectional study conducted in the 
United States, Canada, and the United Kingdom revealed that the 
prevalence of FD meeting Rome IV diagnostic criteria averages 
approximately 10%, with country-specific rates of 12% in the 
United States, and 8% in both Canada and the United Kingdom (17). 
Clinically, FD manifests in distinct subtypes: postprandial distress 
syndrome (PDS), epigastric pain syndrome (EPS), and an 
overlapping subtype exhibiting features of both conditions. 
Epidemiological data indicate that PDS constitutes the predominant 
presentation, accounting for approximately 61% of cases, while EPS 
represents 18%, and the overlapping subtype comprises 21% of FD 
diagnoses. Evidence suggests these subtypes may demonstrate 
differential responses to therapeutic interventions, underscoring the 
importance of precise phenotyping in both clinical and research 
settings (17).

FD pathogenesis involves multiple etiological factors, notably 
psychological comorbidities, acute gastroenteritis, female sex, 
tobacco use, non-steroidal anti-inflammatory drug (NSAID) 
consumption, and Helicobacter pylori infection (1). Substantial 
clinical evidence demonstrates a significant association between 
H. pylori infection and FD symptom manifestation, with eradication 
therapy providing symptomatic relief in a subset of patients (18). 
Furthermore, psychiatric comorbidities including anxiety and 
depression constitute significant pathogenic contributors to 
FD. These psychological factors appear to modulate gastrointestinal 
sensory processing and motility through the gut-brain axis, 
ultimately influencing symptom perception and disease 
progression (19).

2.2 Association between FD and intestinal 
microecology in different populations

The relationship between FD and intestinal microecology exhibits 
significant heterogeneity across different populations. Age-related 
analyses reveal a progressive decline in beneficial intestinal bacteria 
among elderly populations, potentially elevating FD risk (20). This 
phenomenon may be  attributed to age-associated physiological 
decline, including compromised intestinal barrier function, 
diminished microbial diversity, and impaired microbiota stability, 
collectively contributing to more pronounced FD symptoms and 
greater microecological dysbiosis in geriatric cohorts.

Gender-stratified analyses demonstrate a markedly higher FD 
prevalence in females compared to males, potentially mediated by 
hormonal fluctuations and psychological factors (1). Moreover, female 
FD patients tend to exhibit more significant intestinal microecological 
disturbances (1). Cross-ethnic and geographical comparisons indicate 
distinct patterns in FD prevalence and associated microbial 
characteristics. For instance, epidemiological data suggest stronger FD 
associations in Asian populations, while Western cohorts demonstrate 
differential microbiome-FD relationships, likely influenced by dietary 
patterns and lifestyle factors (18). Notably, patients with comorbid 
conditions such as diabetes mellitus and cardiovascular disease 
present with more complex FD pathogenesis. In these populations, 
metabolic dysregulation and pharmacological interventions may 
synergistically exacerbate FD risk while potentially confounding the 
interpretation of intestinal microecological imbalances (21, 22).
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3 Pathogenesis of FD and interaction 
with intestinal microecology

The pathophysiological mechanisms underlying FD remain 
incompletely understood; emerging evidence suggests a predominant 
role of gut-brain axis dysregulation. The gut-brain axis constitutes a 
bidirectional neurohumoral communication network integrating 
neural, endocrine, and immune signaling pathways between the 
gastrointestinal tract and central nervous system (23). Current 
pathophysiological models implicate three principal components in 
FD pathogenesis: (1) psychological stress-mediated modulation of 
gut-brain signaling, (2) gut microbiota dysbiosis, and (3) immune 
system hyperreactivity (24, 25). These pathophysiological 
derangements manifest through several interrelated mechanisms: 
gastrointestinal motility abnormalities (particularly impaired gastric 
accommodation and delayed emptying), visceral hypersensitivity 
(with heightened duodenal sensitivity to acidic and lipid stimuli), 
intestinal barrier dysfunction, and low-grade mucosal inflammation 
(26–28). Crucially, the sustained low-grade inflammatory state and 
compromised epithelial barrier integrity collectively contribute to 
aberrant afferent signaling through both neural and humoral 
pathways, ultimately generating the characteristic symptom 
constellation of FD (29, 30).

3.1 Mechanisms of interaction between FD 
and intestinal microecology

An imbalance in gut microbiota may be one of the significant 
contributing factors to the development of FD. Comparative analyses 
reveal significant compositional differences between the gut 
microbiota of FD patients and healthy controls (31–33). These 
taxonomic alterations may contribute to disease progression through 
multifactorial mechanisms, including compromised intestinal barrier 
integrity, immune dysregulation, and disrupted neuro-endocrine 
signaling pathways (31, 34). Microbial profiling reveals significantly 
increased diversity in FD patients relative to healthy individuals (35). 
Notably, the microbiota of FD patients demonstrates marked 
reductions in beneficial bacterial genera (e.g., Bifidobacterium and 
Lactobacillus spp.), coupled with elevated levels of potentially 
pathogenic microorganisms (e.g., Escherichia coli and Enterococcus 
spp.) (36). Furthermore, metagenomic analyses have identified 
significant perturbations in the Firmicutes/Bacteroidetes ratio, a 
recognized microbial community stability index (37). The resultant 
microbial imbalance promotes the secretion of enterotoxins (including 
SEA/SEB), potentially inducing duodenal mucosal barrier dysfunction 
and localized immune-inflammatory responses (38). Additionally, 
microbial metabolites may directly stimulate intestinal afferent nerve 
terminals, contributing to visceral hypersensitivity and gastrointestinal 
motility abnormalities (19). An imbalanced gut microbiota can affect 
the production and metabolism of neurotransmitters such as 
serotonin, dopamine, etc. This can indirectly activate the vagus nerve 
and enteric nervous system, thereby altering signal transmission with 
the central nervous system, leading to symptoms like early satiety, 
postprandial bloating, anxiety, and depression in FD patients (38, 39).

On the other hand, alterations in the intestinal microenvironment 
of FD patients, including disturbances in gastric acid secretion and 
gastrointestinal motility, may significantly impact microbial survival 

and proliferation, thereby exacerbating dysbiosis. Mounting evidence 
indicates that delayed gastric emptying promotes prolonged food 
retention within the gastrointestinal tract, creating favorable 
conditions for bacterial overgrowth and subsequent microbial 
community structural modifications (26, 40). Furthermore, FD 
patients frequently exhibit anxiety, depression, and somatic symptoms. 
This activates the hypothalamic–pituitary–adrenal (HPA) axis and 
sympathetic nervous system (SNS), resulting in sustained elevation of 
cortisol levels. Increased cortisol suppresses intestinal tight junction 
proteins and activates the NF-kB inflammatory signaling pathway, 
thereby compromising the intestinal barrier (19, 41). Notably, stress 
reduces populations of beneficial bacteria (e.g., Lactobacillus, 
Bifidobacterium) while increasing pro-inflammatory bacteria (e.g., 
Proteobacteria) in FD patients (19). This shift alters gut-derived 
metabolites (including short-chain fatty acids, SCFAs, and gamma-
aminobutyric acid, GABA), which in turn stimulates the vagus nerve 
to modulate the HPA axis, exacerbating core FD symptoms (41). 
Moreover, intestinal barrier impairment increases permeability, 
allowing bacterial products to enter systemic circulation. This activates 
body-wide immunoinflammatory and metabolic responses, exerting 
broader pathophysiological effects in FD (42). Future research should 
prioritize mechanistic studies to elucidate precise microbiota-host 
crosstalk in FD pathogenesis (Figure 1).

3.2 Intestinal microecological imbalance in 
FD

Intestinal microecological imbalance, via alterations in specific 
bacterial community structures and disruption of metabolic products, 
directly mediates the core symptomatic manifestations of FD. Changes 
in the gut microbiota correlate with the severity of FD symptoms (43). 
Research confirms that over-proliferation of Streptococcus in the 
duodenum exhibits a significantly positive correlation with 
postprandial fullness and early satiety (44). Its mechanism is linked to 
bacterial-mediated degradation of tight junction proteins, resulting in 
disruption of the intestinal mucosal barrier and activation of local 
immune-inflammatory responses, ultimately triggering epigastric 
burning pain and postprandial bloating (44). Concurrently, depletion 
of butyrate-producing bacteria (Butyricicoccus, Prevotella) leads to 
insufficient synthesis of SCFAs, impairing the repair capacity of 
intestinal epithelial cells and further exacerbating abdominal 
distension and discomfort (45). SCFAs serve not only as the primary 
energy source for intestinal epithelial cells but also play a crucial role 
in regulating intestinal barrier function and immune responses 
(46, 47).

Notably, reduced abundance of Veillonella is closely associated 
with delayed gastric emptying. Dysfunction in the metabolism of its 
products, such as hydrogen sulfide, can directly impact gastrointestinal 
motility, manifesting as food retention and nausea (44). Furthermore, 
translocation of oral-derived Neisseria to the duodenum exacerbates 
symptoms of PDS, specifically early satiety and epigastric pain, by 
inducing mucosal stress through enhanced protease activity (45). 
Simultaneously, fecal Butyricicoccus levels show a strong negative 
correlation with symptom severity, underscoring the driving role of 
microbial metabolic imbalance in persistent symptoms (45). Clinical 
studies further reveal that FD patients exhibit reduced concentrations 
of bile salts within the intestinal environment during fasting, coupled 
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with increased expression of the vitamin D receptor (48). This impacts 
fat digestion and the secretion of intestinal hormones, further 
worsening dyspeptic symptoms in FD patients (48).

Collectively, the above evidence demonstrates that intestinal 
microecological imbalance can regulate the symptomatic expression 
of FD through multiple dimensions. This mechanism relates to 
intestinal microecological imbalance causing damage to the intestinal 
mucosal barrier, which then triggers chronic micro-inflammation and 
immune dysfunction (10, 49).

4 Dietary microbial modulation in the 
treatment of FD

Dietary microorganisms demonstrate considerable diversity and 
can be  systematically classified into four primary categories: 
probiotics, prebiotics, live microorganisms, and macronutrient-
associated microorganisms.

(1) Probiotics encompass multiple bacterial genera, including 
Lactobacillus, Bifidobacterium, and Bacillus. Specifically, lactic acid 

bacteria (e.g., Lactobacillus acidophilus and Lactobacillus plantarum) 
acidify the intestinal lumen through organic acid (particularly lactic 
acid) production, thereby inhibiting pathogenic bacterial growth 
while concurrently modulating intestinal immune responses (14). 
Bifidobacterium bifidum enhances intestinal barrier integrity, 
facilitates nutrient absorption, and maintains microbial homeostasis 
through immunomodulatory interactions (37). Bacillus spp. spores 
exhibit intestinal germination capacity, subsequently influencing 
microbiota composition and host immunity (50).

(2) Prebiotics represent selectively fermentable substrates (e.g., 
inulin, oligofructose) that preferentially stimulate growth of beneficial 
microbiota (particularly Bifidobacterium and Lactobacillus spp.), 
thereby indirectly modulating intestinal ecology (51).

(3) Live microorganisms predominantly present in fermented 
foods competitively exclude enteropathogens while stimulating SCFAs 
production and reinforcing intestinal barrier function (52).

(4) Macronutrients demonstrate significant microbiota-modulating 
effects: Carbohydrates (e.g., starch, glucose, fructose, lactose) undergo 
colonic microbial fermentation, serving as primary energy substrates 
for gut microbiota (53). Proteinaceous substrates elevate SCFAs 

FIGURE 1

Interaction mechanisms between FD and intestinal microecology. Changes in the dietary structure of FD patients lead to a decrease in beneficial 
intestinal bacteria and an increase in pro-inflammatory bacteria, causing changes in SCFAs and other metabolites of the intestinal flora. On the one 
hand, these changes will affect the levels of various intestinal bioactive factors, resulting in impaired intestinal barrier function and increased 
permeability, which in turn activate the local inflammatory signaling pathway in the intestinal tract, allowing inflammatory factors and bacterial 
products to enter the blood circulation, and ultimately triggering systemic immune-inflammatory response and metabolic abnormalities, leading to 
abdominal pain, early satiety and other core symptoms of FD. On the other hand, an imbalanced intestinal microecology will interfere with 
neurotransmitter release, affecting the HPA axis function by stimulating the vagus nerve and enteric nervous system, leading to abnormal signaling 
interactions between the gut and the brain, which not only amplifies pain perception, but also disrupts gastrointestinal dynamics regulation (24). In 
addition, somatization symptoms such as anxiety and depression accompanying FD patients will also activate the HPA axis, further exacerbating 
intestinal flora dysbiosis and destroying the intestinal barrier, thus forming a vicious circle of mutual causation (19). Dietary microorganisms maintain 
intestinal homeostasis by regulating the balance of intestinal microecology and the production of SCFAs, repairing the intestinal barrier function, and 
regulating the immune response and metabolic status of the host (64, 70). FD, Functional dyspepsia; SCFAs, Short-chain fatty acids; EC, 
Enteroendocrine cells; HPA axis, Hypothalamic–Pituitary–Adrenal axis.
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concentrations while enhancing barrier function and immunological 
regulation (54–56). Dietary lipids exhibit differential effects: saturated 
fats promote Bilophila and Enterobacteriaceae proliferation with 
concomitant pro-inflammatory effects, whereas omega-3 
polyunsaturated fatty acids (PUFAs) increase Bifidobacterium and 
Akkermansia abundance while attenuating inflammation and 
improving barrier integrity (57). These classifications and corresponding 
microecological impacts are systematically summarized in Table 1.

4.1 Influence of dietary microorganisms on 
gut microecology and its health 
implications

Dietary microorganisms and their metabolic activities play a 
pivotal role in shaping gut microecology and influencing overall host 
health. This influence begins with the microbial community itself: 
specific dietary components (such as fiber and polyphenols) can 
significantly regulate the composition and functional activity of the gut 
microbiota. For instance, they promote the growth of beneficial 
bacteria (e.g., Bifidobacteria and Lactobacilli), suppress the proliferation 
of pathogens, and stimulate physiological processes like brown fat 
activation (58–60). Certain Lactobacilli can directly enhance intestinal 
barrier function, defending against pathogens and toxins (61, 62). The 
resulting changes in microbial structure profoundly affect key outputs 
of the gut microenvironment—particularly the levels and types of 
fermentation products such as SCFAs (63, 64). These dietary fiber-
derived SCFAs (e.g., butyric acid, acetic acid, propionic acid) not only 
serve as an important source of energy for colonocytes and maintain 
a healthy intestinal pH (65, 66), but also act as important signaling 
molecules. They regulate host immune responses and intestinal 
epithelial integrity through G protein-coupled receptors (GPCRs) (63, 
64). Furthermore, microbially derived secondary bile acids inhibit 
specific pathogens (e.g., Clostridia) and regulate lipid metabolism by 
activating the FXR receptor (67). The gut microbiota also influences 
host nutritional status through the synthesis of essential vitamins (e.g., 
vitamin K, folate, biotin, riboflavin). Conversely, imbalances (such as 
vitamin A deficiency) can feedback to affect microbial abundance (e.g., 
increased Bacteroides fragilis) and bile acid metabolism (68, 69).

The impact of dietary microbial metabolites extends far beyond 
the local environment of the gut. They can cross the intestinal barrier 
into the body circulation and systematically modulate the immune 
response and metabolic status of the host (64, 70). For example, 
dietary amino acid-derived metabolites can interact with various 
pattern recognition receptors [including Toll-like receptors, 
autoinducer-2 (AI-2), and NOD-like receptors (NLRs)] and activate 
signaling pathways, such as the aromatic hydrocarbon receptor (AhR) 
and serotonin/5-hydroxytryptophan (5-HT), which directly or 
indirectly shape the intestinal mucosal immunity and bacterial 
homeostasis, and jointly maintain intestinal homeostasis (70). Further, 
these microbial metabolic signals also form the basis of gut-brain axis 
communication. Substances produced by gut flora act on the central 
nervous system through neural, immune, and endocrine pathways, 
influencing brain function, behavior, and even mood regulation, and 
potentially playing a role in neurodevelopment and the pathology of 
certain neuropsychiatric disorders (71, 72).

Thus, dietary microbes profoundly influence the intestinal 
microecological environment and ultimately have a broad and 

far-reaching impact on host metabolic health, immune defense, and 
even neurological function through multilevel fine-tuned mechanisms 
including shaping colony structure, producing key metabolites, and 
mediating complex gut- neurological interactions (Figure 2). A deeper 
understanding of these interactions provides a key scientific basis for 
the development of diet-based intervention strategies to promote 
human health.

4.2 Efficacy of dietary microbial 
interventions for FD

Dietary microorganisms have shown potential in the treatment of 
FD, with mechanisms of action involving repair of the intestinal mucosal 
barrier (e.g., probiotics improve permeability and protect the mucosa 
through enhancement of intercellular junctional proteins) (73), 
immunomodulation (e.g., modulation of immune cell activity and 
cytokine secretion to attenuate inflammatory responses) (14), and 
synergization of the neuroendocrine system (e.g., influencing 
gastrointestinal hormone secretion, kinetic-sensory function to alleviate 
symptoms) (37). As representatives of beneficial active microorganisms, 
specific probiotic strains (e.g., Bifidobacterium, Lactobacillus acidophilus, 
Probiotics Bacillus) have been widely demonstrated to alleviate the 
symptoms of FD due to their ability to regulate the microecological 
balance of the intestinal tract (3, 12, 74). For example, clinical studies 
have shown that a combination preparation containing Bacillus 
coagulans MY01 and Bacillus subtilis MY02 significantly improved 
abdominal pain and fullness in patients, and the mechanism may 
involve its regulation of Th17 immune signaling-mediated flora 
modulation (12); whereas a probiotic combination containing four 
strains of Lactobacillus rhamnosus LR04, etc. was effective in reducing 
symptoms such as bloating and nausea, especially in patients with the 
PDS subtype associated with gastrointestinal dynamics sensitivity, and 
its mechanism of action may be closely related to the regulation of flora 
composition and reduction of visceral hypersensitivity (74). In addition, 
Lactobacillus reuteri DSM 17938 strain has shown specific effects on 
infantile abdominal pain (75, 76). As a complement to the probiotic 
strategy, the prebiotic kelp polysaccharide (Laminarin) corrects 
FD-associated flora imbalances (e.g., an imbalance in the ratio of 
phylum Anabaena to phylum Thicket) and ameliorates symptoms by 
modulating corticosterone hormone levels and inhibiting 5-HT3 
receptor overexpression (37). Equally noteworthy is dietary intervention; 
although the low-FODMAP (fermentable oligo-, di-, mono-saccharides 
and polyols) diet has been less studied in FD than in irritable bowel 
syndrome (77, 78), this strategy has also been shown to be effective in 
relieving symptoms such as bloating and abdominal pain in FD patients 
by reducing intestinal gas production and optimizing gastrointestinal 
function (79, 80). It should be noted that the efficacy of existing studies 
on probiotics, prebiotics, and specific dietary patterns varies somewhat, 
which may be influenced by a variety of factors such as strain selection, 
dosage, treatment duration, and individual patient differences.

4.3 Long-term impact of dietary microbial 
regulation on intestinal microecology

The long-term impact of dietary microbial modulation on the 
intestinal microecology of patients with FD centers on three aspects: 
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repair of the mucosal barrier, remodeling of the flora structure and 
function, and modulation of the neuroimmunity. Significant 
microecological imbalances are present in patients with FD, including 
barrier disruption due to aberrant expression of duodenal tight 
junction proteins, and dysregulation of the gastric and duodenal 
bacterial flora (e.g., increased Streptococcus and decreased Prevotella), 
>60% concomitant small intestinal bacterial overgrowth, and 
diminished anti-inflammatory and barrier repair functions due to 
inadequate synthesis of SCFAs (10, 73, 81, 82). Long-term probiotic 
interventions (e.g., supplementation with LG21 strains over 
8–12 weeks) ameliorate this imbalance through multiple mechanisms. 
First, for barrier repair, up-regulation of tight junction proteins 
(ZO-1, Claudin-8) reduces intestinal permeability and decreases 
antigen penetration (11, 81–83). Second, for flora optimization, the 
abundance of Lactobacillus, Bifidobacterium, and SCFA-producing 
bacteria (e.g., Ruminococcaceae, Prevotella) was elevated by inhibiting 
pathogenic bacterial colonization, and the intestinal epithelium was 
supplied with energy by increasing SCFAs such as butyric acid (51, 
84, 85). Third, neuroimmunomodulation promotes anti-
inflammatory factors and modulates the brain-gut axis via 
neurotransmitters (GABA, serotonin) to alleviate visceral 
hypersensitivity (82). In addition, studies have shown that specific 
strains such as L. gasseri OLL2716 significantly reduced bile reflux 
and repaired the mucosa in non-H. pylori-infected FD patients, with 
a symptom elimination rate of 35.3% in the 12-week intervention 
(17.3% in the placebo group) (11), while multi-strain combinations 

(e.g., Lactobacillus+Bifidobacterium) resulted in >70% relief of 
abdominal distension and abdominal pain through synergistic 
potentiation (74, 84, 86).

Long-term stability and key influences of the intervention need to 
be focused on: continued supplementation for >6 months maintains 
colony alpha diversity and abundance of SCFA producers (Prevotella, 
etc.), and enhances colony structure against fluctuations (85, 87). 
However, host age (older adults cause resistance to colonization due 
to increased Bacteroidetes) (88, 89), medication history (antibiotics/
PPIs diminish effectiveness) (90), and dietary patterns (response rates 
are lower in those high in animal protein than in those high in fiber) 
(91) significantly influence individual efficacy. Nevertheless, excessive 
or inappropriate microbial interventions may potentially disrupt 
microbial equilibrium or promote antimicrobial resistance, 
necessitating careful protocol design and longitudinal monitoring of 
therapeutic outcomes.

5 Gut microecology diagnostic 
techniques in FD

5.1 Gut microecological assessment to 
assist in the diagnosis of FD

Gut microecological assessment has important potential in the 
diagnosis of FD. With the help of 16S rRNA sequencing, 

TABLE 1  Classification of dietary microorganisms and their role in intestinal functions.

Microbial 
species

Genus/species Typical strains Functional role in intestinal

Probiotics Lactobacillus rhamnosus LGG Enhance intestinal barrier function (129, 130)

Lactobacillus plantarum L. plantarum L15; LR Inhibit LPS-mediated NF-κB activation and improve intestinal flora dysbiosis (131, 132)

Bifidobacterium lactis B. lactis A6 Regulate immune activation and increase SCFA production (133)

Bifidobacterium longum B. longum BB536 Improve intestinal permeability and inhibit intestinal barrier damage (134)

Lactobacillus casei Lcr35 Reduce inflammation scores and restore bacterial homeostasis (135)

Lactobacillus delbrueckii pExu:hsp65 Reduce inflammatory infiltration and increase intestinal IgA levels (136)

Bifidobacterium infantis JYBR-190 Protect intestinal mucosa from pathogen damage and enhance antimicrobial activity 

(137)

Lactobacillus acidophilus NCFM Improve metabolic disorders (e.g., type 2 diabetes mellitus) and enhance host metabolic 

regulation (138, 139)

Prebiotic-related 

microorganisms

Bifidobacterium spp.

Bacteroides spp.

B. adolescentis

B. breve

B. xylanisolvens

Selectively utilizes FOS/GOS and promotes SCFA production, breaks down dietary 

fiber, and maintains intestinal homeostasis (140–143)

Live 

microorganisms 

(fermented foods)

Lactococcus spp.

Weissella cibaria

L. lactis

L. mesenteroides

Enhances host immunomodulation (144–146)

Macronutrient-

related 

microorganisms

Prevotella spp.

Clostridium spp.

Ruminococcus spp.

Tryptophan Catabolizes complex carbohydrates (e.g., cellulose, resistant starch) and regulates 

intestinal energy balance (147–149)

Others Enterococcus faecium C171 Competitively inhibit pathogen colonization and modulate host immune response (150, 

151)

SCFA, Short-chain fatty acid; LPS, Lipopolysaccharides; NF-κB, Nuclear Factor kappa-B; FOS, Fructooligosaccharide; GOS, Galactooligosaccharides; LGG, Lactobacillus rhamnosus GG; L. 
plantarum L15, Lactobacillus plantarum L15; LR, Lactobacillus plantarum LR002; B. lactis A6, Bifidobacterium subsp. lactis A6; B. longum BB536, Bifidobacterium longum BB536; Lcr35, 
Lactobacillus casei variety rhamnosus; pExu:hsp65, Lactobacillus delbrueckii CIDCA 133; JYBR-190, Bifidobacterium lactis JYBR-190; NCFM, Lactobacillus acidophilus NCFM; C171, 
Enterococcus faecium C171.
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macrogenomics and metabolomics, the composition, diversity, 
functional activity and changes in their metabolite profiles of the 
intestinal microbiota can be systematically analyzed to gain insights 
into the development of FD (35, 92). Specifically, 16S rRNA 
sequencing is used to analyze the species and abundance of the flora, 
macrogenomics reveals the gene functions and metabolic pathways of 
microorganisms, and metabolomics monitors the dynamic changes of 
microbial metabolites (35, 92). The application of these techniques has 
clearly revealed that the duodenal microbiota of FD patients at the 
genus level is characterized by a specific flora structure and associated 
microbial functions (35), and these findings provide new perspectives 
for understanding the pathogenesis of FD. In addition, indicators of 
intestinal barrier function (e.g., serum connexin, fecal calreticulin) 
can indirectly reflect the health status of the intestinal microecology 
and provide valuable additional information for FD diagnosis (73). 
Current studies consistently show that intestinal microecological 
imbalance in FD patients often coexists with impaired intestinal 
barrier function. Of interest, restoring microbial balance through 
interventions such as probiotics and prebiotics has been shown to 
promote the production of SCFAs, improve the diversity and stability 

of the bacterial flora, and ultimately enhance intestinal barrier 
function (93, 94).

5.2 Novel gut microbial detection 
technologies in FD

Recent advances in gut microbial detection technologies have 
significantly expanded research and diagnostic capabilities for 
FD. Emerging artificial intelligence (AI)-based analytical approaches 
enable rapid and precise evaluation of extensive gut microbiome 
datasets, facilitating identification of specific microbial signatures 
associated with FD pathogenesis. Application of AI algorithms to 
comparative analyses of gut microbiota from FD patients versus 
healthy controls has revealed distinct microbial consortium patterns 
that correlate strongly with disease progression. These microbial 
biomarkers show potential for early diagnostic applications and 
longitudinal disease monitoring (95).

High-resolution microendoscopy (HRME) represents an 
innovative imaging modality that provides real-time, cellular-level 

FIGURE 2

Mechanistic insights into dietary microorganism-mediated modulation of intestinal microecology. Dietary microorganisms influence intestinal 
microecology in four main ways: (1) Dietary fiber and polyphenols promote the proliferation of beneficial bacteria (e.g., Bifidobacterium and 
Lactobacillus) and inhibit pathogenic bacteria by regulating the composition of the intestinal flora, and at the same time enhance the intestinal barrier 
function, promote the metabolism of secondary bile acids, and assist in the synthesis of a variety of vitamins. (2) Fermented dietary fiber produces 
metabolites, such as SCFAs, to maintain the intestinal environment in a homeostatic state, increase the integrity of intestinal tightly linked proteins, 
promote the recovery of intestinal barrier function, and influence systemic immune regulation through GPCRs. (3) SCFAs exert both direct and indirect 
immunomodulatory effects on intestinal mucosal immunity and inflammatory responses through their interactions with host pattern recognition 
receptors, including TLRs and NLRs. Following their absorption, these microbial metabolites enter the systemic circulation, thereby influencing 
systemic immune responses and metabolic status. (4) Dietary microorganisms and metabolites such as SCFAs interact through the gut-brain axis to 
influence brain function with the help of the neuro-immune-endocrine network. SCFAs, Short-chain fatty acids; TLRs, Toll-like receptors; NLRs, NOD-
like receptors; GPCRs, G protein-coupled receptors.
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visualization of intestinal mucosa. This technique enables detection of 
subtle architectural alterations in mucosal microstructure resulting 
from gut microbial dysbiosis. In FD investigations, HRME has 
demonstrated significant abnormalities in duodenal mucosal epithelial 
cell morphology and spatial organization, which may reflect 
inflammatory processes and compromised barrier function secondary 
to microbial imbalance (96). Endomicroscopic analyses have further 
revealed a higher prevalence of gastric metaplasia in the duodenal 
bulb among FD patients compared to asymptomatic controls (97), 
suggesting potential pathophysiological relevance and future 
therapeutic targeting.

In addition, Spectroscopic methodologies, including elastic 
scattering spectroscopy and angle-resolved low-coherence 
interferometry, offer additional diagnostic precision by characterizing 
tissue optical properties to evaluate mucosal microstructure and 
biochemical composition. These non-invasive techniques enhance 
detection of early tissue-level changes induced by microbial 
dysregulation, providing valuable complementary data for FD 
diagnosis (98).

5.3 Biomarkers of FD and intestinal 
microecology

The identification of FD-related intestinal microecological 
biomarkers is significant in enabling early diagnosis, monitoring the 
condition and guiding treatment. Current research has identified 
several promising candidate biomarkers. At the microbial level, 
decreased abundance of specific gut bacteria (e.g., Bifidobacterium 
bifidum, Lactobacillus lactis) as well as an increase in harmful bacteria, 
such as Escherichia coli, are associated with the pathogenesis of FD, 
and the pattern of their imbalance can serve as an important indicator 
of microecological homeostasis (36, 45). Among the microbial 
metabolites, SCFAs, especially the decreased levels of butyric acid due 
to the reduction of butyric acid-producing bacteria, are of great 
interest (99). Decreased levels of SCFAs have been shown to affect 
intestinal barrier function and immune regulation, and have been 
associated with the symptomatic manifestations of FD (66). In 
addition, indicators reflecting local and systemic immune activation 
status in the gut have potential. For example, FD patients are seen to 
have increased infiltration of immune cells such as mast cells and 
eosinophils in the intestinal mucosa, and elevated serum levels of 
pro-inflammatory cytokines (e.g., interleukin-6, tumor necrosis 
factor-α) (5, 73). Meanwhile, the low-grade inflammation at the 
duodenal site and the abnormal alteration of tight junction protein 
expression further corroborate the central role of immune 
dysregulation of the intestinal microenvironment in the 
pathophysiologic process of FD (100).

Currently, most candidate biomarkers in the field of FD are still in 
the exploratory phase of research. To advance their clinical use, future 
rigorous work is needed for validation: this includes assessing their 
diagnostic sensitivity and specificity in large, independent and 
representative cohorts of FD patients and control populations. Further 
long-term follow-up studies are needed to clarify whether dynamic 
changes in these markers are associated with fluctuations in FD 
symptoms, disease progression or remission, and the efficacy of 
different interventions (e.g., probiotics, prebiotics, or dietary 
modifications). To overcome the limitations of single-marker 

performance, improve overall accuracy and lay the foundation for 
precision medicine, it is necessary to integrate multidimensional data 
from the microbiome, metabolome (e.g., SCFAs, etc.), immunome, 
and host genome, and to combine them with exhaustive clinical 
phenotypic and lifestyle information to construct diagnostic, typing, 
or prognostic models by using advanced methods such as machine 
learning. These integrated approaches are expected to yield reliable 
performance data and enable clinical translation, enhancing predictive 
power through complementary information. However, the high 
financial and time costs involved in these ambitious research 
programs, as well as the high complexity of integrating, processing, 
and analyzing data from multiple sources, pose potentially 
significant obstacles.

5.4 Personalized dietary microbial 
regulation programs for patients with FD

The management of patients with FD is increasingly focused on 
precision nutritional interventions based on the gut microbiota. Given 
the complex interactions between gut microbes and their hosts, as well 
as the significant individual differences in microecological profiles, 
symptom manifestations, and therapeutic responses (101, 102), the 
design of personalized dietary microbial modulation protocols is key. 
The basis of this lies in the accurate assessment of the patient’s 
intestinal microecology (e.g., 16S rRNA sequencing and macro-
genomics to reveal the imbalance in flora composition, diversity, and 
function), and the in-depth integration of individualized factors such 
as symptomatic characteristics, dietary patterns, lifestyle habits, and 
comorbidities (36). For example, for specific flora imbalances (e.g., 
Bifidobacteria deficiency), the corresponding probiotic preparation 
can be  supplemented (13). Specific to symptoms, patients with 
dyskinesia who are predominantly postprandial fullness and early 
satiety may use probiotics that improve gut motility, like Lactobacillus 
rhamnosus GG (LGG) which promotes mucin production by 
modulating the 5-HT4 receptor and flora to alleviate constipation 
(103), or probiotic combinations (Lacticaseibacillus paracasei JY062 
and Lactobacillus gasseri JM1) restores motility by bi-directional 
modulation of pro-motility factors (gastric motility, gastrin, 
5-hydroxytryptamine) and inhibitory factors (peptide YY, nitric 
oxide) (104). At the same time, the choice of intervention modalities 
needs to take into account dietary interactions with flora and 
hormones, e.g., low FODMAP diets and specific dietary patterns (e.g., 
polyphenol-rich anti-inflammatory diets) can attenuate associated 
symptoms or inflammation by modulating flora and immune 
responses (60, 105). For special groups (e.g., FD patients with 
comorbid diabetes), additional assessment of the impact of 
interventions on glycemia is required.

In order to consolidate efficacy and reduce the risk of relapse, 
personalized regimens need to focus on their long-term effects and 
be clinically stratified: e.g., specific single strains (e.g., L. plantarum) 
are preferred for the PDS type, whereas prokinetic drugs may be used 
in combination with the predominantly EPS type (74). The use of 
enteric capsule technology is essential to ensure effective colonization 
of key areas of the probiotic (e.g., duodenum) (106). The use of a 
synbiotic strategy (probiotics in combination with specific prebiotics 
such as inulin) significantly increases the production of SCFAs and 
significantly reduces relapse rates (107). Long-lasting colonization 
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techniques and customized strain combinations based on host gut 
type need to be developed in the future to enhance the efficacy of the 
intervention (91, 108). In clinical practice, a phased intervention is 
recommended: an initial phase with a high-dose multi-strain 
combination (e.g., Lactobacillus gasseri + Bifidobacterium lactis) for 
rapid symptomatic improvement, and a maintenance phase with a 
low-FODMAP diet and prebiotics to stabilize the flora (74, 86). This 
precise protocol, which combines assessment, individualized analysis 
of intervention elements, and multi-level implementation strategies, 
is expected to significantly optimize the overall treatment outcome of 
FD and improve patients’ quality of life (4, 109, 110).

In addition, fecal transplantation (FMT) technology has also 
demonstrated potential for the treatment of FD by correcting host 
intestinal dysbiosis. The core technology of FMT, in particular 
optimized washout microbiota transplantation (WMT), involves the 
introduction of functioning microbial communities into the patient 
through the upper gastrointestinal tract (e.g., naso-duodenal tube) or 
lower gastrointestinal tract (e.g., colonoscopy) routes by means of a 
rigorously screened, healthy donor fecal flora, aiming at reestablishing 
a healthy microecological balance in the patient. The aim is to 
re-establish a healthy micro-ecological balance. Clinical studies have 
shown that more than 62.5% of FD patients experience symptomatic 
improvement after three FMTs, with a significant improvement in 
quality of life (111). Randomized controlled trials further confirmed 
that the symptom disappearance rate and total relief rate of patients in 
the WMT group were significantly better than those in the 
conventional probiotic group (112). This may be  related to the 
increased abundance of Lactobacillus and Bacteroides and decreased 
Streptococcus spp. in patients after FMT, as well as increased levels of 
metabolites related to digestion and mucosal repair (e.g., arginine, 
N-acetylglutamic acid) (111). The short-term effects of FMT are clear 
and the safety is relatively controllable, but the sample sizes of the 
studies are small, the long-term efficacy data are insufficient, and 
individualized regimens are missing. Addressing the maintenance of 
long-term efficacy, exploring individualized protocols, and improving 
the convenience of the technology are key to promoting its 
clinical application.

6 Points of controversy and future 
prospects

6.1 Controversies and challenges of dietary 
microbial modulation in FD

The application of dietary microbial modulation in FD presents 
substantial controversies and unresolved challenges. First, while 
certain studies demonstrate symptom amelioration through probiotic 
interventions, considerable heterogeneity exists among clinical 
outcomes, with multiple trials failing to establish statistically 
significant efficacy (113). This variability likely stems from 
confounding factors including strain selection, dosage regimens, 
treatment duration, and interindividual differences in microbiome 
composition. Particularly, baseline microbiota profiles and comorbid 
conditions may further influence therapeutic response (64). 
Consequently, precision microbiota-based interventions necessitate 
comprehensive characterization of individual microbial 
ecosystems (114).

Second, FD represents a complex gut-brain axis disorder with 
incompletely elucidated pathophysiological mechanisms, resulting 
in the absence of consensus regarding optimal microbial 
modulation strategies (115). Critical knowledge gaps persist 
concerning selection criteria for specific microbial taxa, optimal 
combinatorial approaches, and evidence-based dosing protocols. 
Furthermore, longitudinal safety assessments remain imperative, 
particularly regarding potential iatrogenic dysbiosis and 
antimicrobial resistance development (4, 80, 116). Of particular 
clinical relevance is the established role of psychological factors in 
FD pathogenesis; however, mechanistic understanding of 
microbiota-psychology crosstalk remains limited, presenting a 
fundamental barrier to developing integrated biopsychosocial 
treatment paradigms (19).

6.2 Future directions and technological 
breakthroughs in intestinal microecology 
research

In the future, intestinal microecology research will develop in the 
direction of deeper  and more precise. In terms of technology, the 
integration of multi-omics technologies will become an important 
trend. By combining multiple technologies such as macrogenomics, 
transcriptomics, proteomics and metabolomics, the multilevel and 
dynamic interaction network between gut microbes and hosts will 
be systematically analyzed. This integrated analysis will profoundly 
reveal the functional mapping of gut microecology and its mechanism 
of action in health and disease states (117–119). Critically, the research 
will focus on the complex interactions between the gut microbiota and 
the host immune and neuro-endocrine systems. The “complexity” of 
this interplay is reflected in the fact that, on the one hand, the gut flora 
acts as a key signaling molecule through its metabolites (e.g., short-
chain fatty acids, tryptophan, neurotransmitter precursors, etc.), and 
at the same time, acts on the immune cells of intestinal mucosa, cells 
of the enteric nervous system, and cells of the enteroendocrine system, 
which together maintain the function of intestinal barriers, regulate the 
level of local and systemic inflammation levels, influence neural 
signaling (e.g., via vagal pathways) and secretion of key hormones (e.g., 
cortisol) (38, 70, 120, 121).

On the other hand, host status (e.g., dietary structure, stress level, 
etc.) profoundly affects the gut microenvironment and neuroendocrine 
activity, which in turn regulates the composition and function of the 
microbiota; at the same time, cytokines produced by the host immune 
system as well as neuroendocrine signals (e.g., neuropeptides and 
stress hormones) can in turn shape the microbial community 
structure and activity, forming a closed-loop regulatory signaling 
network (19, 122). An in-depth study of the fine-tuned operation of 
this interplay network in different individuals will provide a key 
breakthrough in elucidating the pathogenesis of such diseases. 
Therefore, future studies will not only require the use of more powerful 
integrated multi-omics analyses to paint a panoramic picture, but 
advances in single-cell analysis technologies will also facilitate the 
acquisition of multidimensional information at the single-cell level 
(123, 124), precisely resolving the heterogeneity of different cell types 
and their specific roles in the microbiota-host interactions network 
(125). Based on the results of these insightful understandings, the 
ultimate goal is to develop novel diagnostic markers and design 
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precise and personalized intervention strategies (e.g., probiotics or 
dietary therapies targeting microbial metabolism, immunomodulation, 
or gut-brain axis signaling, etc.) to target the dysfunctional 
mechanisms of the aforementioned interactions, opening new 
pathways for the prevention and treatment of FD.

6.3 Clinical translational prospects of FD 
and intestinal microecology research

Research on FD and intestinal microecology holds significant 
translational potential for clinical applications. First, investigations 
into gut microecology-derived biomarkers may enable early and 
precise diagnosis of FD. The identification of disease-associated 
microbial signatures, including specific gut microorganisms and their 
metabolic byproducts, could facilitate the development of rapid, 
accurate diagnostic tools (36, 49, 126). Such advancements would 
permit timely clinical intervention, potentially improving 
patient outcomes.

Second, dietary microbial modulation and microecological 
interventions represent promising therapeutic approaches for FD 
management. Empirical evidence demonstrates that targeted dietary 
fiber supplementation can elicit symptom-specific therapeutic effects 
through functional modulation of intestinal microbiota (127). 
Furthermore, microecological therapies, including probiotics and 
synbiotics, have exhibited clinical potential in FD treatment, likely 
mediated through modification of microbial metabolic functions 
(126, 128).

Emerging mechanistic insights into the FD-microbiota interaction 
are informing the development of next-generation probiotics, 
prebiotics, and personalized microecological treatment regimens. 
These innovations promise to deliver more precise, safer, and 
efficacious therapeutic options for FD patients. When integrated with 
novel diagnostic technologies—including artificial intelligence-
assisted analysis and high-resolution imaging—these approaches 
enable comprehensive patient assessment and real-time treatment 
monitoring, thereby optimizing therapeutic outcomes.

Notably, findings from intestinal microecology research may have 
broader implications for managing other functional gastrointestinal 
disorders. This research trajectory may accelerate progress in clinical 
gastroenterology, potentially enhancing patient quality of life while 
alleviating the socioeconomic burden of gastrointestinal diseases.
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